首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Ito 《Journal of virology》1978,28(3):895-904
The location of the protein bound to bacteriophage phi29 DNA has been studied with restriction endonucleases, exonucleases, and polynucleotide kinase. The protein is invariably associated with the two terminal DNA fragments generated by restriction endonucleases. The phi29 DNA prepared with or without proteinase K treatment is resistant to the action of the 5'-terminal-specific exonucleases, lambda-exonuclease and T7 exonuclease. The phi29 DNA is also inaccessible to phosphorylation by polynucleotide kinase even after treatment with alkaline phosphatase. On the other hand, phi29 DNA is sensitive to exonuclease III, and the 3' termini of the DNA can be labeled by incubating with alpha-[32P]ATP and terminal deoxynucleotidyl transferase. The protein remains associated with the phi29 DNA after treatment with various chaotropic agents, including 8 M urea, 6 M guanidine-hydrochloride, 4 M sodium perchlorate, 2 M sodium thiocyanate, and 2 M LiCl. These results are consistent with the notion that the protein is linked covalently to the 5' termini of the phi29 DNA.  相似文献   

2.
Adenovirus 5 DNA-protein complex is isolated from virions as a duplex DNA molecule covalently attached by the 5' termini of each strand to virion protein of unknown function. The DNA-protein complex can be digested with E. coli exonuclease III to generate molecules analogous to DNA replication intermediates in that they contain long single stranded regions ending in 5' termini bound to terminal protein. The infectivity of pronase digested Adenovirus 5 DNA is greatly diminished by exonuclease III digestion. However, the infectivity of the DNA-protein complex is not significantly altered when up to at least 2400 nucleotides are removed from the 3' ends of each strand. This indicates that the terminal protein protects 5' terminated single stranded regions from digestion by a cellular exonuclease. DNA-protein complex prepared from a host range mutant with a mutation mapping in the left 4% of the genome was digested with exonuclease III, hybridized to a wild type restriction fragment comprising the left 8% of the genome, and transfected into HeLa cells. Virus with wild type phenotype was recovered at high frequency.  相似文献   

3.
Purified protein p2 of phage phi 29, characterized as a specific DNA polymerase involved in the initiation and elongation of phi 29 DNA replication, contains a 3'----5' exonuclease active on single-stranded DNA, but not on double-stranded DNA. No 5'----3' exonuclease activity was found. The 3'----5' exonuclease activity was shown to be associated with the DNA polymerase since 1) the two activities were heat-inactivated with identical kinetics and 2) both activities, present in purified protein p2, cosedimented in a glycerol gradient.  相似文献   

4.
J Gutiérrez  J A García  L Blanco  M Salas 《Gene》1986,43(1-2):1-11
A 73-bp fragment from the left end of phi 29 DNA and a 269-bp fragment from the right end have been cloned in plasmids pPLc28 and pKK223-3, respectively, after removal of the terminal protein p3 by treatment with piperidine. In addition, the 73- and 269-bp fragments were cloned together in plasmid pKK223-3 in such a way that the two termini of phi 29 DNA were joined. Treatment of the latter recombinant plasmid with AhaIII releases several fragments, two of which contain the phi 29 DNA terminal sequences at the DNA end. These two fragments initiated replication specifically at the ends of the DNA giving rise to the formation of the p3-dAMP complex. The activity was about 15% of that obtained with phi 29 DNA-protein p3. All remaining recombinant plasmids were essentially inactive when tested as templates either in circular form or after cutting in such a way that placed the origin of phi 29 DNA replication close but not at the DNA end.  相似文献   

5.
Soluble nuclear extracts prepared from adenovirus-infected HeLa cells supported adenovirus DNA replication with exogenous DNA-protein complex as template, but protease-treated, phenol-extracted DNA was less active. Replication was enhanced when creatine phosphate and creatine phosphokinase were included in the reaction mixture, rendering the reaction independent of exogenous ATP. Genomic-length, newly synthesized DNA strands were first observed 30 min after initiation of replication and continued to increase in amount for at least 4 h. Thus, the rate of replication is consistent with previous estimates of the rate of replication in vivo. Nascent DNA strands bound to benzoylated, naphthoylated DEAE-cellulose due to their association with protein. The 5' termini of nascent DNA strands were resistant to the 5'- to 3'-specific T7 exonuclease, and the 3' termini of nascent strands were sensitive to the 3'- to 5'-specific exonuclease III. These results suggest that a protein becomes covalently linked to the 5' termini of nascent DNA strands replicated in vitro. Nuclear extracts prepared from adenovirus type 2-infected cells also supported replication of DNA-protein complex prepared from the unrelated type 7 adenovirus. The limited sequence homology between these two viruses at the origin of replication further defines recognition sequences at the origin. These results are discussed in terms of a model for adenovirus DNA replication in which the terminal protein and sequences within the inverted terminal repetition are involved in the formation of an initiation complex that is able to prime DNA replication.  相似文献   

6.
We have isolated a covalent DNA-protein complex from bacteriophage φ29 particles. Polyacrylamide gel electrophoresis and tryptic peptide analysis showed that the protein present in the complex is very similar or identical to p3, an early induced protein essential for viral DNA replication.When the DNA-protein complex is treated with the restriction endonuclease EcoRI, the protein is specifically associated to the two terminal fragments, A and C. The protein is probably linked to the 5′ termini of the DNA since proteinase K-treated DNA is resistant to phosphorylation with polynucleotide kinase, even after treatment with alkaline phosphatase, while it is sensitive to exonuclease III. By electron microscopy the protein is visualized as a dot located at the ends of unit length DNA molecules.Mixed infection of Bacillus subtilis, at 42 °C, with ts2 mutants in cistrons 2 and 3 only produces ts 2 progeny. This finding suggests that an inactive protein p3 bound to the DNA of the ts 3 mutant is not replaced by a functional protein and, as a consequence, replication of the ts 3 DNA does not occur.  相似文献   

7.
O Niwa  R E Moses 《Biochemistry》1981,20(2):238-244
phi X174 RFI DNA treated with bleomycin (BLM) under conditions permitting nicking does not serve as a template-primer for Escherichia coli DNA polymerase I. Purified exonuclease III from E. coli and extracts from wild-type E. coli strains are able to convert the BLM-treated DNA to suitable template-primer, but extracts from exonuclease III deficient strains are not. Brief digestion by exonuclease III is enough to create the template-primer, suggesting that the exonuclease III is converting the BLM-treated DNA by a modification of 3' termini. The exonucleolytic rather than the phosphatase activity of exonuclease III appears to be involved in the conversion. Comparative studies with micrococcal nuclease indicate that BLM-created nicks do not have a simple 3'-P structure. Bacterial alkaline phosphatase does not convert BLM-treated DNA to template-primer. The endonuclease VI activity associated with exonuclease III does not incise DNA treated with BLM under conditions not allowing nicking, in contrast to DNA with apurinic sites made by acid treatment, arguing that conversion does not require the endonuclease VI action on uncleaved sites.  相似文献   

8.
The phi 29 protein p6 stimulates the formation of the protein p3-dAMP initiation complex when added to a minimal system containing the terminal protein p3, the phi 29 DNA polymerase p2 and phi 29 DNA-protein p3 complex, by decreasing about 5 fold the Km value for dATP. In addition, protein p6 stimulates elongation of the p3-dAMP initiation complex. Whereas the effect of protein p6 on initiation is similar with protein p3-containing fragments from the right or left phi 29 DNA ends, the stimulation of elongation is higher with the right than with the left phi 29 DNA terminal fragment, suggesting DNA sequence specificity. The stimulation by protein p6 of the initiation and elongation steps of phi 29 DNA replication does not require the presence of the parental protein p3 at the phi 29 DNA ends. No effect of protein p6 was obtained on the elongation of the template-primer poly(dT)-(dA) 12-18 by the phi 29 DNA polymerase.  相似文献   

9.
In this report we present the alignment of one of the most conserved segments (Exo III) of the 3'-5' exonuclease domain in 39 DNA polymerase sequences, including prokaryotic and eukaryotic enzymes. Site-directed substitutions of the two most conserved residues, which form the Exo III motif Tyr-(X)3-Asp of phi 29 DNA polymerase, did not affect single-stranded DNA binding, DNA polymerization, processivity or protein-primed initiation. In contrast, substitution of the highly conserved Tyr residue by Phe or Cys decreased the 3'-5' exonuclease activity to 7.5 and 4.1%, respectively, of the wild-type activity. Change of the highly conserved Asp residue into Ala resulted in almost complete inactivation (0.1%) of the 3'-5' exonuclease. In accordance with the contribution of the 3'-5' exonuclease to the fidelity of DNA replication, the three mutations in the Exo III motif (Y165F, Y165C and D169A) produced enzymes with an increased frequency of misinsertion and extension of DNA polymerization errors. Surprisingly, the three mutations in the Exo III motif strongly decreased (80- to 220-fold) the ability to replicate phi 29 DNA, this behaviour being due to a defect in the strand displacement activity, an intrinsic property of phi 29 DNA polymerase required for this process. Taking these results into account, we propose that the strand displacement activity of phi 29 DNA polymerase resides in the N-terminal domain, probably overlapping with the 3'-5' exonuclease active site.  相似文献   

10.
Enzyme action at 3' termini of ionizing radiation-induced DNA strand breaks   总被引:13,自引:0,他引:13  
gamma-Irradiation of DNA in vitro produces two types of single strand breaks. Both types of strand breaks contain 5'-phosphate DNA termini. Some strand breaks contain 3'-phosphate termini, some contain 3'-phosphoglycolate termini (Henner, W.D., Rodriguez, L.O., Hecht, S. M., and Haseltine, W. A. (1983) J. Biol. Chem. 258, 711-713). We have studied the ability of prokaryotic enzymes of DNA metabolism to act at each of these types of gamma-ray-induced 3' termini in DNA. Neither strand breaks that terminate with 3'-phosphate nor 3'-phosphoglycolate are substrates for direct ligation by T4 DNA ligase. Neither type of gamma-ray-induced 3' terminus can be used as a primer for DNA synthesis by either Escherichia coli DNA polymerase or T4 DNA polymerase. The 3'-phosphatase activity of T4 polynucleotide kinase can convert gamma-ray-induced 3'-phosphate but not 3'-phosphoglycolate termini to 3'-hydroxyl termini that can then serve as primers for DNA polymerase. E. coli alkaline phosphatase is also unable to hydrolyze 3'-phosphoglycolate groups. The 3'-5' exonuclease actions of E. coli DNA polymerase I and T4 DNA polymerase do not degrade DNA strands that have either type of gamma-ray-induced 3' terminus. E. coli exonuclease III can hydrolyze DNA with gamma-ray-induced 3'-phosphate or 3'-phosphoglycolate termini or with DNase I-induced 3'-hydroxyl termini. The initial action of exonuclease III at 3' termini of ionizing radiation-induced DNA fragments is to remove the 3' terminal phosphate or phosphoglycolate to yield a fragment of the same nucleotide length that has a 3'-hydroxyl terminus. These results suggest that repair of ionizing radiation-induced strand breaks may proceed via the sequential action of exonuclease, DNA polymerase, and DNA ligase. The possible role of exonuclease III in repair of gamma-radiation-induced strand breaks is discussed.  相似文献   

11.
The assembly of phage phi 29 occurs by a single pathway, and DNA-protein (DNA-gp3) has been shown to be an intermediate on the assembly pathway by a highly efficient in vitro complementation. At 30 degrees C, about one-half of the viral DNA synthesized was assembled into mature phage, and the absolute plating efficiency of phi 29 approached unity. DNA packaging at 45 degrees C was comparable to that at 30 degrees C, but the burst size was reduced by one-third. When cells infected with mutant ts3(132) at 30 degrees C to permit DNA synthesis were shifted to 45 degrees C before phage assembly, DNA synthesis ceased and no phage were produced. However, a variable amount of DNA packaging occurred. Superinfection by wild-type phage reinitiated ts3(132) DNA synthesis at 45 degrees C, and if native gp3 was covalently linked to this DNA during superinfection replication, it was effectively packaged and assembled. Treatment of the DNA-gp3 complex with trypsin prevented in vitro maturation of phi 29, although substantial DNA packaging occurred. A functional gp3 linked to the 5' termini of phi 29 DNA is a requirement for effective phage assembly in vivo and in vitro.  相似文献   

12.
M de Vega  J M Lazaro  M Salas    L Blanco 《The EMBO journal》1996,15(5):1182-1192
By site-directed mutagenesis in phi29 DNA polymerase, we have analyzed the functional importance of two evolutionarily conserved residues belonging to the 3'-5' exonuclease domain of DNA-dependent DNA polymerases. In Escherichia coli DNA polymerase I, these residues are Thr358 and Asn420, shown by crystallographic analysis to be directly acting as single-stranded DNA (ssDNA) ligands at the 3'-5' exonuclease active site. On the basis of these structural data, single substitution of the corresponding residues of phi29 DNA polymerase, Thr15 and Asn62, produced enzymes with a very reduced or altered capacity to bind ssDNA. Analysis of the residual 3'-5' exonuclease activity of these mutant derivatives on ssDNA substrates allowed us to conclude that these two residues do not play a direct role in the catalysis of the reaction. On the other hand, analysis of the 3'-5' exonuclease activity on either matched or mismatched primer/template structures showed a critical role of these two highly conserved residues in exonucleolysis under polymerization conditions, i.e. in the proofreading of DNA polymerization errors, an evolutionary advantage of most DNA-dependent DNA polymerases. Moreover, in contrast to the dual role in 3'-5' exonucleolysis and strand displacement previously observed for phi29 DNA polymerase residues acting as metal ligands, the contribution of residues Thr15 and Asn62 appears to be restricted to the proofreading function, by stabilization of the frayed primer-terminus at the 3'-5' exonuclease active site.  相似文献   

13.
To study the requirements for the in vitro formation of the protein p3-dAMP complex, the first step in phi29 DNA replication, extracts from B. subtilis infected with phi29 mutants in genes 2, 3, 5, 6 and 17, involved in DNA synthesis, have been used. The formation of the initiation complex is completely dependent on the presence of a functional gene 2 product, in addition to protein p3 and phi29 DNA-protein p3 as template. ATP is also required, although it can be replaced by other nucleotides. The products of genes 5, 6 and 17 do not seem to be needed in the formation of the initiation complex. Inhibitors of the host DNA polymerase III, DNA gyrase or RNA polymerase had no effect on the formation of the protein p3-dAMP complex, suggesting that these proteins are not involved in the initiation of phi29 DNA replication. ddATP or aphidicolin, inhibitors of DNA chain elongation, had also no effect on the formation of the initiation complex.  相似文献   

14.
The phage phi 29 protein p5, required in vivo in the elongation step of phi 29 DNA replication, was highly purified from Escherichia coli cells harbouring a gene 5-containing plasmid and from phi 29-infected Bacillus subtilis. The protein was characterized as the gene 5 product by amino acid analysis and NH2-terminal sequence determination. The purified protein p5 was shown to bind to single-stranded DNA and to protect it against nuclease degradation. No effect of protein p5 was observed either on the formation of the p3-dAMP initiation complex or on the rate of elongation. However, protein p5 greatly stimulated phi 29 DNA-protein p3 replication at incubation times where the replication in the absence of p5 leveled off.  相似文献   

15.
Neocarzionstatin (NCS)-induced strand breakage of DNA generates nonfunctional binding sites for the E. coli DNA polymerase I. Treatment of the NCS-nicked DNA with alkaline phosphatase at 65 degrees C prior to the polymerase reaction results in 60-100-fold stimulation of dTMP incorporation whereas in a control not treated with the drug there is only a 2-fold increase. Sites of strand scission on the NCS-treated DNA bear phosphate at the 3' termini. This conclusion is supported by the kinetics of release of inorganic phosphate from NCS-cut DNA by exonuclease III. Since our earlier work has shown that virtually all the 5' ends of the nicks caused by NCS bear phosphomonoester groupings, the 3'- and 5'- phosphoryl termini could be quantitated using alkaline phosphatase and exonuclease III. Over a wide range of drug levels the amount of inorganic phosphate released by alkaline phosphatase is approximately twice as much as that removed by exonuclease III, indicating the presence of equal amounts of 3'- and 5'- phosphoryl termini. This, taken together with other previously demonstrated effects of NCS on DNA, such as the introduction of nicks not sealable by polynucleotide ligase, the release of thymine, and the formation of a malonaldehyde type compound, suggests that NCS-induced strand breakage involves base release accompanied by opening of the sugar ring with destruction of one or more nucleosides and results in a gap bounded by 3'- and 5'- phosphoryl termini.  相似文献   

16.
Analysis of metal activation on the synthetic and degradative activities of phi 29 DNA polymerase was carried out in comparison with T4 DNA polymerase and Escherichia coli DNA polymerase I (Klenow fragment). In the three DNA polymerases studied, both the polymerization and the 3'----5' exonuclease activity had clear differences in their metal ion requirements. The results obtained support the existence of independent metal binding sites for the synthetic and degradative activities of phi 29 DNA polymerase, according with the distant location of catalytic domains (N-terminal for the 3'----5' exonuclease and C-terminal for DNA polymerization) proposed for both Klenow fragment and phi 29 DNA polymerase. Furthermore, DNA competition experiments using phi 29 DNA polymerase suggested that the main differences observed in the metal usage to activate polymerization may be the consequence of metal-induced changes in the enzyme-DNA interactions, whose strength distinguishes processive and nonprocessive DNA polymerases. Interestingly, the initiation of DNA polymerization using a protein as a primer, a special synthetic activity carried out by phi 29 DNA polymerase, exhibited a strong preference for Mn2+ as metal activator. The molecular basis for this preference is mainly the result of a large increase in the affinity for dATP.  相似文献   

17.
A new type II sequence-specific restriction endonuclease, SauI, was isolated from Streptomyces aureofaciens IKA18/4. The purified enzyme was free of contaminating exonuclease and phosphatase activities. SauI cleaved lambda DNA at two sites, but did not cleave pBR322, simian virus 40, or phi X174 DNA. SauI recognized the septanucleotide sequence 5'-CCTNAGG-3' and cleaved at the position indicated by the arrow, producing a trinucleotide 5'-terminal extension.  相似文献   

18.
The role of exonuclease activity in trans-lesion DNA replication with Escherichia coli DNA polymerase III holoenzyme was investigated. RecA protein inhibited the 3'----5' exonuclease activity of the polymerase 2-fold when assayed in the absence of replication and had no effect on turnover of dNTPs into dNMPs. In contrast, single-stranded DNA-binding protein, which had no effect on the exonuclease activity in the absence of replication, showed a pronounced 7-fold suppression of the 3'----5' exonuclease activity during replication. The excision of incorporated dNMP alpha S residues from DNA by the 3'----5' exonuclease activity of DNA polymerase III holoenzyme was inhibited 10-20-fold; still no increase in bypass of pyrimidine photodimers was observed. Thus, in agreement with our previous results in which the exonuclease activity was inhibited at the protein level (Livneh, Z. (1986) J. Biol. Chem. 261, 9526-9533), inhibition at the DNA level also did not increase bypass of photodimers. Fractionation of the replication mixture after termination of DNA synthesis on a Bio-Gel A-5m column under conditions which favor polymerase-DNA binding yielded a termination complex which could perform turnover of dNTPs into dNMPs. Adding challenge-primed single-stranded DNA to the complex yielded a burst of DNA synthesis which was promoted most likely by DNA polymerase III holoenzyme molecules transferred from the termination complex to the challenge DNA thus demonstrating the instability of the polymerase-DNA association. Addition of a fresh sample of DNA polymerase III holoenzyme to purified termination products, which consist primarily of partially replicated molecules with nascent chains terminated at UV lesions, did not result in any net DNA synthesis as expected. However, reactivation of lesion-terminated primers was achieved by pretreatment with a 3'----5' exonuclease which excised 200 nucleotides or more, generating new 3'-OH termini located away from the UV lesions. When these exonuclease-treated products were subjected to a second round of replication, an increased level of DNA synthesis was observed including additional bypass of photodimers. These results suggest the possibility that 3'----5' exonuclease processing might be required at least transiently during one of the stages of trans-lesion DNA replication, which is believed to be the mechanism of SOS-targeted mutagenesis.  相似文献   

19.
The bacteriophage phi 29 DNA polymerase, involved both in the protein-primed initiation and elongation steps of the viral DNA replication, displays a very processive 3',5'-exonuclease activity acting preferentially on single-stranded DNA. This exonucleolytic activity showed a marked preference for excision of a mismatched versus a correctly paired 3' terminus. These characteristics enable the phi 29 DNA polymerase to act as a proofreading enzyme. A comparative analysis of the wild-type phi 29 DNA polymerase and a mutant lacking 3',5'-exonuclease activity indicated that a productive coupling between the exonuclease and polymerase activities is necessary to prevent fixation of polymerization errors. Based on these data, the phi 29 DNA polymerase, a model enzyme for protein-primed DNA replication, appears to share the same mechanism for the editing function as that first proposed for T4 DNA polymerase and Escherichia coli DNA polymerase I on the basis of functional and structural studies.  相似文献   

20.
The interaction of a fluorescent duplex DNA oligomer with the Klenow fragment of DNA polymerase I from Escherichia coli has been studied in solution by using time-resolved fluorescence spectroscopy. An aminonaphthalenesulfonate (dansyl) fluorescent probe was linked by a propyl chain to a C5-modified uridine base located at a specific site in the primer strand of the DNA oligomer. The fluorescent oligomer bound tightly to the Klenow fragment (KD = 7.9 nM), and the probe's position within the DNA-protein complex was varied by stepwise elongation of the primer strand upon addition of the appropriate deoxynucleoside triphosphates. The decay of the total fluorescence intensity and the polarization anisotropy were measured with a picosecond laser and a time-correlated single photon counting system. The fluorescence lifetimes, the correlation time for internal rotation, and the angular range of internal rotation varied according to the probe's position within the DNA-protein complex. These results showed that five or six bases of the primer strand upstream of the 3' terminus were in contact with the protein and that within this contact region there were differences in the degree of solvent accessibility and the closeness of contact. Further, a minor binding mode of the DNA-protein complex was identified, on the basis of heterogeneity of the probe environment observed when the probe was positioned seven bases upstream from the primer 3' terminus, which resulted in a distinctive "dip and rise" in the anisotropy decay. Experiments with an epoxy-terminated DNA oligomer and a site-directed mutant protein established that the labeled DNA was binding at the polymerase active site (major form) and at the spatially distinct 3'----5' exonuclease active site (minor form). The abundance of each of these distinct binding modes of the DNA-protein complex was estimated under solution conditions by analyzing the anisotropy decay of the dansyl probe. About 12% of the labeled DNA was bound at the 3'----5' exonuclease site. This method should be useful for investigating the editing mechanism of this important enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号