共查询到20条相似文献,搜索用时 0 毫秒
1.
RNA ligase has been highly purified in good yields from bacteriophage T4-infected Escherichia coli by a rapid and reproducible procedure. The enzyme is free of phosphomonoesterase and ribonuclease activities and is therefore suitable for the synthesis of oligoribonucleotides and for the labeling of the 3'-terminus of RNA. Greater than 90% of the protein in the enzyme preparation migrates as a single band on gradient polyacrylamide gels containing sodium dodecyl sulfate during electrophoresis. For use as a DNA synthesis reagent the enzyme may be reliably freed of deoxyribonuclease activity by an additional chromatographic procedure using a commercially avialable resin. 相似文献
2.
Bacteriophage T4 RNA ligase catalyzes the ATP-dependent ligation of a 5'-phosphoryl-terminated nucleic acid donor to a 3'-hydroxyl-terminated nucleic acid acceptor. We have identified adenylylated DNA and RNA reaction intermediates in which the AMP moiety is attached by a pyrophosphate bond to the 5'-phosphoryl group of the donor. A large amount of DNA-adenylate accumulates during the reaction and the dependence of joining and adenylylation on chain length are similar. The adenylylated donor is joined by ligase to an acceptor in the absence of ATP, and AMP is released stoichiometrically in this reaction. The acceptor is not only a substrate in the reaction but also a cofactor for adenylylation of the donor; in the absence of a 3'-hydroxyl group the activated intermediate does not form. The activated DNA need not join to the acceptor that initially stimulated activation but can also join to another acceptor. This process of acceptor exchanges has proven useful for promoting the cyclization of small DNA substrates and the synthesis of DNA co-polymers. 相似文献
3.
Bacteriophage T4 anticodon nuclease, polynucleotide kinase and RNA ligase reprocess the host lysine tRNA. 总被引:16,自引:3,他引:16 下载免费PDF全文
Host tRNAs cleaved near the anticodon occur specifically in T4-infected Escherichia coli prr strains which restrict polynucleotide kinase (pnk) or RNA ligase (rli) phage mutants. The cleavage products are transient with wt but accumulate in pnk- or rli- infections, implicating the affected enzymes in repair of the damaged tRNAs. Their roles in the pathway were elucidated by comparing the mutant infection intermediates with intact tRNA counterparts before or late in wt infection. Thus, the T4-induced anticodon nuclease cleaves lysine tRNA 5' to the wobble position, yielding 2':3'-P greater than and 5'-OH termini. Polynucleotide kinase converts them into a 3'-OH and 5' P pair joined in turn by RNA ligase. Presumably, lysine tRNA depletion, in the absence of polynucleotide kinase and RNA ligase mediated repair, underlies prr restriction. However, the nuclease, kinase and ligase may benefit T4 directly, by adapting levels or decoding specificities of host tRNAs to T4 codon usage. 相似文献
4.
Here we report the construction of a histidine-tagged T4 RNA ligase expression plasmid (pRHT4). The construct, when overexpressed in BL21 (DE3) cells, allows the preparation of large quantities of T4 RNA ligase in high purity using only a single purification column. The histidine affinity tag does not inhibit enzyme function, and we were able to purify 1-3 mg pure protein/g cell pellet. A simple purification procedure ensures that the enzyme is de-adenylated to levels comparable to those found for many commercial preparations. The purified protein has very low levels of RNase contamination and functioned normally in a variety of activity assays. 相似文献
5.
6.
7.
T4 RNA ligase was employed for the condensation of Escherichia coli tRNAPhe missing cytidine-75 and adenosine-76 (tRNAPhe-COH; the acceptor "oligomer") with each of several chemically acylated derivatives of pCpA (the donor "oligomer"). The resulting "chemically misacylated " tRNAPheS were obtained in 20-65% yields following chromatographic workup on DEAE-cellulose and benzoylated DEAE-cellulose. Characterization of the chemically misacylated tRNAs was accomplished by (i) enzymatic reaminoacylation of chemically misacylated tRNAPhe with phenylalanine by E. coli phenylalanyl-tRNA synthetase following chemical deacylation of the "incorrect" amino acid, (ii) comparison of the hydrolytic effects of Cu2+ solutions on chemically and enzymatically prepared samples of N-acetyl-L-phenylalanyl- tRNAPheS , and (iii) measurement of the chromatographic behavior of the tRNA species derived from chemical misacylation . 相似文献
8.
Binding of nucleotides by T4 DNA ligase and T4 RNA ligase: optical absorbance and fluorescence studies. 下载免费PDF全文
The interaction of nucleotides with T4 DNA and RNA ligases has been characterized using ultraviolet visible (UV-VIS) absorbance and fluorescence spectroscopy. Both enzymes bind nucleotides with the K(d) between 0.1 and 20 microM. Nucleotide binding results in a decrease of absorbance at 260 nm due to pi-stacking with an aromatic residue, possibly phenylalanine, and causes red-shifting of the absorbance maximum due to hydrogen bonding with the exocyclic amino group. T4 DNA ligase is shown to have, besides the catalytic ATP binding site, another noncovalent nucleotide binding site. ATP bound there alters the pi-stacking of the nucleotide in the catalytic site, increasing its optical extinction. The K(d) for the noncovalent site is approximately 1000-fold higher than for the catalytic site. Nucleotides quench the protein fluorescence showing that a tryptophan residue is located in the active site of the ligase. The decrease of absorbance around 298 nm suggests that the hydrogen bonding interactions of this tryptophan residue are weakened in the ligase-nucleotide complex. The excitation/emission properties of T4 RNA ligase indicate that its ATP binding pocket is in contact with solvent, which is excluded upon binding of the nucleotide. Overall, the spectroscopic analysis reveals important similarities between T4 ligases and related nucleotidyltransferases, despite the low sequence similarity. 相似文献
9.
S N Zagrebel'ny? Iu P Zernov V F Ma?strenko N M Pustoshilova 《Prikladnaia biokhimiia i mikrobiologiia》1984,20(1):24-30
A technique for isolation of RNA-ligase of bacteriophage T4 was proposed. It is mainly based on the using of Soviet materials and sorbents and includes seven purification stages. The technique enables to isolate about 80 000 units of active enzyme from 100 g of E. coli B cells infected with the phage. T4am N82; that makes up 20% of the activity of the cell extract. The obtained preparations of RNA-ligase are homogeneous by the data of electrophoresis and practically, free of endo- and exonuclease admixtures. 相似文献
10.
Biotin, fluorescein, and tetramethylrhodamine derivatives of P1-(6-aminohex-1-yl)-P2-(5'-adenosine) pyrophosphate were synthesized and used as substrates with T4 RNA ligase. In the absence of ATP, the non-adenylyl portion of these substrates is transferred to the 3'-hydroxyl of an RNA acceptor to form a phosphodiester bond and the AMP portion is released. E. coli and D. melanogaster 5S RNA, yeast tRNAPhe, (Ap)3C, and (Ap)3A serve as acceptors with yields of products varying from 50 to 100%. Biotin-labeled oligonucleotides are bound selectively and quantitatively to avidin-agarose and may be eluted with 6 M guanidine hydrochloride, pH 2.5. Fluorescein and tetramethylrhodamine-labeled oligonucleotides are highly fluorescent and show no quenching due to attachment to the acceptor. The diverse structures of the appended groups and of the chain lengths and compositions of the acceptor RNAs show that T4 RNA ligase will be a useful modification reagent for the addition of various functional groups to the 3'-terminus of RNA molecules. 相似文献
11.
Bacteriophage T4 deoxynucleotide kinase: gene cloning and enzyme purification. 总被引:2,自引:0,他引:2 下载免费PDF全文
Gene 1 of bacteriophage T4 has been cloned into a lambda pL expression vector, resulting in the overproduction of deoxynucleotide kinase. A procedure that includes affinity chromatography on Cibacron Blue F3GA-agarose has been used to purify milligram quantities of enzymes from a 2-liter culture. The enzyme has been partially characterized in vitro and in vivo, and it appears to be identical to the deoxynucleotide kinase isolated from T4-infected Escherichia coli. These results prove the earlier contention that the phosphorylation of three dissimilar deoxynucleotides (5-hydroxymethyldeoxycytidylate, dTMP, and dGMP), to the exclusion of most others, is catalyzed by a single protein. 相似文献
12.
RNA nicking activity associated with DNA ligase of T4 infected E. coli: properties and influence on in vitro reactions of ligase. 下载免费PDF全文
Highly purified DNA ligase from T4 infected E. coli displays an RNA nicking activity which cleaves endonucleolytically the RNA of ribo-desoxy-and ribo-ribo type doublestranded structures to oligonucleotides with 5'phosphoryl-and 3'hydroxy termini. In the presence of ATP the generated nicks are repaired by the ligase except at the ends of the doublestranded regions where some short oligonucleotides are released before ligation can occur. As judged from its behaviour during the various purification steps and from some of its properties, the nicking activity seems to be different from known nicking enzymes. 相似文献
13.
Discovery and characterization of a thermostable bacteriophage RNA ligase homologous to T4 RNA ligase 1 总被引:2,自引:2,他引:2 下载免费PDF全文
Blondal T Hjorleifsdottir SH Fridjonsson OF Aevarsson A Skirnisdottir S Hermannsdottir AG Hreggvidsson GO Smith AV Kristjansson JK 《Nucleic acids research》2003,31(24):7247-7254
Thermophilic viruses represent a novel source of genetic material and enzymes with great potential for use in biotechnology. We have isolated a number of thermophilic viruses from geothermal areas in Iceland, and by combining high throughput genome sequencing and state of the art bioinformatics we have identified a number of genes with potential use in biotechnology. We have also demonstrated the existence of thermostable counterparts of previously known bacteriophage enzymes. Here we describe a thermostable RNA ligase 1 from the thermophilic bacteriophage RM378 that infects the thermophilic eubacterium Rhodothermus marinus. The RM378 RNA ligase 1 has a temperature optimum of 60–64°C and it ligates both RNA and single-stranded DNA. Its thermostability and ability to work under conditions of high temperature where nucleic acid secondary structures are removed makes it an ideal enzyme for RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE), and other RNA and DNA ligation applications. 相似文献
14.
15.
T4 induced RNA ligase will join equimolar concentrations of two oligoribonucleotides, (Ap)3C and p(Up) 5, to form a single product, (Ap)3Cp(Up) 5, in high yield. The presence of the 3' phosphate on p(Up)5 prevents the oligomer from adding to itself. The pH optimum of the reaction is about 7.5, but less of the undesirable adenylated intermediate, App(Up) 5, forms at pH 8.2. The reaction rate is a linear function of oligomer concentration from 3 micronM to 0.6 mM. The data suggest that T4 RNA ligase will be a useful enzyme for the synthesis of oligomers of defined sequence. 相似文献
16.
Bacteriophage T4 regA protein binds RNA as a monomer, overcoming dimer interactions. 总被引:1,自引:1,他引:1 下载免费PDF全文
The stoichiometry of the complex formed between the T4 translational repressor protein regA and the 16 nt gene 44 recognition element (gene 44RE) RNA has been determined. Under quantitative binding conditions, the association of wild-type regA protein with gene 44RE RNA exhibits saturation at a 1:1 ratio of protein to RNA. It is known that regA protein exists as a dimer in protein crystals. Thus, the stoichiometry may be indicative of a regA dimer bound to two RNAs or a regA monomer bound to one RNA. Gel filtration through Sephadex G-75 revealed that wild-type and R91L regA proteins (14.6 kDa) elute at a mass of 29 kDa, consistent with the mass of a dimer. However, wild-type regA preincubated with gene 44RE (1:1) resulted in a complex that eluted at approximately 20 kDa, consistent with a regA monomer-RNA complex. Covalent crosslinking of surface lysines with glutaraldehyde confirmed that wild-type and R91L proteins exist as dimers and higher oligomers in solution. However, the addition of RNA to wild-type regA protein prior to crosslinking inhibited the formation of crosslinked dimers. Thus, the regA protein-protein interactions observed in solution are disrupted or blocked in the presence of gene 44RE RNA. Together, these studies demonstrate that regA protein binds RNA as a monomer, although free protein exists predominantly as a dimer. 相似文献
17.
18.
Bacteriophage T4 RNA ligase 2 (Rnl2) exemplifies a polynucleotide ligase family that includes the trypanosome RNA-editing ligases and putative RNA ligases encoded by eukaryotic viruses and archaea. Here we analyzed 12 individual amino acids of Rnl2 that were identified by alanine scanning as essential for strand joining. We determined structure-activity relationships via conservative substitutions and examined mutational effects on the isolated steps of ligase adenylylation and phosphodiester bond formation. The essential residues of Rnl2 are located within conserved motifs that define a superfamily of nucleotidyl transferases that act via enzyme-(lysyl-N)-NMP intermediates. Our mutagenesis results underscore a shared active site architecture in Rnl2-like ligases, DNA ligases, and mRNA capping enzymes. They also highlight two essential signature residues, Glu(34) and Asn(40), that flank the active site lysine nucleophile (Lys(35)) and are unique to the Rnl2-like ligase family. 相似文献
19.
E A Atencia O Madrid M A Günther Sillero A Sillero 《European journal of biochemistry》1999,261(3):802-811
T4 RNA ligase has been shown to synthesize nucleoside and dinucleoside 5'-polyphosphates by displacement of the AMP from the E-AMP complex with polyphosphates and nucleoside diphosphates and triphosphates. Displacement of the AMP by tripolyphosphate (P3) was concentration dependent, as measured by SDS/PAGE. When the enzyme was incubated in the presence of 0.02 mm [alpha-32P] ATP, synthesis of labeled Ap4A was observed: ATP was acting as both donor (Km, microm) and acceptor (Km, mm) of AMP from the enzyme. Whereas, as previously known, ATP or dATP (but not other nucleotides) were able to form the E-AMP complex, the specificity of a compound to be acceptor of AMP from the E-AMP complex was very broad, and with Km values between 1 and 2 mm. In the presence of a low concentration (0.02 mm) of [alpha-32P] ATP (enough to form the E-AMP complex, but only marginally enough to form Ap4A) and 4 mm of the indicated nucleotides or P3, the relative rate of synthesis of the following radioactive (di)nucleotides was observed: Ap4X (from XTP, 100); Ap4dG (from dGTP, 74); Ap4G (from GTP, 49); Ap4dC (from dCTP, 23); Ap4C (from CTP, 9); Ap3A (from ADP, 5); Ap4ddA, (from ddATP, 1); p4A (from P3, 200). The enzyme also synthesized efficiently Ap3A in the presence of 1 mm ATP and 2 mm ADP. The following T4 RNA ligase donors were inhibitors of the synthesis of Ap4G: pCp > pAp > pA2'p. 相似文献
20.
T4 RNA ligase 1 (Rnl1) is a tRNA repair enzyme that circumvents an RNA-damaging host antiviral response. Whereas the three-step reaction scheme of Rnl1 is well established, the structural basis for catalysis has only recently been appreciated as mutational and crystallographic approaches have converged. Here we performed a structure-guided alanine scan of nine conserved residues, including side chains that either contact the ATP substrate via adenine (Leu179, Val230), the 2'-OH (Glu159), or the gamma phosphate (Tyr37) or coordinate divalent metal ions at the ATP alpha phosphate (Glu159, Tyr246) or beta phosphate (Asp272, Asp273). We thereby identified Glu159 and Tyr246 as essential for RNA sealing activity in vitro and for tRNA repair in vivo. Structure-activity relationships at Glu159 and Tyr246 were clarified by conservative substitutions. Eliminating the phosphate-binding Tyr37, and the magnesium-binding Asp272 and Asp273 side chains had little impact on sealing activity in vitro or in vivo, signifying that not all atomic interactions in the active site are critical for function. Analysis of mutational effects on individual steps of the ligation pathway underscored how different functional groups come into play during the ligase-adenylylation reaction versus the subsequent steps of RNA-adenylylation and phosphodiester formation. Moreover, the requirements for sealing exogenous preformed RNA-adenylate are more stringent than are those for sealing the RNA-adenylate intermediate formed in situ during ligation of a 5'-PO4 RNA. 相似文献