首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Epigallocatechin-3-gallate (EGCG) is an important bioactive constituent of green tea extract (GTE) that was widely believed to reduce proliferation of many cancer cell lines. The purpose of this study was to verify the possible pro-apoptotic action of GTE/EGCG in human colon adenocarcinoma COLO 205 cells. The effect of EGCG/GTE treatments on cell viability was studied using methyl thiazolyl tetrazolium (MTT) assay. Cell proliferation was assessed with crystal violet staining, whereas protein expression levels were evaluated by western blotting followed by densitometric analysis. Obtained results were analyzed statistically. Surprisingly, EGCG/GTE dose-dependently up-regulated COLO 205 cells viability and proliferation. Observed effects were mediated by lipid rafts, as cholesterol depletion significantly prevented EGCG/GTE-dependent cell survival. Furthermore, treatment of COLO 205 cells with EGCG/GTE resulted in activation of MEK/ERK1/2, but not Akt1/2/GSK-3β signaling pathway. The presence of MEK inhibitor - PD98059 but not PI3-K inhibitor - LY294002, both reduced EGCG/GTE-induced ERK1/2 activation and the proliferative effect of catechins. Furthermore, EGCG/GTE stimulated secretory clusterin (sClu) expression level, which underwent complex control through lipid rafts/PKC/Wnt/β-catenin system. Our studies demonstrated that EGCG and GTE stimulate cell survival and proliferation of COLO 205 cells in a lipid rafts-dependent manner via at least MEK/ERK1/2 signaling pathway. Furthermore, EGCG/GTE mediated positive effects on viability and mitogenicity of COLO 205, while suppression of β-catenin activity was positively correlated with sClu clusterin expression.  相似文献   

2.
3.
4.
5.
Redox control and oxidative stress in yeast cells   总被引:1,自引:0,他引:1  
  相似文献   

6.
Catechin-rich green tea extract (GTE) protects against nonalcoholic steatohepatitis (NASH) by alleviating gut-derived endotoxin translocation and hepatic Toll-like receptor-4 (TLR4)–nuclear factor κB (NFκB) inflammation. We hypothesized that intact GTE would attenuate NASH-associated responses along the gut–liver axis to a greater extent than purified (−)-epigallocatechin gallate (EGCG) or (+)-catechin (CAT). Male C57BL/6J mice were fed a low-fat diet, a high-fat (HF) diet, or the HF diet with 2% GTE, 0.3% EGCG or 0.3% CAT for 8 weeks prior to assessing NASH relative to endotoxemia, hepatic and intestinal inflammation, intestinal tight junction proteins (TJPs) and gut microbial ecology. GTE prevented HF-induced obesity to a greater extent than EGCG and CAT, whereas GTE and EGCG more favorably attenuated insulin resistance. GTE, EGCG and CAT similarly attenuated serum alanine aminotransferase and serum endotoxin, but only GTE and EGCG fully alleviated HF-induced NASH. However, hepatic TLR4/NFκB inflammatory responses that were otherwise increased in HF mice were similarly attenuated by GTE, EGCG and CAT. Each treatment also similarly prevented the HF-induced loss in expression of intestinal TJPs and hypoxia inducible factor-1α and the otherwise increased levels of ileal and colonic TNFα mRNA and fecal calprotectin protein concentrations. Gut microbial diversity that was otherwise lowered in HF mice was maintained by GTE and CAT only. Further, microbial metabolic functions were more similar between GTE and CAT. Collectively, GTE catechins similarly protect against endotoxin–TLR4–NFκB inflammation in NASH, but EGCG and CAT exert differential prebiotic and antimicrobial activities suggesting that catechin-mediated shifts in microbiota composition are not entirely responsible for their benefits along the gut–liver axis.  相似文献   

7.
Telomeres are essential for chromosome integrity, protecting the ends of eukaryotic linear chromosomes during cell proliferation. Telomeres also function in meiosis; a characteristic clustering of telomeres beneath the nuclear membrane is observed during meiotic prophase in many organisms from yeasts to plants and humans, and the role of the telomeres in meiotic pairing and the recombination of homologous chromosomes has been demonstrated in the fission yeast Schizosaccharomyces pombe and in the budding yeast Saccharomyces cerevisiae. Here we report that S. pombe Rap1 is a telomeric protein essential for meiosis. While Rap1 is conserved in budding yeast and humans, schemes for telomere binding vary among species: human RAP1 binds to the telomere through interaction with the telomere binding protein TRF2; S. cerevisiae Rap1, however, binds telomeric DNA directly, and no orthologs of TRF proteins have been identified in this organism. In S. pombe, unlike in S. cerevisiae, an ortholog of human TRF has been identified. This ortholog, Taz1, binds directly to telomere repeats [18] and is necessary for telomere clustering in meiotic prophase. Our results demonstrate that S. pombe Rap1 binds to telomeres through interaction with Taz1, similar to human Rap1-TRF2, and that Taz1-mediated telomere localization of Rap1 is necessary for telomere clustering and for the successful completion of meiosis. Moreover, in taz1-disrupted cells, molecular fusion of Rap1 with the Taz1 DNA binding domain recovers telomere clustering and largely complements defects in meiosis, indicating that telomere localization of Rap1 is a key requirement for meiosis.  相似文献   

8.
9.
10.
11.
12.
Antioxidant effects of green tea and its polyphenols on bladder cells   总被引:2,自引:0,他引:2  
Genitourinary tract inflammation/ailments affect the quality of life and health of a large segment of society. In recent years, studies have demonstrated strong antioxidant effects of green tea and its associated polyphenols in inflammatory states. This in vitro study examined the antioxidant capabilities (and putative mechanisms of action) of green tea extract (GTE), polyphenon-60 (PP-60, 60% pure polyphenols), (-)-epicatechin-3-gallate (ECG) and (-)-epigallocatechin-3-gallate (EGCG) in normal/malignant human bladder cells following catechin treatment+/-1 mM H2O2 (oxidative agent). Cell viability, apoptosis and reactive oxygen species (ROS) formation were evaluated. Our results showed that H2O2 exposure significantly reduced normal (UROtsa) and high-grade (TCCSUP, T24) bladder cancer (BlCa) cell viability compared with control-treated cells (p<0.001). No affect on low-grade RT4 and SW780 BlCa cell viability was observed with exposure to H2O2. Compared to H2O2-treated UROtsa, treatment with PP-60, ECG and EGCG in the presence of H2O2 significantly improved UROtsa viability (p<0.01), with strongest effects evoked by ECG. Additionally, though not as effective as in UROtsa cells, viability of both high-grade TCCSUP and T24 BlCa cells, in comparison to H2O2-treated cells, was significantly improved (p<0.01) by treatment with PP-60, ECG, and EGCG in the presence of H2O2. Overall, our findings demonstrate that urothelium cell death via H2O2-induced oxidative stress is mediated, in part, through superoxide (O2-.;), and potentially, direct H2O2 mechanisms, suggesting that green tea polyphenols can protect against oxidative stress/damage and bladder cell death.  相似文献   

13.
14.
《Phytomedicine》2013,21(14):1247-1250
Green tea catechins have been shown to affect the activities of drug transporters in vitro, including P-glycoprotein and organic anion transporting polypeptides. However, it remains unclear whether catechins influence the in vivo disposition of substrate drugs for these transporters. In the present study, we investigated effects of green tea extract (GTE) and (−)-epigallocatechin-3-gallate (EGCG) on pharmacokinetics of a non-selective hydrophilic β-blocker nadolol, which is reported to be a substrate for several drug transporters and is not metabolized by cytochrome P450 enzymes. Male Sprague-Dawley rats received GTE (400 mg/kg), EGCG (150 mg/kg) or saline (control) by oral gavage, 30 min before a single intragastric administration of 10 mg/kg nadolol. Plasma and urinary concentrations of nadolol were determined using high performance liquid chromatography. Pharmacokinetic parameters were estimated by a noncompartmental analysis. Pretreatment with GTE resulted in marked reductions in the maximum concentration (Cmax) and area under the time–plasma concentration curve (AUC) of nadolol by 85% and 74%, respectively, as compared with control. In addition, EGCG alone significantly reduced Cmax and AUC of nadolol. Amounts of nadolol excreted into the urine were decreased by pretreatments with GTE and EGCG, while the terminal half-life of nadolol was not different among groups. These results suggest that the coadministration with green tea catechins, particularly EGCG, causes a significant alteration in the pharmacokinetics of nadolol, possibly through the inhibition of its intestinal absorption mediated by uptake transporters.  相似文献   

15.
16.
Electromagnetic radiation (EMR) of cellular phones may affect biological systems by increasing free radicals and changing the antioxidant defense systems of tissues, eventually leading to oxidative stress. Green tea has recently attracted significant attention due to its health benefits in a variety of disorders, ranging from cancer to weight loss. Thus, the aim of the present study was to investigate the effect of EMR (frequency 900 MHz modulated at 217 Hz, power density 0.02 mW/cm2, SAR 1.245 W/kg) on different oxidative stress parameters in the hippocampus and striatum of adult rats. This study also extends to evaluate the therapeutic effect of green tea mega EGCG on the previous parameters in animals exposed to EMR after and during EMR exposure. The experimental animals were divided into four groups: EMR-exposed animals, animals treated with green tea mega EGCG after 2 months of EMR exposure, animals treated with green tea mega EGCG during EMR exposure and control animals. EMR exposure resulted in oxidative stress in the hippocampus and striatum as evident from the disturbances in oxidant and antioxidant parameters. Co-administration of green tea mega EGCG at the beginning of EMR exposure for 2 and 3 months had more beneficial effect against EMR-induced oxidative stress than oral administration of green tea mega EGCG after 2 months of exposure. This recommends the use of green tea before any stressor to attenuate the state of oxidative stress and stimulate the antioxidant mechanism of the brain.  相似文献   

17.
18.
The two model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe appear to have diverged 1000 million years ago. Here, we describe that S.?pombe vectors can be propagated efficiently in S.?cerevisiae as pUR19 derivatives, and the pREP and pJR vector series carrying the S.?cerevisiae LEU2 or the S.?pombe ura4(+) selection marker are maintained in S.?cerevisiae cells. In addition, genes transcribed from the S.?pombe nmt1(+) promoter and derivatives are expressed in budding yeast. Thus, S.?pombe vectors can be used as shuttle vectors in S.?cerevisiae and S.?pombe. Our finding greatly facilitates the testing for functional orthologs of protein families and simplifies the cloning of new S.?pombe plasmids by using the highly efficient in vivo homologous recombination activity of S.?cerevisiae.  相似文献   

19.
Molina L  Kahmann R 《The Plant cell》2007,19(7):2293-2309
The fungus Ustilago maydis is a biotrophic pathogen of maize (Zea mays). In its genome we have identified an ortholog of YAP1 (for Yeast AP-1-like) from Saccharomyces cerevisae that regulates the oxidative stress response in this organism. yap1 mutants of U. maydis displayed higher sensitivity to H(2)O(2) than wild-type cells, and their virulence was significantly reduced. U. maydis yap1 could partially complement the H(2)O(2) sensitivity of a yap1 deletion mutant of S. cerevisiae, and a Yap1-green fluorescent protein fusion protein showed nuclear localization after H(2)O(2) treatment, suggesting that Yap1 in U. maydis functions as a redox sensor. Mutations in two Cys residues prevented accumulation in the nucleus, and the respective mutant strains showed the same virulence phenotype as Deltayap1 mutants. Diamino benzidine staining revealed an accumulation of H(2)O(2) around yap1 mutant hyphae, which was absent in the wild type. Inhibition of the plant NADPH oxidase prevented this accumulation and restored virulence. During the infection, Yap1 showed nuclear localization after penetration up to 2 to 3 d after infection. Through array analysis, a large set of Yap1-regulated genes were identified and these included two peroxidase genes. Deletion mutants of these genes were attenuated in virulence. These results suggest that U. maydis is using its Yap1-controlled H(2)O(2) detoxification system for coping with early plant defense responses.  相似文献   

20.
《Process Biochemistry》2014,49(2):271-276
This work studied the effect of a sequential addition of substrate on tannase reaction for the increase of epigallocatechin (EGC) and gallic acid. The addition of 0.5–1% GTE increased the production of gallic acid during 2 h in a single tannase reaction, while the addition of more than 2% in GTE rather showed a decrease in gallic acid level with an increase of EGCG level compared with 1% GTE addition group, suggesting that GTE addition of 2% and over inhibits the reaction of tannase. Examination of sequential addition of 1% GTE on tannase reaction showed that second addition of 1% GTE at 2 h promoted tannase reaction by increasing production of gallic acid, but further addition (2 and 3 h) rather inhibited tannase reaction with lowered gallic acid and enhanced EGCG levels. This result showed that one additional treatment of 1% GTE during tannase reaction is effective in an increase of gallic acid production. Moreover, levels of degallated products including EGC, EC, and GC were increased by 7.3, 4.5, and 3.5-fold, respectively in sequential addition of GTE at 2 h. pH change derived from gallic acid production was not shown to related to tannase activity. Therefore, our study suggests that one sequential addition is a suitable process for desirable production of green tea extracts enriched in active components such as gallic acid and EGC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号