首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The F-box protein Fbw7 (also known as Fbxw7, hCdc4 and Sel-10) functions as a substrate recognition component of a SCF-type E3 ubiquitin ligase. SCF(Fbw7) facilitates polyubiquitination and subsequent degradation of various proteins such as Notch, cyclin E, c-Myc and c-Jun. Fbw7 is highly expressed in the nervous system and controls neural stem cell differentiation and apoptosis via Notch and c-Jun during embryonic development (Hoeck et al., 2010). Fbw7 deletion in the neural lineage is perinatal lethal and thus prohibits studying the role of Fbw7 in the adult nervous system. fbw7 mRNA is highly expressed in the postnatal brain and to gain insights into the function of Fbw7 in postnatal neurogenesis we analysed Fbw7 function in the cerebellum. We generated conditional Fbw7-knockout mice (fbw7?Cb) by inactivating Fbw7 specifically in the cerebellar anlage. This resulted in decreased cerebellar size, reduced Purkinje cell number and defects in axonal arborisation. Moreover, Fbw7-deficient cerebella showed supranumeral fissures and aberrant progenitor cell migration. Protein levels of the Fbw7 substrates Notch1 and N-terminally phosphorylated c-Jun were upregulated in fbw7?Cb mice. Concomitant deletion of c-Jun, and also the junAA knock-in mutation which specifically abrogates c-Jun N-terminal phosphorylation, rescued Purkinje cell numbers and arborisation in the fbw7?Cb background. Taken together these data demonstrate that Fbw7 is essential during cerebellar development, and identify N-terminally phosphorylated c-Jun as an important substrate of SCF(Fbw7) during neurogenesis.  相似文献   

2.
Atherogenesis is a chronic inflammatory process that involves complex interactions between endothelial dysfunction, lipid deposition and vascular smooth-muscle cell (VSMC) proliferation. However, the molecular mechanism is still unclear. We found that a pro-atherosclerotic factor (oxLDL) induced the expression of Krüppel-like factor 5 (KLF5), which in turn increased miR-29a expression levels. The increased miR-29a was retained within HASMCs and down-regulated Fbw7/CDC4 expression by targeting the 3´UTR of Fbw7/CDC4, subsequently increasing KLF5 stability by reducing the Fbw7/CDC4-dependent ubiquitination of KLF5, forming a positive feedback loop to enhance VSMC proliferation and promote atherogenesis. These results indicate a potentially important role for the oxLDL-activated feedback mechanism in VSMC proliferation and atherogenesis. Suppression of miR-29a may be an effective way to attenuate atherosclerosis. In conclusion, our data are the first to reveal that the regulatory crosstalk between KLF5, miR-29a, and Fbw7/CDC4 cooperatively promotes atherosclerotic development.  相似文献   

3.
Notch signaling is essential for embryonic vascular development in mammals and other vertebrates. Here we show that mouse embryos with conditional activation of the Notch1 gene in endothelial cells (Notch1 gain of function embryos) exhibit defects in vascular remodeling increased diameter of the dorsal aortae, and form arteriovenous malformations. Conversely, embryos with either constitutive or endothelial cell‐specific Notch1 gene deletion also have vascular defects, but exhibit decreased diameter of the dorsal aortae and form arteriovenous malformations distinctly different from the Notch1 gain of function mutants. Surprisingly, embryos homozygous for mutations of the ephrinB/EphB pathway genes Efnb2 and Ephb4 exhibit vascular defects and arteriovenous malformations that phenocopy the Notch1 gain of function mutants. These results suggest that formation of arteriovenous malformations in Notch1 gain of function mutants and ephrinB/EphB pathway loss of function mutant embryos occurs by different mechanisms. genesis 48:146–150, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Control of the growth and differentiation of neural stem cells is fundamental to brain development and is largely dependent on the Notch signaling pathway. The mechanism by which the activity of Notch is regulated during brain development has remained unclear, however. Fbxw7 (also known as Fbw7, SEL-10, hCdc4, or hAgo) is the F-box protein subunit of an Skp1-Cul1-F-box protein (SCF)-type ubiquitin ligase complex that plays a central role in the degradation of Notch family members. We now show that mice with brain-specific deletion of Fbxw7 (Nestin-Cre/Fbxw7(F/F) mice) die shortly after birth with morphological abnormalities of the brain and the absence of suckling behavior. The maintenance of neural stem cells was sustained in association with the accumulation of Notch1 and Notch3, as well as up-regulation of Notch target genes in the mutant mice. Astrogenesis was also enhanced in the mutant mice in vivo, and the differentiation of neural progenitor cells was skewed toward astrocytes rather than neurons in vitro, with the latter effect being reversed by treatment of the cells with a pharmacological inhibitor of the Notch signaling pathway. Our results thus implicate Fbxw7 as a key regulator of the maintenance and differentiation of neural stem cells in the brain.  相似文献   

5.
6.
7.
Periodic Delta-like 4 expression in developing retinal arteries   总被引:6,自引:0,他引:6  
During vascular development, Notch signalling plays important roles in cell-cell communication and cell fate decisions. We studied expression of Notch 1-4 and its ligand Delta-like 4 (Dll4) in the developing retinal vasculature. Dll4 mRNA is strongly expressed in endothelial cells at the very tips of growing vessels ('tip cells') and also in arteries, where it is expressed in a segmented 'tiger's tail' pattern. This implies that developing retinal arteries contain different types of endothelial cells, Dll4-positive and Dll4-negative. The Dll4-positive stripes do not correspond to any obvious morphological property of the vascular network but correlate to some extent with the distribution of platelet derived growth factor B (PDGF-B) mRNA. However, PDGF-B expression is neither as artery-specific nor as clearly segmented as Dll4. Possible target cells for Dll4 signalling are retinal astrocytes (Notch1 positive), arterial pericytes (Notch3 positive) or arterial endothelial cells themselves (Notch4 positive). However, there is no clear reciprocity of Notch and Dll4 expression that allows identification of the interacting cells. Nevertheless, Dll4 stripes are a novel property of immature arteries, the origin and function of which remain to be explained.  相似文献   

8.
9.
10.
11.
The human tumor suppressor Fbw7/hCdc4 functions as a phosphoepitope-specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination of cyclin E , Notch , c-Jun and c-Myc . Fbw7 loss in cancer may thus have profound effects on the pathways that govern cell division, differentiation, apoptosis, and cell growth. Fbw7-inactivating mutations occur in human tumor cell lines and primary cancers , and Fbw7 loss in cultured cells causes genetic instability . In mice, deletion of Fbw7 leads to embryonic lethality associated with defective Notch and cyclin E regulation . The human Fbw7 locus encodes three protein isoforms (Fbw7alpha, Fbw7beta, and Fbw7gamma) . We find that these isoforms occupy discrete subcellular compartments and have identified cis-acting localization signals within each isoform. Surprisingly, the Fbw7gamma isoform is nucleolar, colocalizes with c-Myc when the proteasome is inhibited, and regulates nucleolar c-Myc accumulation. Moreover, we find that knockdown of Fbw7 increases cell size consistent with its ability to control c-Myc levels in the nucleolus. We suggest that interactions between c-Myc and Fbw7gamma within the nucleolus regulate c-Myc's growth-promoting function and that c-Myc activation is likely to be an important oncogenic consequence of Fbw7 loss in cancers.  相似文献   

12.
Cyclosporin A (CSA) suppresses immune function by blocking the cyclophilin A and calcineurin/NFAT signaling pathways. In addition to immunosuppression, CSA has also been shown to have a wide range of effects in the cardiovascular system including disruption of heart valve development, smooth muscle cell proliferation, and angiogenesis inhibition. Circumstantial evidence has suggested that CSA might control Notch signaling which is also a potent regulator of cardiovascular function. Therefore, the goal of this project was to determine if CSA controls Notch and to dissect the molecular mechanism(s) by which CSA impacts cardiovascular homeostasis. We found that CSA blocked JAG1, but not Dll4 mediated Notch1 NICD cleavage in transfected 293T cells and decreased Notch signaling in zebrafish embryos. CSA suppression of Notch was linked to cyclophilin A but not calcineurin/NFAT inhibition since N-MeVal-4-CsA but not FK506 decreased Notch1 NICD cleavage. To examine the effect of CSA on vascular development and function, double transgenic Fli1-GFP/Gata1-RFP zebrafish embryos were treated with CSA and monitored for vasculogenesis, angiogenesis, and overall cardiovascular function. Vascular patterning was not obviously impacted by CSA treatment and contrary to the anti-angiogenic activity ascribed to CSA, angiogenic sprouting of ISV vessels was normal in CSA treated embryos. Most strikingly, CSA treated embryos exhibited a progressive decline in blood flow that was associated with eventual collapse of vascular luminal structures. Vascular collapse in zebrafish embryos was partially rescued by global Notch inhibition with DAPT suggesting that disruption of normal Notch signaling by CSA may be linked to vascular collapse. However, multiple signaling pathways likely cause the vascular collapse phenotype since both cyclophilin A and calcineurin/NFAT were required for normal vascular function. Collectively, these results show that CSA is a novel inhibitor of Notch signaling and vascular function in zebrafish embryos.  相似文献   

13.
Cullin-based ubiquitin ligases (E3s) constitute one of the largest E3 families. Fbxw8 (also known as Fbw6 or Fbx29) is an F-box protein that is assembled with Cul7 in an SCF-like E3 complex. Here we show that Cul7 forms a heterodimeric complex with Cul1 in a manner dependent on Fbxw8. We generated mice deficient in Fbxw8 and found that Cul7 did not associate with Cul1 in cells of these mice. Two-thirds of Fbxw8-/- embryos die in utero, whereas the remaining one-third are born alive and grow to adulthood. Fbxw8-/- embryos show intrauterine growth retardation and abnormal development of the placenta, characterized by both a reduced thickness of the spongiotrophoblast layer and abnormal vessel structure in the labyrinth layer. Although the placental phenotype of Fbxw8-/- mice resembles that of Cul7-/- mice, other abnormalities of Cul7-/- mice are not apparent in Fbxw8-/- mice. These results suggest that the Cul7-based SCF-like E3 complex has both Fbxw8-dependent and Fbxw8-independent functions.  相似文献   

14.

Background

In mouse embryos, homozygous or heterozygous deletions of the gene encoding the Notch ligand Dll4 result in early embryonic death due to major defects in endothelial remodeling in the yolk sac and embryo. Considering the close developmental relationship between endothelial and hematopoietic cell lineages, which share a common mesoderm-derived precursor, the hemangioblast, and many key regulatory molecules, we investigated whether Dll4 is also involved in the regulation of early embryonic hematopoiesis.

Methodology/Principal Findings

Using Embryoid Bodies (EBs) derived from embryonic stem cells harboring hetero- or homozygous Dll4 deletions, we observed that EBs from both genotypes exhibit an abnormal endothelial remodeling in the vascular sprouts that arise late during EB differentiation, indicating that this in vitro system recapitulates the angiogenic phenotype of Dll4 mutant embryos. However, analysis of EB development at early time points revealed that the absence of Dll4 delays the emergence of mesoderm and severely reduces the number of blast-colony forming cells (BL-CFCs), the in vitro counterpart of the hemangioblast, and of endothelial cells. Analysis of colony forming units (CFU) in EBs and yolk sacs from Dll4+/− and Dll4−/− embryos, showed that primitive erythropoiesis is specifically affected by Dll4 insufficiency. In Dll4 mutant EBs, smooth muscle cells (SMCs) were seemingly unaffected and cardiomyocyte differentiation was increased, indicating that SMC specification is Dll4-independent while a normal dose of this Notch ligand is essential for the quantitative regulation of cardiomyogenesis.

Conclusions/Significance

This study highlights a previously unnoticed role for Dll4 in the quantitative regulation of early hemato-vascular precursors, further indicating that it is also involved on the timely emergence of mesoderm in early embryogenesis.  相似文献   

15.
16.
17.
CCM3, a product of the cerebral cavernous malformation 3 or programmed cell death 10 gene (CCM3/PDCD10), is broadly expressed throughout development in both vertebrates and invertebrates. Increasing evidence indicates a crucial role of CCM3 in vascular development and in regulation of angiogenesis and apoptosis. Furthermore, loss of CCM3 causes inherited (familial) cerebral cavernous malformation (CCM), a common brain vascular anomaly involving aberrant angiogenesis. This study focused on signalling pathways underlying the angiogenic functions of CCM3. Silencing CCM3 by siRNA stimulated endothelial proliferation, migration and sprouting accompanied by significant downregulation of the core components of Notch signalling including DLL4, Notch4, HEY2 and HES1 and by activation of VEGF and Erk pathways. Treatment with recombinant DLL4 (rhDLL4) restored DLL4 expression and reversed CCM3‐silence‐mediated impairment of Notch signalling and reduced the ratio of VEGF‐R2 to VEGF‐R1 expression. Importantly, restoration of DLL4‐Notch signalling entirely rescued the hyper‐angiogenic phenotype induced by CCM3 silence. A concomitant loss of CCM3 and the core components of DLL4‐Notch signalling were also demonstrated in CCM3‐deficient endothelial cells derived from human CCM lesions (CCMEC) and in a CCM3 germline mutation carrier. This study defined DLL4 as a key downstream target of CCM3 in endothelial cells. CCM3/DLL4‐Notch pathway serves as an important signalling for endothelial angiogenesis and is potentially implicated in the pathomechanism of human CCMs.  相似文献   

18.
We previously demonstrated the essential role of the flt-1 gene in regulating the development of the cardiovascular system. While the inactivation of the flt-1 gene leads to a very severe disorganization of the vascular system, the primary defect at the cellular level was unknown. Here we report a surprising finding that it is an increase in the number of endothelial progenitors that leads to the vascular disorganization in flt-1(-/-) mice. At the early primitive streak stage (prior to the formation of blood islands), hemangioblasts are formed much more abundantly in flt-1(-/-) embryos. This increase is primarily due to an alteration in cell fate determination among mesenchymal cells, rather than to increased proliferation, migration or reduced apoptosis of flt-1(-/-) hemangioblasts. We further show that the increased population density of hemangioblasts is responsible for the observed vascular disorganization, based on the following observations: (1) both flt-1(-/-) and flt-1(+/+) endothelial cells formed normal vascular channels in chimaeric embryos; (2) wild-type endothelial cells formed abnormal vascular channels when their population density was significantly increased; and (3) in the absence of wild-type endothelial cells, flt-1(-/-) endothelial cells alone could form normal vascular channels when sufficiently diluted in a developing embryo. These results define the primary defect in flt-1(-/-) embryos at the cellular level and demonstrate the importance of population density of progenitor cells in pattern formation.  相似文献   

19.

Background

In the vascular system, Notch receptors and ligands are expressed mainly on arteries, with Delta-like 4 (Dll4) being the only ligand known to be expressed early during the development of arterial endothelial cells and capillaries. Dll4 null embryos die very early in development with severely reduced arterial calibre and lumen and loss of arterial cell identity.

Results

The current detailed analysis of these mutants shows that the arterial defect precedes the initiation of blood flow and that the arterial Dll4 -/- endothelial cells proliferate and migrate more actively. Dll4 -/- mutants reveal a defective basement membrane around the forming aorta and increased endothelial cell migration from the dorsal aorta to peripheral regions, which constitute the main causes of arterial lumen reduction in these embryos. The increased proliferation and migration of Dll4 -/- endothelial cells was found to coincide with increased expression of the receptors VEGFR-2 and Robo4 and with downregulation of the TGF-β accessory receptor Endoglin.

Conclusion

Together, these results strongly suggest that Notch signalling can increase arterial stability and calibre by decreasing the response of arterial endothelial cells to local gradients of pro-angiogenic factors like VEGF.  相似文献   

20.
Recent studies have begun to elucidate how the endothelial lineage is specified from the nascent mesoderm [1] and [2]. However, the molecular mechanisms which regulate this process remain largely unknown. We hypothesized that Notch signaling might play an important role in specifying endothelial progenitors from the mesoderm, given that this pathway acts as a bipotential cell-fate switch on equipotent progenitor populations in other settings [3] and [4]. We found that zebrafish embryos with decreased levels of Notch signaling exhibited a significant increase in the number of endothelial cells, whereas embryos with increased levels of Notch signaling displayed a reduced number of endothelial cells. Interestingly, there is a concomitant gain of endothelial cells and loss of erythrocytes in embryos with decreased Notch activity, without an effect on cell proliferation or apoptosis. Lineage-tracing analyses indicate that the ectopic endothelial cells in embryos with decreased Notch activity originate from mesodermal cells that normally produce erythrocyte progenitors. Taken together, our data suggest that Notch signaling negatively regulates the number of endothelial cells by limiting the number of endothelial progenitors within the mesoderm, probably functioning as a cell-fate switch between the endothelial and the hematopoietic lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号