共查询到20条相似文献,搜索用时 0 毫秒
1.
Merrit L. Quarum Joel D. Parker John F. W. Keana Eckard Weber 《Journal of neurochemistry》1990,54(4):1163-1168
The pharmacological specificity and the regional distribution of the N-methyl-D-aspartate receptor-associated 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801) binding sites in human postmortem brain tissue were determined by binding studies using (+)-[3H]MK-801. Scatchard analysis revealed a high-affinity (KD = 0.9 +/- 0.2 nM, Bmax = 499 +/- 33 fmol/mg of protein) and a low-affinity (KD = 3.6 +/- 0.9 nM, Bmax = 194 +/- 44 fmol/mg of protein) binding site. The high-affinity site showed a different regional distribution of receptor density (cortex greater than hippocampus greater than striatum) compared to the low-affinity binding site (cerebellum greater than brainstem). The rank order pharmacological specificity and stereoselectivity of the high-(cortex) and low-(cerebellar) affinity binding sites were identical. However, all compounds tested showed greater potency at the high-affinity site in cortex. The results indicate that (+)-[3H]MK-801 binding in human postmortem brain tissue shows pharmacological and regional specificity. 相似文献
2.
This study examined (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate [( 3H]MK801) binding to the N-methyl-D-aspartate (NMDA) receptor in membranes prepared from six regions of rat brain. Highest levels of binding were found in hippocampus and cortex, whereas much lower densities were found in brainstem and cerebellum. NMDA receptors in cerebellum exhibited a significantly lower affinity for [3H]MK801 than cortical NMDA receptors. To determine whether forebrain and hindbrain NMDA receptors were distinct, the actions of glutamate, NMDA, ibotenate, quinolinate, glycine, and spermine were investigated. These agents increased [3H]MK801 binding in all brain regions examined. However, agonists were uniformly less efficacious in hindbrain compared to forebrain regions. NMDA mimetics and spermine were less potent in cerebellum compared to cortex whereas glycine was equipotent. Antagonists that act at the various modulatory sites on the NMDA receptor were also examined. DL-Amino-phosphonopentanoic acid and 7-chlorokynurenate were approximately equipotent in cortex and cerebellum. However, antagonists that are believed to act inside the NMDA-operated ion channel, including Mg2+ and phencyclidine, were approximately threefold less potent in cerebellum. The diminished regulation of [3H]MK801 binding by glutamate and glycine in the cerebellum was associated with a smaller effect of these agonists on the dissociation of [3H]MK801 from its binding site. The levels of glutamate, aspartate, glycine, serine, and glutamine in the membrane preparations were determined. However, variations in the levels of endogenous amino acids were not sufficient to account for the regional differences in [3H]MK801 binding. These results do not support the hypothesis that a distinct NMDA receptor exists in hindbrian regions of the rat CNS.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
J. E. Steele T. N. Robinson A. J. Cross D. M. Bowen A. R. Green 《Journal of neurochemistry》1991,56(4):1248-1254
The binding of (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate ([3H]MK-801) and N-[1-(2-thienyl)cyclohexyl]-3,4-[3H]piperidine ([3H]TCP) to the N-methyl-D-aspartate (NMDA) receptor complex of human brain has been investigated. Significant differences were noted between the binding of the two ligands in the same tissue samples. Binding of both ligands was stimulated by addition of glutamic acid or glycine. However, addition of both compounds resulted in an additional effect with [3H]MK-801 but not [3H]TCP binding. Saturation analysis revealed approximately twice as many high-affinity sites for [3H]MK-801 (Bmax, 1,500 +/- 300 fmol/mg of protein) than for [3H]TCP (Bmax, 660 +/- 170 fmol/mg of protein). In addition, a low-affinity site was detected for [3H]MK-801 binding but not [3H]TCP binding. The pharmacology of the high-affinity [3H]MK-801 and [3H]TCP binding sites was similar with rank order of potency of inhibitors being MK801 greater than TCP greater than phencyclidine greater than N-allylnormetazocine (SKF 10047). 2-Amino-5-phosphonopentanoate inhibited binding of both ligands with comparable potency whereas both 7-chlorokynurenic acid and ZnCl2 were more potent inhibitors of [3H]MK-801 than of [3H]TCP binding. All compounds examined exhibited Hill coefficients of significantly less than unity. Saturation analysis performed in the striatum revealed that the number of binding sites was the same for both [3H]MK-801 (Bmax, 1,403 +/- 394 fmol/mg) and [3H]TCP (Bmax, 1,292 +/- 305 fmol/mg). Addition of glutamate or glycine stimulated striatal binding but there was no further increase on addition of both together.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Spermine and spermidine enhance the binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a, d]cyclohepten-5,10-imine ([3H]MK-801) to N-methyl-D-aspartate (NMDA) receptors in membranes prepared from rat brain. These polyamines also enhance binding of [3H]MK-801 to NMDA receptors that have been solubilized with deoxycholate. Other polyamines selectively antagonize this effect, a finding indicating that the polyamine recognition site retains pharmacological and structural specificity after solubilization. In the presence of spermidine, an increase in the affinity of the solubilized NMDA receptor for [3H]MK-801 is observed. However, the rates of both association and dissociation of [3H]MK-801 binding to solubilized NMDA receptors are accelerated when assays are carried out in the presence of spermidine. When kinetic data are transformed, pseudo-first-order association and first-order dissociation plots are nonlinear in the presence of spermidine, an observation indicating a complex binding mechanism. Effects of spermidine on solubilized NMDA receptors are similar to effects previously described in studies of membrane-bound receptors. The data indicate that polyamines interact with a specific recognition site that remains associated with other components of the NMDA receptor complex after detergent solubilization. 相似文献
5.
The binding of [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid ([3H]CPP), a rigid analogue of 2-amino-7-phosphonoheptanoic acid (AP7) and reported to be a selective N-methyl-D-aspartate (NMDA) antagonist, was studied in rat striatal membranes using a centrifugation procedure to separate bound and free radioligand. [3H]CPP bound with high affinity (KD = 272 nM) in a saturable, reversible, and protein concentration-dependent manner. Specific binding was suggested to involve a single class of noninteracting binding sites. The most potent [3H]CPP binding inhibitors tested were CPP, L-glutamate, 2-amino-5-phosphonovalerate, and AP7. NMDA, L-aspartate, and alpha-aminoadipate were also shown to be efficient in inhibiting the binding, whereas quisqualate, D,L-2-amino-4-phosphonobutyrate, kainate, L-glutamate diethylester, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid were found to be essentially inactive. These data are therefore consistent with the view that [3H]CPP selectively binds to NMDA receptors in the rat striatum. Lesions of intrastriatal neurons using local injections of kainic acid revealed a marked decrease in [3H]CPP binding, suggesting an almost exclusively postsynaptic location of binding sites in the striatum. Conversely, bilateral lesion of corticostriatal glutamatergic fibers resulted in an increased number of [3H]CPP striatal binding sites, providing evidence for a putative supersensitivity response to this striatal deafferentation. Interestingly, lesion of the nigrostriatal dopaminergic neurons using intranigral 6-hydroxydopamine injections resulted, 2-3 weeks later, in a similar increase in the number of [3H]CPP striatal binding sites.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
The receptor-ionophore complex of the N-methyl-D-aspartate (NMDA)-sensitive receptor was solubilized by deoxycholic acid from rat brain using (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne ([3H]MK-801) binding as a marker for the receptor. Gel filtration of the solubilized preparations on a Sephadex G-25 column revealed significant [3H]MK-801 binding sensitive to potentiation by glutamate and glutamate/glycine, which was prevented by competitive antagonists for the NMDA and strychnine-insensitive glycine (GlyB) sites. In contrast to NMDA and glycine, spermidine markedly potentiated the amount of [3H]MK-801 binding in solubilized preparations by increasing the apparent affinity of the ligand. In the presence of all three stimulants, the solubilized preparations exhibited pharmacological profiles similar to those in the membrane preparations. These results clearly indicate that the whole macromolecular NMDA receptor-ionophore complex is solubilized under the experimental conditions used. 相似文献
7.
Inhibition by Calmodulin Antagonists of [3 H]MK-801 Binding in Brain Synaptic Membranes 总被引:1,自引:0,他引:1
Kiyokazu Ogita Takeo Suzuki Zuo Pingping Yukio Yoneda 《Journal of neurochemistry》1992,59(3):1008-1016
In brain synaptic membranes not extensively washed, (+)-5-[3H]methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5, 10-imine ([3H]MK-801) binding was markedly inhibited in a concentration-dependent manner (at concentrations above 1 microM) by several compounds having antagonistic activity at the Ca(2+)-binding protein calmodulin. Scatchard analysis revealed that N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibited the binding through a significant decrease in the density of binding sites without affecting the affinity at 10 microM. In membranes extensively washed and treated with a low concentration of Triton X-100, L-glutamic acid (Glu) drastically accelerated the initial association rate of [3H]MK-801 binding with glycine (Gly), almost doubling the initial association rate found in the presence of Glu alone. The addition of W-7 invariably reduced the initial association rate observed in the presence of either Glu alone or both Glu and Gly, without significantly altering the dissociation rate of bound [3H]-MK-801, irrespective of the presence of the two stimulatory amino acids. The maximal potencies of Glu, Gly, and spermidine in potentiating the binding were all attenuated by W-7. These results suggest that calmodulin antagonists may interfere with opening processes of an ion channel associated with an N-methyl-D-aspartate-sensitive subclass of excitatory amino acid receptors in rat brain. 相似文献
8.
Endogenous divalent cations, such as Mg2+, Ca2+, and Zn2+, differentially affected the binding of (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne maleate ([3H]MK-801) to an ion channel associated with an N-methyl-D-aspartate-sensitive subclass of excitatory amino acid receptors in different preparations of brain synaptic membranes. Both Mg2+ and Ca2+ were weak inhibitors of the binding in membranes which had not been extensively washed (nonwashed membranes), over a concentration range effective in markedly potentiating the binding in the absence of any added stimulants in membranes which had been extensively washed, but not treated with a detergent (untreated membranes). In membranes extensively washed and treated with Triton X-100 (Triton-treated membranes), both cations significantly potentiated the binding in the presence of added glutamate alone. In contrast, Zn2+ was invariably active as a potent inhibitor of the binding irrespective of the membrane preparations used. In untreated membranes, Ca2+ markedly accelerated the initial association rate of [3H]MK-801 binding without affecting the binding at equilibrium in a manner similar to that found with glycine, as well as with glutamate; Mg2+, however, facilitated the initial association rate with a concomitant reduction of the binding at equilibrium. Zn2+ was effective in accelerating the initial rapid phase of association, with the initial slow phase being delayed, and in markedly reducing the binding at equilibrium. Both Mg2+ and Ca2+ also facilitated dissociation of the bound [3H]MK-801 and Zn2+ slowed the dissociation in untreated membranes.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
9.
Frank Th. M. van Amsterdam Alessandra Giberti Manolo Mugnaini Emiliangelo Ratti 《Journal of neurochemistry》1992,59(5):1850-1855
Binding of 3-[(+-)-2-carboxypiperazin-4-yl][3H]-propyl-1-phosphonic acid ([3H]CPP), a competitive inhibitor of N-methyl-D-aspartate (NMDA), has been studied in synaptic plasma membranes from rat cerebral cortex. Computer analysis of saturation and homologous displacement isotherms deriving from these plasma membranes indicated the existence of two binding sites: a specific, saturable, high-affinity binding site with a pKD value of 7.53 +/- 0.03 (29.5 nM) and a maximum binding value (Bmax) of 2.25 +/- 0.36 pmol/mg of protein, and a low-affinity site with a KD of approximately 600 nM and a Bmax of 7.0 pmol/mg of protein. It is argued that, in the light of current literature evidence, the low-affinity binding site may represent an agonist-dependent receptor, linked to physiological processes such as neurotransmitter release and channel regulation, whereas the high-affinity binding site may be linked to an antagonist-preferred receptor, for which no function has yet been reported. 相似文献
10.
A. W. Procter† E. H. F. Wjong‡ G. C Stratmann S. L. Lowe D. M. Bowen 《Journal of neurochemistry》1989,53(3):698-704
The novel N-methyl-D-aspartate receptor channel ligand (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5, 10-imine maleate ([3H]MK-801) has been utilized to label this receptor in human brain tissue. Characteristics of [3H]MK-801 binding to well-washed membranes from 17 control subjects and 16 patients with Alzheimer's disease were determined in frontal, parietal, and temporal cerebral cortex and cerebellar cortex. In control tissue the pharmacological specificity of the binding of this substance is entirely consistent with the profile previously reported for rat brain. Binding could be stimulated by the addition of glutamic acid to the incubation medium; addition of glycine produced further enhancement which was not prevented by strychnine. The specificity of the effects of these and other amino acids on the binding was the same as in the rat. In Alzheimer's disease significantly less binding was observed in the frontal cortex under glutamate- and glycine-stimulated conditions. This appears to be associated with a reduced affinity of the site whereas the pharmacological specificity of the site remained unchanged. The effect did not appear to be due to differences in mode of death between Alzheimer's disease and control subjects and is unlikely to be related to factors for which the groups were matched. In contrast, binding was not altered in the absence of added amino acids and presence of glutamate alone. These results imply that in the cerebral cortex the agonist site and a site in the cation channel of the receptor are not selectively altered, but that their coupling to a strychnine-insensitive glycine recognition site is impaired. 相似文献
11.
Cooperative Modulation of [3 H]MK-801 Binding to the N-Methyl-d-Aspartate Receptor-Ion Channel Complex by l-Glutamate, Glycine, and Polyamines 总被引:8,自引:1,他引:8
In extensively washed rat cortical membranes [3H](+)-5-methyl-10,11-dihydro-5 H-dibenzo [a,d]cyclohepten-5,10-imine ([3H]MK-801) labeled a homogeneous set of sites (Bmax = 1.86 pmol/mg protein) with relatively low affinity (KD = 45 nM). L-Glutamate, glycine, and spermidine produced concentration-dependent increases in specific [3H]MK-801 binding due to a reduction in the KD of the radioligand. In the presence of high concentrations of L-glutamate, glycine, or spermidine, the KD values for [3H]MK-801 were reduced to 11 nM, 18 nM, and 15 nM, respectively. Maximally effective concentrations of combinations of the three compounds further increased [3H]MK-801 binding affinity as follows: L-glutamate + glycine, KD = 6.2 nM; L-glutamate + spermidine, KD = 2.2 nM; glycine + spermidine, KD = 8.3 nM. High concentrations of spermidine did not inhibit either [3H]glycine orf [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid binding to the N-methyl-D-aspartate (NMDA) receptor complex. The concentration of L-glutamate required to produce half-maximal enhancement (EC50) of [3H]MK-801 binding was reduced from 218 nM to 52 nM in the presence of 30 microM glycine and to 41 nM in the presence of 50 microM spermidine. The EC50 value for glycine enhancement of [3H]MK-801 binding was 184 nM. This was lowered to 47 nM in the presence of L-glutamate and to 59 nM in the presence of spermidine. Spermidine enhanced [3H]MK-801 binding with an EC50 value of 19.4 microM which was significantly reduced by high concentrations of L-glutamate (EC50 = 3.9 microM) or glycine (EC50 = 6.2 microM).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
[3H]MK-801 binding was used as an index of the glutamate receptor N-methyl-D-aspartate-subtype channel to examine the influence of gender, age, mode of death (agonal status), interval between death and autopsy (postmortem delay), and time in storage at -70 degrees C in well washed homogenate preparations from postmortem human frontal cortex. Basal binding and the modulatory effects of glutamate, glycine, spermidine, and zinc were examined with respect to these variables. Basal binding was sensitive to agonal status, being higher in sudden death cases. The effect of added glutamate and glycine was sensitive to age, with a trend toward lower binding with increasing age. The effect of added spermidine alone was sensitive to storage time at -70 degrees C, the binding being higher with longer storage time. The effect of added zinc was also sensitive to postmortem delay, with zinc causing a greater reduction in binding with shorter postmortem delays. Thus, with the exception of gender, all variables examined influenced [3H]MK-801 binding, highlighting the attention that should be given to these factors in postmortem studies in normal and diseased human subjects. 相似文献
13.
[3 H]MK-801 Labels a Site on the N-Methyl-D-Aspartate Receptor Channel Complex in Rat Brain Membranes 总被引:4,自引:0,他引:4
The potent noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist [3H]MK-801 bound with nanomolar affinity to rat brain membranes in a reversible, saturable, and stereospecific manner. The affinity of [3H]MK-801 was considerably higher in 5 mM Tris-HCl (pH 7.4) than in previous studies using Krebs-Henseleit buffer. [3H]MK-801 labels a homogeneous population of sites in rat cerebral cortical membranes with KD of 6.3 nM and Bmax of 2.37 pmol/mg of protein. This binding was unevenly distributed among brain regions, with hippocampus greater than cortex greater than olfactory bulb = striatum greater than medulla-pons, and the cerebellum failing to show significant binding. Detailed pharmacological characterization indicated [3H]MK-801 binding to a site which was competitively and potently inhibited by known noncompetitive NMDA receptor antagonists, such as phencyclidine, thienylcyclohexylpiperidine (TCP), ketamine, N-allylnormetazocine (SKF 10,047), cyclazocine, and etoxadrol, a specificity similar to sites labelled by [3H]TCP. These sites were distinct from the high-affinity sites labelled by the sigma receptor ligand (+)-[3H]SKF 10,047. [3H]MK-801 binding was allosterically modulated by the endogenous NMDA receptor antagonist Mg2+ and by other active divalent cations. These data suggest that [3H]MK-801 labels a high-affinity site on the NMDA receptor channel complex, distinct from the NMDA recognition site, which is responsible for the blocking action of MK-801 and other noncompetitive NMDA receptor antagonists. 相似文献
14.
Haruaki Ninomiya Reiko Fukunaga Takashi Taniguchi Motohatsu Fujiwara Shun Shimohama Masakuni Kameyama 《Journal of neurochemistry》1990,54(2):526-532
We studied [3H]N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine [( 3H]TCP) binding to human frontal cortex obtained at autopsy from 10 histologically normal controls and eight histopathologically verified cases with Alzheimer-type dementia (ATD). Extensively washed membrane preparations were used to minimize the effects of endogenous substances. In ATD frontal cortex, the total concentration (Bmax) of [3H]TCP binding sites was significantly reduced by 40-50%. The apparent dissociation constant (KD) values showed no significant change. The reduction in binding capacity was also apparent in Triton X-100-treated membrane preparations, and there was a linear correlation between the number of [3H]TCP binding sites and that of N-methyl-D-aspartate (NMDA)-sensitive [3H]glutamate binding sites. [3H]TCP binding sites spared in ATD brains retained the affinity for the ligand and the reactivity to NMDA, L-glutamate, and glycine. These results suggest that the primary change in NMDA receptor-ion channel complex in ATD brains is the reduction of its number, possibly reflecting the loss of neurons bearing these receptor complexes, and that the functional linkage within the receptor complexes spared in ATD brains remains normal. 相似文献
15.
Jang-Ho J. Cha J. Timothy Greenamyre Elsebet Ø. Nielsen John B. Penney Anne B. Young 《Journal of neurochemistry》1988,51(2):469-478
Quisqualate, a glutamate analogue, displaced L-[3H]glutamate binding in a biphasic manner, corresponding to "high-affinity" and "low-affinity" binding sites. High-affinity quisqualate sites were termed "quisqualate-sensitive L-[3H]glutamate" binding sites. Quisqualate-sensitive L-[3H]glutamate binding was regionally distributed, with the highest levels present in the cerebellar molecular layer. This binding was stimulated by millimolar concentrations of chloride and calcium. The stimulatory effects of calcium required the presence of chloride ions, whereas chloride's stimulatory effects did not require calcium. All of the L-[3H]glutamate binding stimulated by chloride/calcium was quisqualate sensitive and only weakly displaced by N-methyl-D-aspartate, L-aspartate, or kainate. At high concentrations (1 mM), the anion blockers 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid both reduced, by 41 and 43%, respectively, the stimulatory effects of chloride. At concentrations of 100 microM, kynurenate, L-aspartate, (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and L-2-amino-4-phosphonobutyric acid (L-APB) failed to displace quisqualate-sensitive L-[3H]glutamate binding in the cerebellar molecular layer. In the presence of KSCN, however, 100 microM AMPA displaced 44% of binding. Quisqualate-sensitive L-[3H]glutamate binding was not sensitive to freezing, and, in contrast to other chloride- and calcium-dependent L-[3H]glutamate binding sites that have been reported, quisqualate-sensitive binding observed by autoradiography was enhanced at 4 degrees C compared with 37 degrees C. Quisqualate-sensitive L-[3H]glutamate binding likely represents binding to the subclass of postsynaptic neuronal glutamate receptors known as quisqualate receptors, rather than binding to previously described APB receptors, chloride-driven sequestration into vesicles, or binding to astrocytic membrane binding sites. 相似文献
16.
Joseph B. Monihan Valerie M. Corpus William F. Hood John W. Thomas Robert P. Compton 《Journal of neurochemistry》1989,53(2):370-375
A [3H]glycine recognition site in rat brain synaptic plasma membranes (SPM) has been identified, having characteristics expected of a modulatory component of the N-methyl-D-aspartate receptor complex. Incubation of SPM with [3H]glycine for 10 min at 2 degrees C results in saturable, reversible binding with a KD of 0.234 microM and a Bmax of 9.18 pmol/mg. A pharmacological analysis of this binding site indicates that D-serine (Ki = 0.27 microM), D-alanine (Ki = 1.02 microM), and D-cycloserine (Ki = 2.33 microM) are potent inhibitors of binding, whereas the corresponding L isomers have significantly less activity (Ki = 25.4 microM, 15.9 microM, and greater than 100 microM, respectively). Inactive at concentrations of up to 100 microM were strychnine, L-valine, N,N-dimethylglycine, aminomethylphosphonate, and aminomethylsulfonate. The active compounds were analyzed further for their ability to stimulate [3H]1-[1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) binding to Triton X-100-washed SPM. Results indicate that the affinity of the compounds for the [3H]glycine recognition site correlates with the ability of these analogues to stimulate [3H]TCP binding. 相似文献
17.
Paul L. Wood Mark R. Emmett Tadimeti S. Rao Steve Mick Julie Cler Smriti Iyengar 《Journal of neurochemistry》1989,53(3):979-981
Direct intracerebellar injections of N-methyl-D-aspartate (NMDA) or D-serine elicited dose-dependent increases in cerebellar cyclic GMP levels, in vivo in the mouse. The actions of D-serine were antagonized by the competitive NMDA receptor antagonist 3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic acid and by the phencyclidine receptor agonist MK-801, observations supporting actions at the NMDA-coupled glycine receptor. In addition, the actions of D-serine were antagonized by a partial agonist (D-cycloserine) and an antagonist (HA-966) of the NMDA-coupled glycine receptor. These data are all consistent with D-serine acting at the NMDA-coupled glycine receptor and represent the first demonstration of glycine receptor potentiation of ongoing NMDA-mediated neuronal activity in the CNS, rather than potentiation of exogenous NMDA. 相似文献
18.
Abstract: Spermine and other polyamines both stimulate and inhibit N -methyl- d -aspartate receptor function, probably by interacting with two separate sites. To characterize these two actions, the effect of spermine on the binding kinetics of the channel blocker [3 H]dizocilpine was studied in the presence of glutamate and glycine. Low concentrations (10 µ M ) of spermine increased the association and dissociation rates without modifying equilibrium binding, indicating that spermine increases the accessibility of [3 H]dizocilpine to the channel by interacting with a high-affinity, stimulatory site. At higher concentrations (1 m M ), spermine markedly decreased equilibrium [3 H]-dizocilpine binding by decreasing both affinity and B max , indicating that spermine allosterically inhibits binding by interacting with a second, low-affinity site. The presumed polyamine antagonists arcaine, diethylenetriamine, and 1,10-diaminodecane completely inhibited equilibrium [3 H]dizocilpine binding, probably by interacting with the inhibitory polyamine site or other sites, but not with the stimulatory polyamine site. Low concentrations (10 µ M ) of ifenprodil completely reversed the increase in association rate produced by spermine, whereas higher concentrations (IC50 = 123 µ M ) inhibited equilibrium binding, indicating that ifenprodil is both a potent antagonist of the stimulatory site and a low-affinity ligand of the inhibitory site. The polyamine agonists spermine, spermidine, and neomycin interacted with the inhibitory site, but produced only partial inhibition of equilibrium [3 H]dizocilpine binding. 相似文献
19.
Metaphit (1-[1-(3-isothiocyanatophenyl)cyclohexyl]-piperidine), a derivative of phencyclidine that contains an isothiocyanate group on the meta position of the aromatic ring, resembles its parent compound (phencyclidine) in its ability to inhibit the binding of the stimulant drug [3H]threo-(+/-)-methylphenidate to crude synaptosomal membranes from rat striatal tissue (IC50 = 1.4 and 6.2 microM for phencyclidine and Metaphit, respectively). Unlike phencyclidine, however, Metaphit appears to inhibit binding of the radiolabeled stimulant in an irreversible manner, as the degree of inhibition of binding of the stimulant does not diminish when the Metaphit-treated tissue is subjected to repeated washings before determination of the binding of [3H]threo-(+/-)-methylphenidate. This finding suggests that Metaphit may be a useful tool in the study of the molecular basis of stimulant action. 相似文献
20.
Makoto Shuto Kiyokazu Ogita Takao Minami Hiroko Maeda Yukio Yoneda 《Journal of neurochemistry》1997,69(2):744-752
Abstract: The addition of sodium nitroprusside (SNP) significantly inhibited binding of (+)-5-[3 H]methyl-10,11-dihydro-5 H -dibenzo[ a,d ]cyclohepten-5,10-imine ([3 H]MK-801) to an ion channel associated with the N -methyl- d -aspartate (NMDA) receptor in a concentration-dependent manner at concentrations of >1 µ M in rat brain synaptic membranes not extensively washed. However, neither S -nitroso- N -acetylpenicillamine nor S -nitroso- l -glutathione inhibited binding even at 100 µ M . Of the two compounds structurally related to SNP (II), similarly potent inhibition was induced by potassium ferrocyanide (II) but not by potassium ferricyanide (III). In addition, ferrous chloride (II) induced much more potent inhibition of binding than ferric chloride (III), at a similar concentration range. In contrast, iron chelators prevented the inhibition by ferrous chloride (II) without markedly affecting that by SNP (II) and potassium ferrocyanide (II). Pretreatment with ferrous chloride (II) also led to potent inhibition of [3 H]MK-801 binding in a manner insensitive to subsequent addition of the iron chelators. Pretreatment with Triton X-100 resulted in significant potentiation of the ability of ferrous chloride (II) to inhibit [3 H]MK-801 binding irrespective of the addition of agonists, moreover, although binding of other radioligands to the non-NMDA receptors was unaltered after pretreatment first with Triton X-100 and then with ferrous chloride (II). These results suggest that ferrous ions (II) may interfere selectively with opening processes of the NMDA channel through mechanisms entirely different from those underlying the inhibition by both SNP (II) and potassium ferrocyanide (II) in rat brain. 相似文献