首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence is presented for mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) in nutrient-rich media (high-nitrogen and malt extract media) by wild-type Phanerochaete chrysosporium and by a peroxidase-negative mutant of this organism. Mass balance analysis of [U-ring-14C]2,4-D mineralization in malt extract cultures showed 82.7% recovery of radioactivity. Of this, 38.6% was released as 14CO2 and 27.0, 11.2, and 5.9% were present in the aqueous, methylene chloride, and mycelial fractions, respectively. 2,4-D and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) were simultaneously mineralized when presented as a mixture, and mutual inhibition of degradation was not observed. In contrast, a relatively higher rate of mineralization of 2,4-D and 2,4,5-T was observed when these compounds were tested as mixtures than when they were tested alone.  相似文献   

2.
Two-step degradation of pyrene by white-rot fungi and soil microorganisms   总被引:1,自引:0,他引:1  
  The effect of soil microorganisms on mineralization of 14C-labelled pyrene by white-rot fungi in solid-state fermentation was investigated. Two strains of white-rot fungi, Dichomitus squalens and a Pleurotus sp., were tested. The fungi were incubated on milled wheat straw contaminated with [14C]pyrene for 15 weeks. CO2 and 14CO2 liberated from the cultures were determined weekly. To study the effect of soil microorganisms on respiration and [14C]pyrene mineralization in different periods of fungal development, the fungal substrate was covered with soil at different times of incubation (after 0, 1, 3, 5, 7, 9 or 11 weeks). The two fungi showed contrasting ecological behaviour in competition with the soil microflora. Pleurotus sp. was highly resistant to microbial attack and had the ability to penetrate the soil. D. squalens was less competitive and did not colonize the soil. The resistance of the fungus was dependent on the duration of fungal preincubation. Mineralization of [14C]pyrene by mixed cultures of D. squalens and soil microorganisms was higher than by the fungus or the soil microflora alone when soil was added after 3 weeks of incubation or later. With Pleurotus sp., the mineralization of [14C]pyrene was enhanced by the soil microflora irrespective of the time of soil application. With D. squalens, which in pure culture mineralized less [14C]pyrene than did Pleurotus sp., the increase of [14C]pyrene mineralization caused by soil application was higher than with Pleurotus sp. Received: 8 March 1996 / Received revision: 1 July 1996 / Accepted: 8 July 1996  相似文献   

3.
  • 1.1. Indian River male broiler chickens growing from 7 to 28 days of age were fed diets containing 12, 18, 24 and 30% protein + 0 or 1 mg triiodothyronine (T3)/kg of diet to study energetic costs of lipogenesis and the use of various substrates for in vitro lipogenesis.
  • 2.2. De novo lipid and CO2 production were determined in the presence of [1-14C]pyruvate, [2-14q]pyruvate, [3-14C]pyruvate, [2-14C]acetate and [U-14C]alanine.
  • 3.3. Oxygen consumption was determined in mitochondrial preparations to estimate the energetic costs in expiants synthesizing lipid.
  • 4.4. Radiolabeled CO2 derived from [1-14C]pyruvate was used as an estimate of coenzyme A availability in liver expiants. Lipids derived from [2-14C]pyruvate, [2-14C]acetate and [U-14C]alanine estimate relative substrate efficiency.
  • 5.5. Labeled CO2 production from [1-14C]pyruvate was greatest in that group fed a 12% protein diet and least in the group fed a 30% protein diet.
  • 6.6. In addition, T3 increased CO2 production from [1-14C]pyruvate.
  • 7.7. The production of 14CO2 from the second carbon of pyruvate or acetate was increased by T3.
  • 8.8. The low-protein diet (12% protein) increased (P <0.05) lipogenesis.
  • 9.9. Adding T3 to the diets decreased carbon flux into lipid from all substrates, but increased CO2 production from all substrates without changing stage 3 and 4 respiration rates in mitochondrial preparations.
  • 10.10. These observations imply that coenzyme A availability may have regulated de novo lipogenesis in the present study.
  • 11.11. It was also concluded that previously noted effects of T3 on intermediary metabolism may involve metabolic pathways that do not involve changes in mitochondrial function.
  相似文献   

4.
5.
Tracerkinetic experiments were performed using l-[guanidino-14C]arginine, l-[U-14C]arginine, l-[ureido-14C]citrulline, and l-[1-14C]ornithine to investigate arginine utilization in developing cotyledons of Glycine max (L.) Merrill. Excised cotyledons were injected with carrier-free 14C compounds and incubated in sealed vials containing a CO2 trap. The free and protein amino acids were analyzed using high performance liquid chromatography and arginine-specific enzyme-linked assays. After 4 hours, 75% and 90% of the 14C metabolized from [guanidino-14C]arginine and [U-14C]arginine, respectively, was in protein arginine. The net protein arginine accumulation rate, calculated from the depletion of nitrogenous solutes in the cotyledon during incubation, was 17 nanomoles per cotyledon per hour. The data indicated that arginine was also catabolized by the arginase-urease reactions at a rate of 5.5 nanomoles per cotyledon per hour. Between 2 and 4 hours 14CO2 was also evolved from carbons other than C-6 of arginine at a rate of 11.0 nanomoles per cotyledon per hour. It is suggested that this extra 14CO2 was evolved during the catabolism of ornithine-derived glutamate; 14C-ornithine was a product of the arginase reaction. A model for the estimated fluxes associated with arginine utilization in developing soybean cotyledons is presented.  相似文献   

6.
In a previous study with Methanobacterium thermoautotrophicum evidence was presented that methanogenesis and autotrophic synthesis of activated acetic acid from CO2 are linked processes. In this study one-carbon metabolism was investigated with growing cultures and in vitro.Serine was shown to be converted into glycine and activated formaldehyde, but only traces of label from [14C-3] of serine appeared in biosynthetic one-carbon positions. This seeming discrepancy could be explained if the same activated formaldehyde is an intermediate in biosynthesis and in methanogenesis from CO2. This hypothesis was supported by demonstrating that [14C-3] of serine and [14C] formaldehyde were rapidly converted into methane, but a small portion of the label was also specifically incorporated into the methyl group of acetate. Methane and acetate synthesis in vitro were similarly stimulated by various compounds. These experiments indicate that the methyl of acetate and methane share common one-carbon precursor(s), i.e. methylene tetrahydromethanopterin, which can also be formed enzymatically from C-3 of serine or chemically from formaldehyde.Propyl iodide 20–40 M) and methyl iodide (1–3 M) completely inhibited growth in the dark. This effect was abolished by light. Methane formation was hardly affected. When 14CH3I was applied at an only slightly inhibitory concentration, 14C was incorporated into the methyl of acetate. In vitro, similar effects on [14C] acetate formation from 14CO2 or from [14C-3] of serine were observed, except that methyl iodide did not inhibit, but even stimulated acetate synthesis. These experiments indicate that a corrinoid is involved in acetate synthesis and probably not in methanogenesis from CO2; the metal is light-reversibly alkylated and functions in methyl transfer to the acetate methyl.  相似文献   

7.
Y. Kamiya  N. Takahashi  J. E. Graebe 《Planta》1986,169(4):524-528
The fate of the carbon-20 atom in gibberellin (GA) biosynthesis was studied in a cell-free system from Pisum sativum. This carbon atom is lost at the aldehyde stage of oxidation when C20-GAs are converted to C19-GAs. Gibberellin A12 labeled with 14C at C-20 was prepared from [3-14C]mevalonic acid with a cell-free system from Cucurbita maxima and incubated with the pea system. Analysis of the gas and aqueous phases showed that 14CO2 was formed at the same rate and in nearly equivalent amounts as 14C-labeled C19-GAs whereas [14C]formic acid and [14C]formaldehyde were not detectable. The possibility that C-20 had been lost as formic acid which had then been converted to CO2 was investigated by control incubations with [14C]formic acid. The rate of release of 14CO2 from [14C]formic acid was only one fiftieth of the rate of 14CO2 release from [14C]GA12 as the substrate. We conclude that in the formation of C19-GAs from C20-GAs, the C-20 is removed directly as CO2.Abbreviations GAn Gibberellin An  相似文献   

8.
An ecological substrate relationship between sulfate-reducing and methane-producing bacteria in mud of Lake Vechten has been studied in experiments using 14C-labeled acetate and lactate as substrates. Fluoroacetate strongly inhibited the formation of 14CO2 from [U-14C]-acetate and β-fluorolactate gave an inhibition of similar magnitude of the breakdown of [U-14C]-l-lactate to 14CO2 thus confirming earlier results on the specific action of these inhibitors. The turnover-rate constant of l-lactate was 2.37 hr-1 and the average l-lactate pool size was 12.2 μg per gram of wet mud, giving a turnover rate of 28.9 μg of lactate/gram of mud per hr. The turnover-rate constant of acetate was 0.35 hr-1 and the average pool size was 5.7 μg per gram of wet mud, giving a rate of disappearance of 1.99 μg of acetate/gram of mud per hr. Estimations of the acetate turnover rate based upon the formation of 14CO2 from [U-14C]-acetate or [1-14C]-acetate yielded figures of the same magnitude (range 0.45 to 1.74). These and other results suggest that only a portion of the lactate dissimilated is turned over through the acetate pool. The ratio of 14CO2/14CH4 produced from [U-14C]-acetate by mud was 1.32; indicating that 0.862 moles of CH4 and 1.138 moles of CO2 are formed per mole of acetate. From the rate of disappearance of acetate (0.027 μmoles/gram wet mud per hr) and the rate of methane production (0.034 μmoles/gram wet mud per hr), it may be concluded that acetate is an important precursor of methanogenesis in mud (approximately 70%). A substrate relationship between the two groups of bacteria is likely since 14CH4 was formed from [U-14C]-l-lactate.  相似文献   

9.
Fluxes of carbohydrate metabolism in ripening bananas   总被引:1,自引:0,他引:1  
The major fluxes of carbohydrate metabolism were estimated during starch breakdown by ripening bananas (Musa cavendishii Lamb ex Paxton). Hands of bananas, untreated with ethylene, were allowed to ripen in the dark at 21° C. Production of CO2 and the contents of starch, sucrose, glucose and fructose of intact fruit were determined for a period of 10 d that included the climacteric. The detailed distribution of label was determined after supplying the following to cores of pulp from climacteric fruit: [U-14C]-, [1-14C]-, [3,4-14C]-and [6-14C]glucose, [U-14C]glycerol, 14CO2. The data obtained were used to estimate the following fluxes, values given as mol hexose · (g FW)–1 · h–1 in parenthesis: starch to hexose monophosphates (5.9) and vice versa (0.4); hexose monophosphates to sucrose (7.7); sucrose to hexose (4.7); hexose to hexose monophosphate (3.8); glycolysis (0.5–1.6); triose phosphate to hexose monophosphates (0.14); oxidative pentose-phosphate pathway (0.48); CO2 fixation in the dark (0.005). These estimates are related to our understanding of carbohydrate metabolism during ripening.We both thank Mr Richard Trethewey for his constructive criticism: S.A.H. thanks the Managers of the Broodbank Fund for a fellowship.  相似文献   

10.
Glyoxylate decarboxylation during photorespiration   总被引:4,自引:0,他引:4  
Bernard Grodzinski 《Planta》1978,144(1):31-37
At 25° C under aerobic conditions with or without gluamate 10% of the [1-14C]glycollate oxidised in spinach leaf peroxisomes was released as 14CO2. Without glutamate only 5% of the glycollate was converted to glycine, but with it over 80% of the glycollate was metabolised to glycine. CO2 release was probably not due to glycine breakdown in these preparations since glycine decarboxylase activity was not detected. Addition of either unlabelled glycine or isonicotinyl hydrazide (INH) did not reduce 14CO2 release from either [1-14C]glycollate or [1-14C]glyoxylate. Furthermore, the amount of available H2O2 (Grodzinski and Butt, 1976) was sufficient to account for all of the CO2 release by breakdown of glyoxylate. Peroxisomal glycollate metabolism was unaffected by light and isolated leaf chloroplasts alone did not metabolise glycollate. However, in a mixture of peroxisomes and illuminated chloroplasts the rate of glycollate decarboxylation increased three fold while glycine synthesis was reduced by 40%. Although it was not possible to measure available H2O2 directly, the data are best explained by glyoxylate decarboxylation. Catalase reduced CO2 release and enhanced glycine synthesis. In addition, when a model system in which an active preparation of purified glucose oxidase generating H2O2 at a known rate was used to replace the chloroplasts, similar rates of 14CO2 release and [14C]glycine synthesis from [1-14C]glycollate were measured. It is argued that in vivo glyoxylate metabolism in leaf peroxisomes is a key branch point of the glycollate pathway and that a portion of the photorespired CO2 arises during glyoxylate decarboxylation under the action of H2O2. The possibility that peroxisomal catalase exerts a peroxidative function during this process is discussed.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - INH isonicotinylhydrazide - PHMS pyridyl-2-yl--hydroxymethane sulphonic acid  相似文献   

11.
Kraft lignins (KL), bleached kraft lignins (BKL), and lignin sulfonates (LS) were prepared from synthetic 14C-lignins labeled in the aromatic nuclei or in the propyl side chains. These and control lignins (CL) were incubated with the lignin-decomposing white-rot fungus, Phanerochaete chrysosporium Burds., in a defined culture medium containing cellulose as growth substrate. Decomposition was monitored by measuring the 14CO2 evolved. Average percentages of the [ring-14C]- and [side chain-14C]-lignins, respectively, recovered as 14CO2 at the cessation of 14CO2 evolution were: KL, 41 and 31; BKL, 42 and 26; LS, 28 and 21; and CL, 26 and 24. Gel permeation chromatography of radiolabeled materials extracted from spent cultures showed that substantial degradation to nonvolatile products had occurred. The polymeric components in the extracts were further degraded in fresh cultures. These results indicate that industrial lignins are significantly bioalterable, and that under favorable conditions industrial lignins are substantially biodegradable.  相似文献   

12.
The effect of temperature on glycollate decarboxylation in leaf peroxisomes   总被引:1,自引:1,他引:0  
B. Grodzinski  V. S. Butt 《Planta》1977,133(3):261-266
[1-14C]glycollate was oxidised to14CO2 by peroxisomes isolated from leaves of spinach beet about 3 times as rapidly at 35°C as at 25°C; the rate was further increased with rise in temperature to a maximum at 55°C. These increases are shown to be mainly due to the increased H2O2 available to oxidise glyoxylate non-enzymically as a result of the higher temperature coefficient of glycollate oxidase activity relative to that of catalase. These results are compared with similar increases in the rate of14CO2 release between 25°C and 35°C when [1-14C]glycollate was supplied to leaf discs in light or darkness. The role of these reactions in accounting for the temperature effect on the release of photorespiratory CO2 is discussed.Abbreviations PHMS Pyrid-2-yl--hydroxymethane sulphonate - FMN flavin mononucleotide  相似文献   

13.
Phanerochaete chrysosporium metabolized the radiolabeled lignin model compounds [γ-14C]guaiacylglycerol-β-guaiacyl ether and [4-methoxy-14C]veratrylglycerol-β-guaiacyl ether (VI) to 14CO2 in stationary and in shaking cultures. 14CO2 evolution was greater in stationary culture. 14CO2 evolution from [γ-14C]guaiacyl-glycerol-β-guaiacyl ether and [4-methoxy-14C]veratrylglycerol-β-guaiacyl ether in stationary cultures was two- to threefold greater when 100% O2 rather than air (21% O2) was the gas phase above the cultures. 14CO2 evolution from the metabolism of the substrates occurred only as the culture entered the stationary phase of growth. The presence of substrate levels of nitrogen in the medium suppressed 14CO2 evolution from both substrates in stationary cultures. [14C]veratryl alcohol and 4-ethoxy-3-methoxybenzyl alcohol were formed as products of the metabolism of VI and 4-ethoxy-3-methoxyphenylglycerol-β-guaiacyl ether, respectively.  相似文献   

14.
Global emissions of atmospheric CO2 and tropospheric O3 are rising and expected to impact large areas of the Earths forests. While CO2 stimulates net primary production, O3 reduces photosynthesis, altering plant C allocation and reducing ecosystem C storage. The effects of multiple air pollutants can alter belowground C allocation, leading to changes in the partial pressure of CO2 (pCO2) in the soil , chemistry of dissolved inorganic carbonate (DIC) and the rate of mineral weathering. As this system represents a linkage between the long- and short-term C cycles and sequestration of atmospheric CO2, changes in atmospheric chemistry that affect net primary production may alter the fate of C in these ecosystems. To date, little is known about the combined effects of elevated CO2 and O3 on the inorganic C cycle in forest systems. Free air CO2 and O3 enrichment (FACE) technology was used at the Aspen FACE project in Rhinelander, Wisconsin to understand how elevated atmospheric CO2 and O3 interact to alter pCO2 and DIC concentrations in the soil. Ambient and elevated CO2 levels were 360±16 and 542±81 l l–1, respectively; ambient and elevated O3 levels were 33±14 and 49±24 nl l–1, respectively. Measured concentrations of soil CO2 and calculated concentrations of DIC increased over the growing season by 14 and 22%, respectively, under elevated atmospheric CO2 and were unaffected by elevated tropospheric O3. The increased concentration of DIC altered inorganic carbonate chemistry by increasing system total alkalinity by 210%, likely due to enhanced chemical weathering. The study also demonstrated the close coupling between the seasonal 13C of soil pCO2 and DIC, as a mixing model showed that new atmospheric CO2 accounted for approximately 90% of the C leaving the system as DIC. This study illustrates the potential of using stable isotopic techniques and FACE technology to examine long- and short-term ecosystem C sequestration.  相似文献   

15.
Initial denitration of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 produces CO2 and the dead-end product 4-nitro-2,4-diazabutanal (NDAB), OHCNHCH2NHNO2, in high yield. Here we describe experiments to determine the biodegradability of NDAB in liquid culture and soils containing Phanerochaete chrysosporium. A soil sample taken from an ammunition plant contained RDX (342 μmol kg−1), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 3,057 μmol kg−1), MNX (hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine; 155 μmol kg−1), and traces of NDAB (3.8 μmol kg−1). The detection of the last in real soil provided the first experimental evidence for the occurrence of natural attenuation that involved ring cleavage of RDX. When we incubated the soil with strain DN22, both RDX and MNX (but not HMX) degraded and produced NDAB (388 ± 22 μmol kg−1) in 5 days. Subsequent incubation of the soil with the fungus led to the removal of NDAB, with the liberation of nitrous oxide (N2O). In cultures with the fungus alone NDAB degraded to give a stoichiometric amount of N2O. To determine C stoichiometry, we first generated [14C]NDAB in situ by incubating [14C]RDX with strain DN22, followed by incubation with the fungus. The production of 14CO2 increased from 30 (DN22 only) to 76% (fungus). Experiments with pure enzymes revealed that manganese-dependent peroxidase rather than lignin peroxidase was responsible for NDAB degradation. The detection of NDAB in contaminated soil and its effective mineralization by the fungus P. chrysosporium may constitute the basis for the development of bioremediation technologies.  相似文献   

16.
1. The rate of appearance of 14CO2 from [6-14C]glucose and [3-14C]pyruvate was measured. Pyruvate is oxidized to carbon dioxide twice as fast as glucose, although the oxygen uptake is almost the same with each substrate. 2. The presence of 30μm-2,4-dinitrophenol increases the output of 14CO2 from [6-14C]glucose sixfold whereas the oxygen uptake is not quite doubled. Similar results are obtained with 0·1m-potassium chloride. The stimulating action of these two agents on the output of 14CO2 from [3-14C]pyruvate is much less than on that from [6-14C]glucose. 3. The effects of oligomycin, ouabain and triethyltin on the respiration of control and stimulated brain-cortex slices were studied. Triethyltin (1·3μm) inhibited the oxidation of [6-14C]glucose more than 70%, but did not inhibit the oxidation of[3-14C]pyruvate. [3-14C]pyruvate. 4. The production of lactic acid by brain-cortex slices incubated with glucose is twice as great as that with pyruvate. Lactic acid increases two and a half times in the presence of either triethyltin or oligomycin when the substrate is glucose, but is no different from the control when the substrate is pyruvate. 5. With kidney slices the production of lactic acid from glucose is very low. It is increased by oligomycin but not by triethyltin. 6. The results are discussed in terms of the oxidation of the extramitochondrial NADH2 produced during glycolysis.  相似文献   

17.
Callus tissue was induced on barley mesocotyl explants of germinated seven-day-old seedlings on MS medium supplemented with 2,4-D or 2,4,5-T in high concentrations. Two morphologically different tissue cultures were maintained in vitro for a long time: a callus tissue without organogenesis and a culture with high rhizogenic capacity. Shoots and plantlets were generated when the auxin-media induced callus was transferred to medium supplemented with 3 M TIBA. In 62% of cultures, during the first five subcultures, four to twentyeight plants per single mesocotyl were obtained. Some cultures produced shoots even in the 9th subculture, being in culture for nearly 14 months. The largest number of plants obtained per one mesocotyl was forty. Plantlets rooted well on MS with 5.7 M IAA and survived transplantation to soil in high percentages.Abbreviations IAA indole-3yl-acetic acid - BA 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - TIBA 2,3,5-triiodobenzoic acid - MS Murashige and Skoog (1962) medium  相似文献   

18.
Many techniques for quantifying microbial biodegradation of 14C-labeled compounds use soil-water slurries and trap mineralization-derived 14CO2 in solution wells suspended within the incubation flasks. These methods are not satisfactory for studies of arid-region soils that are highly calcareous and unsaturated because (i) slurries do not simulate unsaturated conditions and (ii) the amount of CO2 released from calcareous soils exceeds the capacity of the suspended well. This report describes simple, inexpensive methodological modifications for quantifying microbial degradation of [14C]benzene and 1,2-dichloro[U-14C]ethane in calcareous soils under unsaturated conditions. Soils at 50% water holding capacity were incubated with labeled contaminants for periods up to 10 weeks, followed by acidification of the soil and trapping of the evolved CO2 in a separate container of 2 N NaOH. The CO2 was transferred from the incubation flask to the trap solution by a gas transfer shunt containing activated charcoal to remove any volatilized labeled organics. The amount of 14CO2 in the trap solution was measured by scintillation counting (disintegrations per minute). The method was tested by using two regional unamended surface soils, a sandy aridisol and a clay-rich riparian soil. The results demonstrated that both [14C]benzene and 1,2-dichloro[U-14C]ethane were mineralized to release substantial amounts of 14CO2 within 10 weeks. Levels of mineralization varied with contaminant type, soil type, and aeration status (anaerobic vs. aerobic); no significant degradation was observed in abiotic control samples. Methodological refinements of this technique resulted in total 14CO2 recovery efficiency of approximately 90%.  相似文献   

19.
Singh KK  Chen C  Gibbs M 《Plant physiology》1992,100(1):327-333
The role of an electron transport pathway associated with aerobic carbohydrate degradation in isolated, intact chloroplasts was evaluated. This was accomplished by monitoring the evolution of 14CO2 from darkened spinach (Spinacia oleracea) and Chlamydomonas reinhardtii chloroplasts externally supplied with [14C]fructose and [14C]glucose, respectively, in the presence of nitrite, oxaloacetate, and conventional electron transport inhibitors. Addition of nitrite or oxaloacetate increased the release of 14CO2, but it was shown that O2 continued to function as a terminal electron acceptor. 14CO2 evolution was inhibited up to 30 and 15% in Chlamydomonas and spinach, respectively, by 50 μm rotenone and by amytal, but at 500- to 1000-fold higher concentrations, indicating the involvement of a reduced nicotinamide adenine dinucleotide phosphate-plastoquinone oxidoreductase. 14CO2 release from the spinach chloroplast was inhibited 80% by 25 μm 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone. 14CO2 release was sensitive to propylgallate, exhibiting approximately 50% inhibition in Chlamydomonas and in spinach chloroplasts of 100 and 250 μm concentrations, respectively. These concentrations were 20- to 50-fold lower than the concentrations of salicylhydroxamic acid (SHAM) required to produce an equivalent sensitivity. Antimycin A (100 μm) inhibited approximately 80 to 90% of 14CO2 release from both types of chloroplast. At 75 μm, sodium azide inhibited 14CO2 evolution about 50% in Chlamydomonas and 30% in spinach. Sodium azide (100 mm) combined with antimycin A (100 μm) inhibited 14CO2 evolution more than 90%. 14CO2 release was unaffected by uncouplers. These results are interpreted as evidence for a respiratory electron transport pathway functioning in the darkened, isolated chloroplast. Chloroplast respiration defined as 14CO2 release from externally supplied [1-14C]glucose can account for at least 10% of the total respiratory capacity (endogenous release of CO2) of the Chlamydomonas reinhardtii cell.  相似文献   

20.
Auxin binding to corn coleoptile membranes: Kinetics and specificity   总被引:6,自引:1,他引:5  
Summary Detailed examination of binding over the range 10-7–10-6 M suggests that membrane preparations from coleoptiles of Zea mays L., cv Kelvedon 33 contain at least two sets of high affinity binding sites for 1-naphthylacetic acid (NAA), with dissociation constants of 1.8×10-7 M (site 1) and 14.5×10-7 M (site 2). Similar studies with 3-indolylacetic acid (IAA) also indicate two sets of binding sites, whose concentrations are closely comparable to those deduced for NAA. A substantial proportion of the total binding activity is retained in a detergent-solubilized preparation. Using [14C]NAA the interactions of a range of analogues with each of the binding sites have been examined with the aid of double reciprocal plots. The specificity of site 2 is compatible with that expected for an auxin receptor, in that only active auxins, antiauxin transport inhibitors are able to compete with [14C]NAA for the binding sites. Site 1 on the other hand is less specific, since it appears to bind all compounds tested, including physiologically inactive analogues.Abbreviations NAA 1-naphthylacetic acid - IAA 3-indolylacetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - 2,6-D 2,6-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - 2-CPIB -(2-chlorophenoxy)-isobutyric acid - 2,4-B 2,4-dichlorobenzoic acid - 2,6-B 2,6-dichlorobenzoic acid - TIBA 2,3,5-triiodobenzoic acid - NPA 1-N-naphthylphthalamic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号