首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motor-powered movement along microtubule tracks is important for membrane organization and trafficking. However, the molecular basis for membrane transport is poorly understood, in part because of the difficulty in reconstituting this process from purified components. Using video microscopic observation of organelle transport in vitro as an assay, we have purified two polypeptides (245 and 170 kD) from Dictyostelium extracts that independently reconstitute plus-end-directed membrane movement at in vivo velocities. Both polypeptides were found to be kinesin motors, and the 245-kD protein (DdUnc104) is a close relative of Caenorhabditis elegans Unc104 and mouse KIF1A, neuron-specific motors that deliver synaptic vesicle precursors to nerve terminals. A knockout of the DdUnc104 gene produces a pronounced defect in organelle transport in vivo and in the reconstituted assay. Interestingly, DdUnc104 functions as a dimeric motor, in contrast to other members of this kinesin subfamily, which are monomeric.  相似文献   

2.
Here, using a quantitative in vivo assay, we map three regions in the carboxy terminus of conventional kinesin that are involved in cargo association, folding and regulation, respectively. Using C-terminal and internal deletions, point mutations, localization studies, and an engineered 'minimal' kinesin, we identify five heptads of a coiled-coil domain in the kinesin tail that are necessary and sufficient for cargo association. Mutational analysis and in vitro ATPase assays highlight a conserved motif in the globular tail that is involved in regulation of the motor domain; a region preceding this motif participates in folding. Although these sites are spatially and functionally distinct, they probably cooperate during activation of the motor for cargo transport.  相似文献   

3.
Although purified cytoskeletal motor proteins have been studied extensively with the use of in vitro approaches, a generic approach to selectively probe actin and microtubule-based motor protein activity inside living cells is lacking. To examine specific motor activity inside living cells, we utilized the FKBP-rapalog-FRB heterodimerization system to develop an in vivo peroxisomal trafficking assay that allows inducible recruitment of exogenous and endogenous kinesin, dynein, and myosin motors to drive specific cargo transport. We demonstrate that cargo rapidly redistributes with distinct dynamics for each respective motor, and that combined (antagonistic) actions of more complex motor combinations can also be probed. Of importance, robust cargo redistribution is readily achieved by one type of motor protein and does not require the presence of opposite-polarity motors. Simultaneous live-cell imaging of microtubules and kinesin or dynein-propelled peroxisomes, combined with high-resolution particle tracking, revealed that peroxisomes frequently pause at microtubule intersections. Titration and washout experiments furthermore revealed that motor recruitment by rapalog-induced heterodimerization is dose-dependent but irreversible. Our assay directly demonstrates that robust cargo motility does not require the presence of opposite-polarity motors, and can therefore be used to characterize the motile properties of specific types of motor proteins.  相似文献   

4.
In eukaryotic cells members of the kinesin family mediate intracellular transport by carrying cellular cargo on microtubule tracks. The nematode Caenorhabditis elegans genome encodes 21 members of the kinesin family, which show significant homology to their mammalian orthologs. Based on motor domain sequence homology and placement of the motor domain in the protein, the C. elegans kinesins have been placed in eight distinct groups; members of which participate in embryonic development, protein transport, synaptic membrane vesicles movement and in the axonal growth. Among 21 kinesins, at least 11 play a central role in spindle movement and chromosomal segregation. Understanding the function of C. elegans kinesins and related proteins may help navigate through the intricacies of intracellular traffic in a simple animal.  相似文献   

5.
Within axons vital cargoes must be transported over great distances along microtubule tracks to maintain neuronal viability. Essential to this system are the molecular motors, kinesin and dynein, which transport a variety of neuronal cargoes. Elucidating the transport pathways, the identity of the cargoes transported, and the regulation of motor-cargo complexes are areas of intense investigation. Evidence suggests that essential components, including signaling proteins, neuroprotective and repair molecules, and vesicular and cytoskeletal components are all transported. In addition newly emerging data indicate that defects in axonal transport pathways may contribute to the initiation or progression of chronic neuronal dysfunction. In this review we concentrate on microtubule-based motor proteins, their linkers, and cargoes and discuss how factors in the axonal transport pathway contribute to disease states. As additional cargo complexes and transport pathways are identified, an understanding of the role these pathways play in the development of human disease will hopefully lead to new diagnostic and treatment strategies.  相似文献   

6.
In neurons, the polarized distribution of vesicles and other cellular materials is established through molecular motors that steer selective transport between axons and dendrites. It is currently unclear whether interactions between kinesin motors and microtubule‐binding proteins can steer polarized transport. By screening all 45 kinesin family members, we systematically addressed which kinesin motors can translocate cargo in living cells and drive polarized transport in hippocampal neurons. While the majority of kinesin motors transport cargo selectively into axons, we identified five members of the kinesin‐3 (KIF1) and kinesin‐4 (KIF21) subfamily that can also target dendrites. We found that microtubule‐binding protein doublecortin‐like kinase 1 (DCLK1) labels a subset of dendritic microtubules and is required for KIF1‐dependent dense‐core vesicles (DCVs) trafficking into dendrites and dendrite development. Our study demonstrates that microtubule‐binding proteins can provide local signals for specific kinesin motors to drive polarized cargo transport.  相似文献   

7.
8.
Delanoue R  Davis I 《Cell》2005,122(1):97-106
Molecular motors actively transport many types of cargo along the cytoskeleton in a wide range of organisms. One class of cargo is localized mRNAs, which are transported by myosin on actin filaments or by kinesin and dynein on microtubules. How the cargo is kept at its final intracellular destination and whether the motors are recycled after completion of transport are poorly understood. Here, we use a new RNA anchoring assay in living Drosophila blastoderm embryos to show that apical anchoring of mRNA after completion of dynein transport does not depend on actin or on continuous active transport by the motor. Instead, apical anchoring of RNA requires microtubules and involves dynein as a static anchor that remains with the cargo at its final destination. We propose a general principle that could also apply to other dynein cargo and to some other molecular motors, whereby cargo transport and anchoring reside in the same molecule.  相似文献   

9.
Conventional kinesin is capable of long-range, processive movement along microtubules, a property that has been assumed to be important for its role in membrane transport. Here we have investigated whether the Caenorhabditis elegans monomeric kinesin unc104 and the sea urchin heteromeric kinesin KRP85/95, two other members of the kinesin superfamily that function in membrane transport, are also processive. Both motors were fused to green fluorescent protein, and the fusion proteins were tested for processive ability using a single-molecule fluorescence imaging microscope. Neither unc104-GFP nor KRP85/95-GFP exhibited processive movement (detection limit approximately 40 nm), although both motors were functional in multiple motor microtubule gliding assays (v = 1760 +/- 540 and 202 +/- 37 nm/s, respectively). Moreover, the ATP turnover rates (5.5 and 3.1 ATPs per motor domain per second, respectively) are too low to give rise to the observed microtubule gliding velocities, if only a single motor were driving transport with an 8 nm step per ATPase cycle. Instead, the results suggest that these motors have low duty cycles and that high processivity may not be required for efficient vesicle transport. Conventional kinesin's unusual processivity may be required for efficient transport of protein complexes that cannot carry multiple motors.  相似文献   

10.
We have developed a strategy for the purification of native microtubule motor proteins from mitotic HeLa cells and describe here the purification and characterization of human conventional kinesin and two human kinesin-related proteins, HSET and CENP-E. We found that the 120-kDa HeLa cell conventional kinesin is an active motor that induces microtubule gliding at approximately 30 microm/min at room temperature. This active form of HeLa cell kinesin does not contain light chains, although light chains were detected in other fractions. HSET, a member of the C-terminal kinesin subfamily, was also purified in native form for the first time, and the protein migrates as a single band at approximately 75 kDa. The purified HSET is an active motor that induces microtubule gliding at a rate of approximately 5 microm/min, and microtubules glide for an average of 3 microm before ceasing movement. Finally, we purified native CENP-E, a kinesin-related protein that has been implicated in chromosome congression during mitosis, and we found that this form of CENP-E does not induce microtubule gliding but is able to bind to microtubules.  相似文献   

11.
Conventional kinesin transports membranes along microtubules in vivo, but the majority of cellular kinesin is unattached to cargo. The motility of non-cargo-bound, soluble kinesin may be repressed by an interaction between the amino-terminal motor and carboxy-terminal cargo-binding tail domains, but neither bead nor microtubule-gliding assays have shown such inhibition. Here we use a single-molecule assay that measures the motility of kinesin unattached to a surface. We show that full-length kinesin binds microtubules and moves about ten times less frequently and exhibits discontinuous motion compared with a truncated kinesin lacking a tail. Mutation of either the stalk hinge or neck coiled-coil domain activates motility of full-length kinesin, indicating that these regions are important for tail-mediated repression. Our results suggest that the motility of soluble kinesin in the cell is inhibited and that the motor becomes activated by cargo binding.  相似文献   

12.
The heterotrimeric motor protein, kinesin-II, and its presumptive cargo, can be observed moving anterogradely at 0.7 microm/s by intraflagellar transport (IFT) within sensory cilia of chemosensory neurons of living Caenorhabditis elegans, using a fluorescence microscope-based transport assay (Orozco, J.T., K.P. Wedaman, D. Signor, H. Brown, L. Rose, and J.M. Scholey. 1999. Nature. 398:674). Here, we report that kinesin-II, and two of its presumptive cargo molecules, OSM-1 and OSM-6, all move at approximately 1.1 microm/s in the retrograde direction along cilia and dendrites, which is consistent with the hypothesis that these proteins are retrieved from the distal endings of the cilia by a retrograde transport pathway that moves them along cilia and then dendrites, back to the neuronal cell body. To test the hypothesis that the minus end-directed microtubule motor protein, cytoplasmic dynein, drives this retrograde transport pathway, we visualized movement of kinesin-II and its cargo along dendrites and cilia in a che-3 cytoplasmic dynein mutant background, and observed an inhibition of retrograde transport in cilia but not in dendrites. In contrast, anterograde IFT proceeds normally in che-3 mutants. Thus, we propose that the class DHC1b cytoplasmic dynein, CHE-3, is specifically responsible for the retrograde transport of the anterograde motor, kinesin-II, and its cargo within sensory cilia, but not within dendrites.  相似文献   

13.
UNC-104 (KIF1A) is a kinesin motor that transports synaptic vesicles from the neuronal cell body to the terminal. Previous in vitro studies have shown that a Dictyostelium relative of UNC-104 transports liposomes containing acidic phospholipids, but whether this interaction is needed for the recognition and transport of synaptic vesicles in metazoans remains unexplored. Here, we have introduced mutations in the nonmotor domain of UNC-104 and examined whether these mutant motors can rescue an unc-104 Caenorhabditis elegans strain. We show that a pleckstrin homology (PH) domain in UNC-104 is essential for membrane transport in living C. elegans, that this PH domain binds specifically to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P(2)), and that point mutants in the PH domain that interfere with PI(4,5)P(2) binding in vitro also interfere with UNC-104 function in vivo. Several other lipid-binding modules could not effectively substitute for the UNC-104 PH domain in this in vivo assay. Real time imaging also revealed that a lipid-binding point mutation in the PH domain reduced movement velocity and processivity of individual UNC-104::GFP punctae in neurites. These results reveal a critical role for PI(4,5)P(2) binding in UNC-104-mediated axonal transport and shows that the cargo-binding properties of the distal PH domain can affect motor output.  相似文献   

14.
The kinesin family of motor proteins are involved in a variety of cellular processes that transport materials and generate force. With recent advances in experimental techniques, such as optical tweezers can probe individual molecules, there has been an increasing interest in understanding the mechanisms by which motor proteins convert chemical energy into mechanical work. Here we present a mathematical model for the chemistry and three dimensional mechanics of the kinesin motor protein which captures many of the force dependent features of the motor. For the elasticity of the tether that attaches cargo to the motor we develop a method for deriving the non-linear force-extension relationship from optical trap data. For the kinesin heads, cargo, and microscope stage we formulate a three dimensional Brownian Dynamics model that takes into account excluded volume interactions. To efficiently compute statistics from the model, an algorithm is proposed which uses a two step protocol that separates the simulation of the mechanical features of the model from the chemical kinetics of the model. Using this approach for a bead transported by the motor, the force dependent average velocity and randomness parameter are computed and compared with the experimental data.  相似文献   

15.
Conventional kinesin has long been known to be a molecular motor that transports vesicular cargo, but only recently have we begun to understand how it functions in cells. Regulation of kinesin involves self-inhibition in which a head-to-tail interaction prevents microtubule binding. Although the mechanism of motor activation remains to be clarified, recent progress with respect to cargo binding might provide a clue. Kinesin binds directly to the JIPs (JNK-interacting proteins), identified previously as scaffolding proteins in the JNK (c-Jun NH(2)-terminal kinase) signaling pathway. The JIPs can allow kinesin to transport many different cargoes and to concentrate and respond to signaling pathways at certain sites within the cell. The use of scaffolding proteins could be a general mechanism by which molecular motors link to their cargoes.  相似文献   

16.
Eukaryotic cells organize their cytoplasm by moving different organelles and macromolecular complexes along microtubules and actin filaments. These movements are powered by numerous motor proteins that must recognize their respective cargoes in order to function. Recently, several proteins that interact with motors have been identified by yeast two-hybrid and biochemical analyses, and their roles in transport are now being elucidated. In several cases, analysis of the binding partners helped to identify new transport pathways, new types of cargo, and transport regulated at the level of motor-cargo binding. We discuss here how different motors of the kinesin, dynein and myosin families recognize their cargo and how motor-cargo interactions are regulated.  相似文献   

17.
Kinesins are intracellular multimeric transport motor proteins that move cellular cargo on microtubule tracks. It has been shown that the sea urchin KRP85/95 holoenzyme associates with a KAP115 non-motor protein, forming a heterotrimeric complex in vitro, called the Kinesin-II. Here we describe isolation of a cDNA clone corresponding to the klp-11 kinesin in C. elegans. Our sequence analysis of the encoded KLP-11 shows that it shares high homology with the OSM-3 kinesin. We also describe a nematode cDNA encoding KAP-1 that shares extensive homology with the sea urchin KAP115 kinesin associated protein. Sequence-based structural analysis of the OSM-3, KLP-11, and KAP-1, presented here suggests that these may form a heterotrimeric complex. We also describe the presence of a Drosophila armadillo consensus motif in CeKAP-1, first found in spKAP115, that suggests a possible role for the KAP-1 in signal transduction.  相似文献   

18.
The cargo that the molecular motor kinesin moves along microtubules has been elusive. We searched for binding partners of the COOH terminus of kinesin light chain, which contains tetratricopeptide repeat (TPR) motifs. Three proteins were found, the c-jun NH(2)-terminal kinase (JNK)-interacting proteins (JIPs) JIP-1, JIP-2, and JIP-3, which are scaffolding proteins for the JNK signaling pathway. Concentration of JIPs in nerve terminals requires kinesin, as evident from the analysis of JIP COOH-terminal mutants and dominant negative kinesin constructs. Coprecipitation experiments suggest that kinesin carries the JIP scaffolds preloaded with cytoplasmic (dual leucine zipper-bearing kinase) and transmembrane signaling molecules (the Reelin receptor, ApoER2). These results demonstrate a direct interaction between conventional kinesin and a cargo, indicate that motor proteins are linked to their membranous cargo via scaffolding proteins, and support a role for motor proteins in spatial regulation of signal transduction pathways.  相似文献   

19.
Kinesin family in murine central nervous system   总被引:27,自引:15,他引:12       下载免费PDF全文
《The Journal of cell biology》1992,119(5):1287-1296
In neuronal axons, various kinds of membranous components are transported along microtubules bidirectionally. However, only two kinds of mechanochemical motor proteins, kinesin and brain dynein, had been identified as transporters of membranous organelles in mammalian neurons. Recently, a series of genes that encode proteins closely related to kinesin heavy chain were identified in several organisms including Schizosaccharomyces pombe, Aspergillus niddulans, Saccharomyces cerevisiae, Caenorhabditus elegans, and Drosophila. Most of these members of the kinesin family are implicated in mechanisms of mitosis or meiosis. To address the mechanism of intracellular organelle transport at a molecular level, we have cloned and characterized five different members (KIF1-5), that encode the microtubule-associated motor domain homologous to kinesin heavy chain, in murine brain tissue. Homology analysis of amino acid sequence indicated that KIF1 and KIF5 are murine counterparts of unc104 and kinesin heavy chain, respectively, while KIF2, KIF3, and KIF4 are as yet unidentified new species. Complete amino acid sequence of KIF3 revealed that KIF3 consists of NH2-terminal motor domain, central alpha-helical rod domain, and COOH-terminal globular domain. Complete amino acid sequence of KIF2 revealed that KIF2 consists of NH2-terminal globular domain, central motor domain, and COOH-terminal alpha-helical rod domain. This is the first identification of the kinesin-related protein which has its motor domain at the central part in its primary structure. Northern blot analysis revealed that KIF1, KIF3, and KIF5 are expressed almost exclusively in murine brain, whereas KIF2 and KIF4 are expressed in brain as well as in other tissues. All these members of the kinesin family are expressed in the same type of neurons, and thus each one of them may transport its specific organelle in the murine central nervous system.  相似文献   

20.
Conventional kinesin is a ubiquitous organelle transporter that moves cargo toward the plus-ends of microtubules. In addition, several in vitro studies indicated a role of conventional kinesin in cross-bridging and sliding microtubules, but in vivo evidence for such a role is missing. In this study, we show that conventional kinesin mediates microtubule-microtubule interactions in the model fungus Ustilago maydis. Live cell imaging and ultrastructural analysis of various mutants in Kin1 revealed that this kinesin-1 motor is required for efficient microtubule bundling and participates in microtubule bending in vivo. High levels of Kin1 led to increased microtubule bending, whereas a rigor-mutation in the motor head suppressed all microtubule motility and promoted strong microtubule bundling, indicating that kinesin can form cross-bridges between microtubules in living cells. This effect required a conserved region in the C terminus of Kin1, which was shown to bind microtubules in vitro. In addition, a fusion protein of yellow fluorescent protein and the Kin1tail localized to microtubule bundles, further supporting the idea that a conserved microtubule binding activity in the tail of conventional kinesins mediates microtubule-microtubule interactions in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号