首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine whether oxygen-derived free radicals play an important role in the pathogenesis of stress-induced tissue injury, the effect of a superoxide dismutase derivative, which binds to albumin and circulates with a half-life of 6 h in intact rats, on acute gastric mucosal lesion was observed in rats which were given water-immersion-restraint. This enzyme derivative also circulated bound to albumin with a half-life of 8 h in rats which were challenged with water-immersion-restraint. This treatment significantly perturbed systemic circulation of animals by decreasing the effective volume of circulating blood, increased vascular permeability of the gastric mucosa, and induced acute gastric mucosal lesion. Intravenous administration of this enzyme derivative normalized both systemic circulation and vascular permeability of the gastric mucosa and prevented the occurrence of stress-induced gastric injury. These findings suggest that the superoxide radical and/or its metabolite(s) plays an important role in the pathogenesis of stress-induced acute gastric mucosal lesion.  相似文献   

2.
M Inoue  I Ebashi  N Watanabe  Y Morino 《Biochemistry》1989,28(16):6619-6624
Protection of tissues from oxidative stress is one of the major prerequisites for aerobic life. Since intravenously injected Cu2+/Zn2+-type superoxide dismutase (SOD) disappears from the circulation with a short half-life of 5 min, its clinical use as a scavenger for superoxide radical is limited. We synthesized a human erythrocyte type SOD derivative (SM-SOD) by linking 2 mol of hydrophobic organic anion, alpha-4-[( 6-(N-maleimido)hexanoyloxymethyl]cumyl]half-butyl-esterified poly(styrene-co-maleic acid) (SM), to the cysteinyl residues of the dimeric enzyme without decreasing enzymic activity. SM-SOD, but not SOD, bound to an albumin-Sepharose column; the bound SM-SOD was eluted by a buffer solution containing 0.5% sodium dodecyl sulfate or 10 mM warfarin, suggesting that SM-SOD reversibly binds to the warfarin site on albumin. Due to the amphipathic nature of the SMI moiety, SM-SOD bound also to cell membranes particularly when the pH was decreased. In vivo analysis in the rat revealed that intravenously injected SM-SOD circulated bound to albumin with a half-life of 6 h. Postischemic reperfusion arrhythmias were almost completely prevented by a single dose of SM-SOD, but not SOD. Thus, the prolonged half-life of SM-SOD in the circulation and its preferential accumulation in an injured site with decreased pH appeared to be responsible for preventing myocardial injury. These results suggest that superoxide radical and/or its metabolite(s) would play an important role in the pathogenesis of postischemic reperfusion arrhythmias and that SM-SOD may be useful for decreasing tissue injury in ischemic heart disease.  相似文献   

3.
Ischemia followed by reflow often results in tissue injury. Although reactive oxygens seem to play an important role in the pathogenesis of postischemic reflow-induced tissue injury, the mechanism and an efficient way to inhibit oxidative injury are not known. We studied the mechanism by which hepatic transport function was inhibited by a transient occlusion followed by reflow of the portal vein and hepatic artery by using a superoxide dismutase (SOD) derivative (SM-SOD) which circulates bound to albumin with a half-life of 6 h. Occlusion of the hepatic vessels for 20 min followed by reflow for 60 min significantly inhibited transhepatic transport of cholephilic ligands, such as bromosulfophthalein (BSP) and taurocholic acid. Intravenous administration of SM-SOD markedly inhibited the reflow-induced decrease in transhepatic transport of these ligands. Thiobarbituric acid - reactive metabolites (TBAR) in the liver and plasma remained unchanged during occlusion and reflow, while TBAR in the bile increased significantly. Intravenous injection of SM-SOD inhibited the reflow-induced increase in biliary TBAR. Xanthine oxidase activity in plasma also increased during occlusion and reflow by an SM-SOD-inhibitable mechanism. Polymorphonuclear leukocyte-dependent chemiluminescence of the peripheral blood remained unchanged during occlusion, but increased markedly with time after reflow. SM-SOD also inhibited the increase in chemiluminescence almost completely. These and other results suggested that the superoxide radical and/or its metabolite(s) might play an important role in the pathogenesis of the reflow-induced liver injury and that SM-SOD might be useful for studying the mechanism for tissue injury caused by oxygen toxicity.  相似文献   

4.
Although oxygen-free radicals have been postulated to play an important role in the pathogenesis of gastric mucosal injury induced by posthemorrhagic blood transfusion, direct evidence supporting this hypothesis is lacking. Superoxide dismutase (SOD) has been shown to inhibit oxygen toxicity in vitro in various types of cell injury. However, in some cases, oxidative tissue injury cannot be decreased efficiency predominantly due to its rapid elimination by renal glomerular filtration. To overcome such frustrating situations, we have synthesized a SOD derivative that circulates bound to albumin with a half-life of 6 hr. When blood was withdrawn from the rat (22 ml/kg) for 30 min followed by transfusion of the extracted blood, marked gastric mucosal lesions occurred within 30 min after transfusion. Intravenously injected SOD derivative markedly decreased gastric mucosal injury. Kinetic analysis using 125I-labeled albumin revealed that the vascular permeability of the stomach increased significantly after transfusion by a SOD derivative inhibitable mechanism. Thus, superoxide radical and/or its metabolite(s) play a critical role in the pathogenesis of posthemorrhagic transfusion-induced gastric injury.  相似文献   

5.
Superoxide radicals are known to be important mediators in chronic inflammatory and fibrotic processes, in which accumulation of fibroblasts is thought to play a major role in the pathogenetic events. The enzyme superoxide dismutase removes these radicals by a catalytic reaction. Chemotactic response of human fibroblasts and fibrosarcoma-derived cells (HT-1080) to fibroblast conditioned medium, fibronectin and platelet-derived growth factor was inhibited in a dose-dependent manner in the presence of superoxide dismutase, while random migration, cell proliferation, cell viability and synthesis of collagen and non-collagenous proteins was not altered. In contrast, phorbol myristate acetate, an inducer of superoxide generation, stimulated the chemotactic movement of fibroblasts to the attractants. Evidence for the formation of superoxide is provided by the reduction of tetrazolium salt by activated fibroblasts which could be inhibited by superoxide dismutase. Thus, it is concluded that superoxide in small amounts is involved in the mechanism of fibroblast chemotaxis. Superoxide dismutase may, therefore, reduce fibroblast migration into sites of injury or inflammation.  相似文献   

6.
Protection of tissues from oxygen toxicity is one of the major prerequisites to aerobic life. Since a wide variety of xenobiotics with prooxidant activity is excreted by the kidney, renal tubule cells should be protected from hazardous oxygen species. Because intravenously injected Cu/Zn-type superoxide dismutase (SOD) is rapidly excreted in the urine in its intact form, effective dismutation of superoxide radicals cannot be achieved in vivo by intravenously administered SOD. To scavenge superoxide radicals and inhibit their toxic effects in and around renal tubule cells, a hexamethylene-diamine (AH)-conjugated SOD (AH-SOD) was synthesized. When injected intravenously into the rat, (125)I-labeled AH-SOD disappeared from the circulation with a half-life of 3 min and accumulated in the kidney. After 30 min of administration, more than 80% of the radioactivity derived from AH-SOD was found to localize in the kidney without being excreted in the urine. Immunohistochemical examination revealed that, 60 min after administration, the major part of AH-SOD localized in renal proximal tubule cells. Kinetic analysis using right-side-out-oriented renal brush border vesicles revealed that AH-SOD bound to their membrane surface by some mechanism which was inhibited by AH but not by heparin and albumin. These results indicated that AH-SOD rapidly underwent renal glomerular filtration, bound to apical plasma membranes of proximal tubule cells, and localized in these cells for a fairly long time without being excreted in the urine. Thus, AH-SOD might permit studies on the role of superoxide radicals in and around renal proximal tubule cells.  相似文献   

7.
The formation of methemoglobin from oxyhemoglobin in a solution containing photoreduced riboflavin and oxygen was inhibited by superoxide dismutase. The rate of the reaction was pH-dependent in the range of 6.8 to 7.8, increasing as the pH was reduced. Inhibition by superoxide dismutase was enhanced as the EDTA concentration increased and was dependent on enzymatic activity. Under conditions in which superoxide dismutase inhibition was incomplete, catalase inhibited the reaction but mannitol had no effect. The data support the mediation of methemoglobin formation by superoxide. The hypothesis is offered that superoxide anion reduced the heme-bound oxygen in oxygemoglobin by one electron, permitting the subsequent dissociation of ferrihemoglobin and peroxide. The ability of superoxide dismutase to inhibit the formation of methemoglobin may represent one of its functions in the mature erythrocyte.  相似文献   

8.
The role of intracellular oxyradicals in H2O2 and neutrophil-induced cytotoxicity is suggested by previous studies showing protection by inhibitors such as deferroxamine, dimethylthiourea, and dimethyl sulfoxide. In the current studies, the role of intracellular O2- is specifically examined by evaluating the effects of intracellular superoxide dismutase (SOD) supplementation on cytotoxicity of rat pulmonary artery endothelial cells induced by H2O2 and activated neutrophils. To minimize in vitro manipulation, supplementation was accomplished by incubating endothelial cells in the presence of SOD (1-20 mg/mL). Increases up to greater than 17-fold the baseline SOD activity were achievable using this approach, with uptake being maximal after 6 h of incubation. This increase was resistant to trypsin digestion, suggesting the intracellular location of SOD. Compared to controls, SOD-supplemented cells showed significantly increased resistance to killing by H2O2 and activated neutrophils. Inactive SOD failed to provide protection. The degree of protection was dependent on the dose of cytotoxic agent and the extent of SOD supplementation. The results provide new evidence that intracellular O2- participates in the killing process induced by these two stimuli. The intracellular source of O2- remains to be determined, although previous studies suggest xanthine oxidase as a likely candidate.  相似文献   

9.
Reversible phosphorylation of acidic ribosomal proteins of Saccharomyces cerevisiae is an important mechanism, regulating the number of active ribosomes. The key role in regulation of this process is played by specific, second messenger-independent protein kinases. A new protein-inhibitor regulating activity of PK60S kinase has been purified from yeast extracts and characterised. Peptide mass fingerprinting (PMF) and amino-acid sequence analysis by Post Source Decay (PSD) have identified the inhibitor as a Cu-Zn superoxide dismutase (SOD). Inhibition by SOD is competitive with respect to protein substrates-P proteins and 80S ribosome-with K(i) values of 3.7 microM for P2A protein and 0.6 microM for 80S ribosomes. A close correlation was found between the state of phosphorylation of P proteins in diauxic shift and logarithmic growth yeast cells and activity of SOD. The possible mechanism of regulation of PK60S activity, and participation of SOD protein in regulation of 80S-ribosome activity in stress conditions, is discussed.  相似文献   

10.
2,3-Dimethyl-1,4-naphthohydroquinone undergoes auto-oxidation to the corresponding quinone at pH 7.4, with stoichiometric consumption of oxygen and formation of hydrogen peroxide. In an unpurified buffer, the rate of oxidation was low, but it increased nearly 9-fold when trace metals were removed from the buffer by treatment with Chelex resin. A similar increase in rate was achieved by addition of DTPA or bathophenanthroline sulfonate to unpurified buffer, whereas EDTA and desferal were less effective. Addition of copper to purified buffer led to inhibition of oxidation, with a 50% decrease in rate being observed at a metal concentration of 7.1 nM, and it is likely that the low auto-oxidation rate recorded in unpurified buffer was due to copper contamination of the latter. The auto-oxidation of 2,3-dimethyl-1,4-naphthohydroquinone was exceptionally sensitive to inhibition by superoxide dismutase, with a concentration of only 4.5 ng/ml being sufficient for a 50% decrease in rate, and the inhibitory effect of copper may be due to the ability of this metal to catalyse the dismutation of superoxide. Previous studies have shown that the rates of auto-oxidation of 1,4-naphthohydroquinone and 2-methyl-1,4-naphthohydroquinone are influenced by copper contamination of buffer and the present study shows that this is also true for a di-substituted naphthohydroquinone. For accurate assessment of rates of naphthohydroquinone auto-oxidation, it is important that purified buffers or appropriate chelating agents, are employed.  相似文献   

11.
Haddad, Imad Y., Bedford Nieves-Cruz, and Sadis Matalon.Inhibition of surfactant function by copper-zinc superoxide dismutase (CuZn-SOD). J. Appl.Physiol. 83(5): 1545-1550, 1997.The efficacy ofantioxidant enzymes to limit oxidant lung injury by instillation withsurfactant mixtures in preterm infants with hyaline membrane disease isunder investigation. However, there is concern that instillation ofproteins in the alveolar space may inactivate pulmonary surfactant. Westudied the effects of bovine copper-zinc superoxide dismutase(CuZn-SOD) on the biophysical properties of two distinct surfactantpreparations. Incubation of calf lung surfactant extract (CLSE, 1 mgphospholipid/ml) and Exosurf (0.1 mg phospholipid/ml) with CuZn-SOD(1-10 mg/ml) prevented the fall of surface tension at minimalbubble radius (Tmin) to lowvalues with dynamic compression in a pulsating bubble surfactometer. CuZn-SOD also enhanced the sensitivity to inactivation by albumin, normal human serum, and after treatment with peroxynitrite. The inhibitory effects of CuZn-SOD on CLSE, but not Exosurf, were abolishedat high lipid concentrations (3 mg/ml) and after the addition of humansurfactant protein A (by weight). We conclude that CuZn-SOD mayinterfere with the surface activity of surfactant mixtures, leading todecreased effectiveness of surfactant replacement therapy.

  相似文献   

12.
Stable nitroxide radicals have been previously shown to function as superoxide dismutase (SOD)2 mimics and to protect mammalian cells against superoxide and hydrogen peroxide-mediated oxidative stress. These unique characteristics suggested that nitroxides, such as 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol), might protect mammalian cells against ionizing radiation. Treating Chinese hamster cells under aerobic conditions with 5, 10, 50, and 100 mM Tempol 10 min prior to X-rays resulted in radiation protection factors of 1.25, 1.30, 2.1, and 2.5, respectively. However, the reduced form of Tempol afforded no protection. Tempol treatment under hypoxic conditions did not provide radioprotection. Aerobic X-ray protection by Tempol could not be attributed to the induction of intracellular hypoxia, increase in intracellular glutathione, or induction of intracellular SOD mRNA. Tempol thus represents a new class of non-thiol-containing radiation protectors, which may be useful in elucidating the mechanism(s) of radiation-induced cellular damage and may have broad applications in protecting against oxidative stress.  相似文献   

13.
The trail to superoxide dismutase.   总被引:1,自引:0,他引:1  
  相似文献   

14.
15.
Three cobalt derivatives of bovine erythrocyte superoxide dismutase (superoxide:superoxide oxidoreductase, EC 1.15.1.1) have been prepared under different pH conditions using a cobalt-thiocyanate complex which has already proved to yield specific substitutions on other copper proteins. The cobalt-protein derivatives have been characterized by optical, circular dichroism and fluorescence spectroscopies. One derivative, referred to as Co2Co2-protein, contains Co(II) ions specifically bound at both Zn(II) and Cu(II) sites. On the basis of their spectroscopic properties, the other two derivatives can be referred as E2Co2- and Co2E2-superoxide dismutase, with cobalt substituting, respectively, at the zinc and the copper sites leaving the contiguous site empty (E). The Co2E2-protein complex represents a novel derivative, since it has never been described in literature. The optical spectrum in the visible region of Co2-Co2-protein well corresponds to the sum of the spectra of the other two derivatives. The circular dichroism spectrum of Co2Co2-derivative, however, is not the sum of individual E2Co2- and Co2E2-proteins, suggesting that the presence of Co(II) in one site strongly affects the geometry of the neighbouring site. Some discrepancies between our spectroscopic data and those reported in literature are discussed. The results obtained from fluorescence experiments indicate that Co(II) ions exert a different quenching effect on the tyrosine emission, depending on whether they are located in the Zn(II) or in the Cu(II) site. The fluorescence quenching can be attributed to a 'heavy atom' and 'paramagnetic ion' effect by Co(II) ions.  相似文献   

16.
The influence of cytokines on extracellular superoxide dismutase (EC-SOD) expression by human dermal fibroblasts was investigated. The expression was markedly stimulated by interferon-gamma (IFN-gamma), was varying between fibroblast lines stimulated or depressed by interleukin-1 alpha (IL-1 alpha), was intermediately depressed by tumor necrosis factor-alpha (TNF-alpha), and markedly depressed by transforming growth factor-beta (TGF-beta). TNF-alpha, however, enhanced the stimulation by a high dose of IFN-gamma, whereas TGF-beta markedly depressed the stimulations given by IFN-gamma and IL-1 alpha. The ratio between the maximal stimulation and depression observed was around 30-fold. The responses were generally slow and developed over periods of several days. There were no effects of IFN-alpha, IL-2, IL-3, IL-4, IL-6, IL-8, granulocyte-macrophage colony-stimulating factor, human growth hormone, Escherichia coli lipopolysaccharide, leukotriene B4, prostaglandin E2, formylmethionylleucylphenylalanine, platelet-activating factor, and indomethacin. The cytokines influencing the EC-SOD expression are also known to influence superoxide production by leukocytes and other cell types, and the EC-SOD response pattern is roughly compatible with the notion that its function is to protect cells against extracellular superoxide radicals. The results show that EC-SOD is a participant in the complex inflammatory response orchestrated by cytokines. The CuZn-SOD activity of the fibroblasts was not influenced by any of the cytokines, whereas the Mn-SOD activity was depressed by TGF-beta. TNF-alpha, IL-1 alpha, and IFN-gamma stimulated the Mn-SOD activity, as previously known, and these responses were reduced by TGF-beta. The different responses of the three SOD isoenzymes illustrate their different physiological roles.  相似文献   

17.
Two [Met(0)6]deacetyl-thymosin beta4 analogs containing Phe(4F) or Tyr(Me) at position 12 were synthesized by the manual solid-phase method, and their anti-inflammatory effect on carrageenin-induced edema in the mouse paw was studied. Fluorination of the para-position of Phe12 resulted in a marked antiinflammatory effect on carrageenin-induced edema in the mouse paw compared with that of our synthetic [Met(0)6]deacetyl-thymosin beta4, but the other analog, [Met(0)6, Tyr(Me)12]deacetyl-thymosin beta4, showed a marked reduction of the anti-inflammatory effect.  相似文献   

18.
Microglial activation has recently been recognized as a cause of damage in various neurodegenerative diseases. A possible mechanism underlying this damage is the activation of microglia by serum factors leaked through a disruption of the blood-brain barrier, which in turn trigger microglial cell proliferation and the release of various substances toxic to neurons, such as superoxide (O(2)(-)). We recently reported that serum albumin enhanced O(2)(-) production in cultured rat microglia stimulated by phorbol ester. In the present report, we identify the active site of this enhancement within the albumin molecule. We purified an active subfragment from trypsin-treated bovine serum albumin that was composed of 12-mer and 33-mer peptides connected by a disulfide bond. The chemically synthesized 12-mer peptide showed activity within a concentration range ( approximately 10(-7) M:) equivalent to that of albumin. The activities of a series of synthesized peptides conclusively indicated that the minimum active sequence was Leu-His-Thr-Leu. The present study may shed light on the mechanism of neuronal cell damage in various neurodegenerative diseases.  相似文献   

19.
Rabbit antibodies to bovine superoxide dismutase have been produced and used to develop a double-antibody solid phase radioimmunoassay for the enzyme. The assay is sensitive and highly specific for the bovine enzyme, showing no cross-reactivity with the murine or human superoxide dismutases. It has been applied to the quantitation of exogenous enzyme in serum and extracts of mouse cells and tissues.  相似文献   

20.
We have investigated the endocytosis by rat liver of superoxide dismutase (SOD) labelled with 125I. (125I) SOD is quickly taken up by the liver where it remains in significant amounts for at least 150 min. Adsorptive endocytosis is probably involved. Distribution of radioactivity was established after differential and isopycnic centrifugation and compared with that of cathepsin C, a lysosomal enzyme. Results show that the behavior of radioactivity is similar to that of the hydrolase. SOD activity is only marginally affected by incubation in the presence of a purified lysosome extract; moreover, when (125I) SOD is treated in the same conditions, only a few percent of radioactivity becomes acidosoluble. These observations indicate that SOD taken up by the liver accumulates in lysosomes where it can stay for a relatively long time owing to its relative resistance to lysosomal hydrolases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号