首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary N-acetyltransferase (NAT) activity in pineal glands exhibits a circadian rhythm with peak activity occurring in the dark-time. We previously showed that inGallus domesticus chicks pretreated with LD12:12, NAT activity was increased by dark exposure (peak dark sensitivity occurred during the expected dark-time) or decreased by light at night (peak light sensitivity occurred early in the night during the time of dark sensitivity). In this study we mapped dark sensitivity vs time (for NAT activity increase in response to 2 h dark pulses), and light sensitivity vs time (for NAT activity decrease in response to 10 min or 30 min light pulses) over a cycle for 3-week old chicks,Gallus domesticus, pretreated with long (LD16:8) or short photoperiod (LD8:16). Sensitivity to light was increased in the second 8 h after L/D by LD8:16. Sensitivity to dark was increased in the first 8 h after L/D by LD16:8.Abbreviations LD16:8 a light-dark cycle consisting of 16 h of light alternating with 8 h of dark - LD8:16 a light-dark cycle consisting of 8 h of light alternating with 16 h of dark - DD constant dark - LL constant light - L/D lights-off - D/L lights-on - NAT pineal serotonin N-acetyltransferase - NAT activity is given in nmoles/pineal gland/h - chick used here to denote a young bird of either sex of the speciesGallus domesticus from hatching to three weeks of age  相似文献   

2.
Summary The processes of horizontal cells invaginating teleost cone pedicles are studded with small finger-like projections which are present only in the light-adapted state. The aim of this study was to investigate whether the formation and degradation of these so-called spinules, which are thought to function as feed-back synapses onto the cones, is endogenously controlled.Three types of experiment were carried out involving fish entrained to a 12 h light/dark cycle: 1) The number of spinules was determined in goldfish at various times during exposure to either constant darkness (36 h) or constant light (57 h). 2) The time course of spinule formation and degradation in goldfish was investigated following exposure to light or darkness at various times during the light/dark cycle. 3) The time course of flash-induced spinule formation in tench following dark adaptation at noon was compared to that following dark adaptation at midnight.The results of these experiments show that spinule formation and degradation are partially under endogenous control but that they need light for full expression. This endogenous rhythm is reflected in the time courses of spinule formation and breakdown during different phases of the light/dark cycle.  相似文献   

3.
Summary The secretory dynamics of the Crustacean Hyperglycemic Hormone (CHH)-producing cells in the eyestalk of the crayfish Astacus leptodactylus were studied during the daily cycle (12 h light/12 h dark). The different secretory stages of individual cells were determined by means of immunocytochemistry combined with morphometric analysis at the light-microscopic level. The data obtained were correlated with the 24-h rhythmicity of blood glucose concentration. The results suggest the following hypothesis. The synthetic activity of the CHH cells receives a stimulus 2 h before the beginning of the dark period, resulting in a pronounced transfer of CHH granules into the axons. These CHH granules reach the axon terminals after the onset of the dark period. At that time a burst of exocytotic activity occurs, causing a strong release of CHH into the hemolymph. Four hours later this CHH release results in hyperglycemia. The same process, though with less intensity, is repeated and causes a second smaller glucose peak at the beginning of the light period.  相似文献   

4.
Induction of c-fos protein (FOS) after the onset of darkness was studied immunocytochemically in the rat and hamster pineal gland. The animals were kept on a 12:12 h light-dark cycle. Before the dark period no FOS staining was seen in either rat or hamster pineal cells. Five hours after the onset of darkness 342 +/- 18 pinealocytes/0.2 mm2 (mean +/- SD) displayed FOS-like immunoreactivity in the hamster pineal gland; in the rat pineal gland only 5 +/- 2 pinealocytes/0.2 mm2 showed a faint staining. Two hours later the density of FOS positive cells was decreased to 60 +/- 11/0.2 mm2 in the hamster but increased to 519 +/- 103/0.2 mm2 in the rat pineal gland. Three hours before the beginning of the light period no FOS positive cells were detected in either animal. Both the rat and hamster pineal gland showed a transient and temporally defined expression of c-fos protein in the middle of the dark period. This may be related to a more active functional state of pinealocytes, which is reflected in a peak of melatonin synthesis during the darkness.  相似文献   

5.
A population of the fruit fly Drosophila melanogaster was raised in periodic light/dark (LD) cycles of 12:12 h for about 35 generations. Eclosion, locomotor activity, and oviposition were found to be rhythmic in these flies, when assayed in constant laboratory conditions where the light intensity, temperature, humidity and other factors which could possibly act as time cue for these flies, were kept constant. These rhythms also entrained to a LD cycle of 12:12 h in the laboratory with each of them adopting a different temporal niche. The free-running periods (tau) of the eclosion, locomotor activity and oviposition rhythms were significantly different from each other. The peak of eclosion and the onset of locomotor activity occurred during the light phase of the LD cycle, whereas the peak of oviposition was found to occur during the dark phase of the LD cycle. Based on these results, we conclude that different circadian oscillators control the eclosion, locomotor activity and oviposition rhythms in the fruit fly D. melanogaster.  相似文献   

6.
Membrane turnover in outer segments of Rana pipiens red rods (ROS) was studied in tadpoles maintained under cyclic lighting (12L:12D) at 23 degrees, 28 degrees, and 33 degrees C. Large fragments (greater than 2 microns in diameter or length) were shed from the ROS tips shortly after the onset of light. These were phagocytized by the pigment epithelium (PE) which caused an increase in the number of phagosomes greater than 2 microns in size (large phagosomes). Large phagosomes were present in highest numbers 2-4 h after light exposure and were degraded by 8-12 h. The proportion of ROS that shed each day after the onset of the light cycle increased with increment increases in temperatures (23 degrees C-18%, 28 degrees C-33%, 33 degrees C-42% per day), resulting, in a reduction in the average interval of time between repeated sheddings (23 degrees C-5.6 days, 28 degrees C-3 days, 33 degrees C-2.4 days) though the average numbers of disks shed from ROS at the various temperatures were not significantly different (23 degrees C-139.5 +/- 5.7, 28 degrees C-129.4 +/- 7.6, 33 degrees C-129.9 +/- 4.8 disks/shed packet). Phagosomes in the PE that were less than 2 microns in diameter (small phagosomes) were present in relatively constant numbers throughout the day, and their numbers increased at higher temperatures. The absence of a concomitant increase in small phagosomes as large phagosomes were degraded indicates that large phagosomes were not the major source of small phagosomes. When the PE was isolated to culture in the absence of the retina, these small phagosomes were degraded. The rate of disk addition to the ROS base was determined by autoradiography after [3H]leucine injection. The number of disks added per day increased with elevations of temperature (23 degrees C-32.4; 28 degrees C-55.9; 33 degrees C-65.5). The average number of disks added to the ROS between repeated sheddings (23 degrees C-181.4; 28 degrees C-167.7; 33 degrees C-157.2) was greater than the number of disks shed after light exposure. Inasmuch as the ROS show no net increase in length during the tadpole stages utilized, the remaining disks must be lost at some other time. Electron microscope analysis revealed the presence of small groups of disks in curled configurations at the tips of ROS, suggesting possible stages of detachment.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The non-heterocystous cyanobacterium Oscillatoria sp. strain 23 fixes nitrogen under aerobic conditions. If nitrate-grown cultures were transferred to a medium free of combined nitrogen, nitrogenase was induced within about 1 day. The acetylene reduction showed a diurnal variation under conditions of continuous light. Maximum rates of acetylene reduction steadily increased during 8 successive days. When grown under alternating light-dark cycles, Oscillatoria sp. fixes nitrogen preferably in the dark period. For dark periods longer than 8 h, nitrogenase activity is only present during the dark period. For dark periods of 8 h and less, however, nitrogenase activity appears before the beginning of the dark period. This is most pronounced in cultures grown in a 20 h light – 4 h dark cycle. In that case, nitrogenase activity appears 3–4 h before the beginning of the dark period. According to the light-dark regime applied, nitrogenase activity was observed during 8–11 h. Oscillatoria sp. grown under 16 h light and 8 h dark cycle, also induced nitrogenase at the usual point of time, when suddenly transferred to conditions of continuous light. The activity appeared exactly at the point of time where the dark period used to begin. No nitrogenase activity was observed when chloramphenicol was added to the cultures 3 h before the onset of the dark period. This observation indicated that for each cycle, de novo nitrogenase synthesis is necessary.  相似文献   

8.
Rhythms of labeling and mitotic indices were studied in the hindlimb epidermis of the anuran tadpole Rana pipiens under different light/dark (LD) cycles and daylengths in order to examine the role of the various parameters of the lighting regimen in setting the periods of the rhythms and the timing of the cell proliferation peaks. Altering the time of, or inverting, the 12 h light period on a 24 h day resulted in phase shifting of basically bimodal circadian rhythms with peaks in the light and dark. Thus the cell proliferation rhythms were entrained to the LD cycle. These rhythms also entrained to noncircadian schedules since they lengthened on a 15L : 15D cycle and shortened on a 9L : 9D cycle, although the bimodal characteristic of a peak in the light and a peak in the dark remained. Studies of 18L: 6D and 6L : 18D cycles in which either the time of onset of light or dark was changed relative to the 12L: 12D control indicated that the onset of dark may regulate the timing of the labeling index peaks while the onset of light may determine the time of occurrence of mitotic index peaks. Control of the timing of labeling and mitotic index peaks by different parameters of the LD cycle suggests a mechanism for cell cycle regulation by the environmental lighting schedule. Analysis of the rhythms on all the cycles studied suggested that labeling index rhythms equal the length of, or twice the length of, the dark period. Mitotic index rhythms equal the daylfength or a multiple of the length of the dark period.  相似文献   

9.
Summary The rhythm in melatonin production in the rat is driven by a circadian rhythm in the pineal N-acetyltransferase (NAT) activity. Rats adapted to an artificial lighting regime of 12 h of light and 12 h of darkness per day were exposed to an 8-h advance of the light-dark regime accomplished by the shortening of one dark period; the effect of melatonin, triazolam and fluoxetine, together with 5-hydroxytryptophan, on the reentrainment of the NAT rhythm was studied.In control rats, the NAT rhythm was abolished during the first 3 cycles following the advance shift. It reappeared during the 4th cycle; however, the phase relationship between the evening rise in activity and the morning decline was still compressed.Melatonin accelerated the NAT rhythm reentrainment. In rats treated chronically with melatonin at the new dark onset, the rhythm had already reappeared during the 3rd cycle, in the middle of the advanced night, and during the 4th cycle, the phase relationship between the evening onset and the morning decline of the NAT activity was the same as before the advance shift. In rats treated chronically with melatonin at the old dark onset or in those treated with melatonin 8 h, 5 h and 2 h after the new dark onset during the 1st, 2nd and 3rd cycle, respectively, following the advance shift, the NAT rhythm reappeared during the 3rd cycle as well but in the last third of the advanced night only.Neither triazolam nor fluoxetine together with 5-hydroxytryptophan administered around the new dark onset facilitated NAT rhythm reentrainment after the 8-h advance of the light-dark cycle.Abbreviations NAT N-acetyltransferase - LD cycle light-dark cycle - CT circadian time - LD xy light dark cycle comprising x h of light and y h of darkness  相似文献   

10.
Cell division and chloroplast replication in Heterosigma akashiwo(Hada) Hada occurred as separate synchronous events during thecell cycle when cells were subjected to light-dark regimes.Under three different photoperiodic cycles of 10L/14D (10 hlight/14 h dark), 12L/12D or 16L/8D, cell division began athour 19–20 and finished at hour 23–26 after theonset of the light period, while chloroplast replication beganat hour 20–22 after the onset of the dark period. Almostall the cells divided only once in the 12L/12D cycle. The rateof increase in chloroplast number during one light-anddark cyclewas always equal to that in cell number in every photoperiodexamined. Light was essential for both cell division and chloroplast replication,but the minimum light period necessary for each event differed.When the light period was shorter than 6 h, no cell divisionoccurred; when it was shorter than 3 h, no chloroplast replicationoccurred. (Received February 26, 1987; Accepted June 17, 1987)  相似文献   

11.
Goldfish were placed on a daily light cycle of 12 h light and 12 h darkness for 18 days or longer. The visual cells and pigment epithelium of the retina were then examined by microscopy at many intervals throughout the cycle. Goldfish rods and cones follow a rhythmic pattern in eliminating packets of photosensitive membranes from their outer segments. Rods shed membranes early in the light period. The detached membranes are ingested by pigment epithelial cells or by ameboid phagocytes, which degrade them during the remainder of the light period. Cones discard membranes from the ends of their outer segments early in the dark period. During the next several hours, this debris is digested by the pigment epithelium or by ameboid phagocytes. Thus, the disposal phase of the outer-segment renewal process is similar in rods and cones, but is displaced in time by about 12 h. There is evidence that this daily rhythm of membrane disposal in rods and cones is a general property of vertebrate visual cells.  相似文献   

12.
Perissin L  Facchin P  Porro CA 《Life sciences》2000,67(12):1477-1488
Diurnal changes in the behavioural reactions to subcutaneous formalin injection (20 microl, 1%) into the dorsum of an hindpaw were examined in female CBA/J mice aged 70-75 days, maintained in a 12/12 dark/ light cycle (light on at 07.00 h; light off at 19.00 h). Mice showed higher pain scores, as expressed by the amount of time spent licking the injected paw and by the number of flinching episodes, when tested under red light at the beginning of the dark phase (19.00-22.00: Dark group) than when tested either under white or red light at the beginning of the light phase of the diurnal cycle (7.00-10.00). The increases in pain reactions at night were found both during the first (0-10 min) and the second (11-55 min) phase of the behavioural response to formalin injection. They were not due to aspecific increases in motor behaviour, since self-grooming actually decreased in the Dark group during the second phase of the response, and the amount of locomotor activity after the injection was similar to, or lower than, that found in mice tested in the morning under white or red light, respectively. In another group of female CBA/J mice tested in the hotplate apparatus (at a temperature of 52 degrees), paw-lick latencies were significantly higher in mice tested at dark during the night, whereas jump (escape) latencies were higher in the morning. These results demonstrate different diurnal variations in the reactions to brief or prolonged noxious stimulation in mice, with greater responses to tonic pain at the onset of the dark phase.  相似文献   

13.
To provide necessary background for study of stress response in red-backed voles (Clethrionomys gapperi), the circadian and ultradian rhythm in corticosterone release was characterized. Animals were maintained under a 16h light, 8h dark cycle. A total of 55 males and 46 females provided 101 independent blood samples over a 6-month span. Samples were obtained at 1h to 2h intervals during the light and at 2h intervals during the dark. Using edited data (5 values beyond the upper 95% limit were removed), a significant time effect was found by analysis of variance (ANOVA) for both sexes at P < .001. The composite single cosine best describing the circadian wave-form for each sex consisted of three components (24h, 12h, and 6h), each significant at P < .05 (overall model P < .001). The 24h mean (mesor) was about 60% higher in females than males (646 ng/mL vs. 412 ng/mL, P = .01), with amplitudes of 429 and 298 ng/mL being proportional (66% vs. 72%) to the respective mesor. The predictable range of change within a 24h span (determined by the double amplitude of a 24h + 12h + 6h cosine model) was large: It was more than 1600 ng/mL for females and more than 900 ng/ mL for males. Highest values were found during the dark phase, with the 24h acrophase located at 2h into the dark span for both sexes. With the caveat of fewer samples obtained during dark than during light, the actual peak values for females occurred at 2h and for males at 6h into the 8h dark span. These results provide baseline information about the circadian time structure for serum corticosterone in red-backed voles under normal light-dark, low-stress conditions.  相似文献   

14.
The cercariae of Schistosoma margrebowiei showed two peaks of emergence from Bulinus natalensis in a 12 h light/dark cycle. Peak emission occurred at 0700 h (one hour after the onset of light) and at 1900 h (one hour after the onset of darkness). Both peaks were of equal magnitude and were maintained during constant illumination indicating that the rhythm is innate. Delaying or advancing the timing of the dark period did not affect the timing of these two peaks. Following a five minute dark treatment elevation in cercarial output resulted irrespective of when the treatment was applied. Subjecting snails to various intensities of light only resulted in an elevation in output when a sudden change in intensity from 0 to 360 Lux or the reverse was applied. No response was seen to a gradual change in light intensity although the parasite could detect a change in light from 1 to 0 Lux. These responses appear to optimize the chances of host parasite contact.  相似文献   

15.
Summary Myeloid bodies (MBs) occur in the newt (Notophthalmus viridescens) retinal pigment epithelium (RPE) and are similar to areas of specialized endoplasmic reticulum found in a variety of other cell types. The function of these structures is unknown, although a role in lipid metabolism has been strongly suggested. Random samples from conventionally-fixed and sectioned newt RPE, obtained over a 24-hr cycle (LD 1212), were examined by electron microscopy. Myeloid bodies appear as stacks of flattened endoplasmic reticulum-associated saccules which increase in length and number as the RPE accumulates shed outer segment material, prior to increase in the amount of stored lipid. Associations of MBs with the nuclear envelope can be related to this increased length. Myeloid bodies decrease numerically in the cell as phagosomes are removed from the cytoplasm, but a decrease in mean sectional MB area, seen in the light phase, is counteracted in darkness where individual MBs are larger than those found in the light. The total sectional area of MBs within a cell and their mean length varied depending on the lighting condition; differences were also found between eyes after extended periods of continuous light and dark. Ribosomes were found in association with the surfaces of both flattened and circular MBs, but they were consistently more densely associated with the shorter concave surfaces of curved regions. A new hypothesis for MB function is presented, which is concerned with their role in isolating toxic lipids such as retinoids, which are accumulated during phagocytosis of shed outer segment tips, and which are capable of disrupting membrane-bound systems necessary for their eventual metabolism and safe storage.  相似文献   

16.
In small laboratory species, steroid measures can be obtained more frequently and less invasively from urine than blood. Insofar as urinary levels reflect systemic levels, they could provide advantages particularly for measurement of glucocorticoids, whose blood levels react rapidly to handling and stress. In Experiment 1, urinary samples were collected from male mice every second hour over a 14:10 h light:dark cycle. Samples were analyzed via enzyme immunoassay for corticosterone, testosterone, and creatinine. Corticosterone had peak concentrations 1 h after light offset and a trough 1 h after light onset. Testosterone showed peak concentrations 5-7 h after light onset and lowest concentrations during the dark phase of the cycle. Creatinine showed some variation over the light-dark cycle, but steroid measures showed similar trends with and without adjustment for creatinine. In Experiment 2, mice were stressed via an injection at times close to the determined peak and trough levels of corticosterone. In urinary samples taken 90 min after injection, corticosterone was significantly higher in injected animals at both times relative to levels in control animals, but testosterone was unaffected by injection stress. In Experiment 3, serum and urine samples were collected from mice every sixth hour across the diurnal cycle. Corticosterone peaked in urine and serum immediately after light offset, and urinary measures predicted those in serum. These data indicate that urinary corticosterone reflects systemic levels in mice, document circadian variation in urinary testosterone, and indicate that circadian variation in creatinine is minimal, but potentially relevant in stressed animals.  相似文献   

17.
San Martin M  Touitou Y 《Steroids》2000,65(4):206-209
The effects of 10(-6) and 10(-9) M of progesterone were documented on isoproterenol-stimulated melatonin release by perifused pineal glands removed from female rats in diestrous at two different times of a 12 : 12 h light/dark cycle, 7 and 19 h after light onset (which corresponds to daytime and nighttime, respectively), to look for the existence of a circadian stage-dependence of the hormone effects. Three weeks before the experiment, the rats were synchronized with a 12 : 12 lighting regimen. Progesterone decreased by approximately 50% the release of melatonin during the light span, but not during the dark span. These results show the direct effects of this ovarian hormone on pineal melatonin release and strongly suggest a time-related effect of progesterone on pineal function.  相似文献   

18.
Under the conditions applied in our laboratory 4 1/2 days old plants ofChenopodium rubrum require 2–3 photoperiodic cycles for maximal flowering response, whereas 2 1/2 days old plants are able to flower after having obtained a single inductive cycle. The period length of the free-running rhythm of flowering observed in 2 1/2 days old plants after a single transfer from light to darkness is 30h and the first peak of flowering occurs at about hour 12 in darkness. When a cycle consisting of 16h darkness and 8h light or of 8h darkness and 8h light precedes the long dark period the rhythm is rephased. Rephasing is greater when the light commenced to act on the positive slope of the first peak of the free running rhythm than when it impinged on the negative slope. With an 8h interruption of darkness by light rhythm phase is controlled by the light-on, as well as by the light-off signal. Feeding 0.4 M glucose during the long period of darkness enhanced the amplitude of the flowering response and, moreover, substituted for one photoperiodic cycle.  相似文献   

19.
The cell division of a red tide flagellate, Chattonella antiqua,was synchronously induced under light and dark regimes of 10L14D(a light period, L, for 10 h followed by a dark period, D, for14 h), 12L12D and l4L10D. In all regimes cell number began toincrease ca. 14 h after the onset of L and almost doubled duringone LD cycle. When the light-off timing of the last L was changedor the whole L was shifted, cells that had been synchronizedunder 12L12D invariably began to divide ca. 14 h after the onsetof L. This shows that the timing of cell division was determinedby the time of the onset of L. When cells were continuously exposed to light after a cell division,the subsequent cell division was inhibited. This effect waslimited to cells that had been synchronized under short-dayconditions. Thus it can be concluded that light has both inductive and inhibitoryeffects on cell division in this alga, the latter effect dependingupon the previously given light and dark regimes. (Received December 21, 1984; Accepted February 28, 1985)  相似文献   

20.
Nannochloropsis oculata (strain CCAP 849/1) was sampled at least every 12 h over a 26-d period of batch culture growth in a 12 h/12 h light/dark illumination cycle. Exponential cell-specific growth rate was 0.5 d–1. Cell division occurred during the dark phase, while ammonium uptake, pigment synthesis and cell volume increase occurred mainly during the light. Stationary phase cells were on average larger that the largest exponentially growing cells. The lag phase prior to cell division was short with the C/N ratio returning to 6.25 (from 28) within 2 d of refeeding with ammonium. Significant Chl.a synthesis commenced after this period; net synthesis of Chl.a ceased on exhaustion of the N-source with a 40% fall in levels by the end of the stationary phase. Levels of carotenoids per cell also declined during N-deprivation although per ml of culture levels remained constant. Ammonium-refeeding of N-deprived cells resulted in a very rapid rise in glutamine (Gln) and very high ratios of glutamine/glutamate (Gln/Glu peaking at 35 within 1 h); peak Gln/Glu was lower in cells refed in the dark or after a shorter period of N-deprivation. The major intracellular amino acids during exponential phase were Glu, Gln, alanine and arginine, but on exhaustion of the N-source, levels of Gln fell rapidly (Gln/Glu falling to below 0.1 from 0.5–0.9 in the light and 0.3 in darkness during exponential growth). During N-deprivation tyrosine accumulated within the cells. Comparisons are drawn with the growth ofIsochrysis galbana, another alga used in aquaculture, under identical conditions.Author for correspondence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号