共查询到20条相似文献,搜索用时 15 毫秒
1.
Bicarbonate-dependent production and methanogenic consumption of acetate in anoxic paddy soil 总被引:7,自引:0,他引:7
Abstract Acetate turnover was measured in slurries of anoxic methanogenic paddy soil after addition of carrier-free [2-14 C]-acetate. Acetate concentrations stayed fairly constant for about 1–2 days indicating steady state between production and consumption reactions. Depending on the experiment, acetate concentrations were between 100 and 3000 μM. Turnover rates were determined from the logarithmic decrease of [2-14 C]-acetate or from the accumulation of acetate in the presence of chloroform resulting in similar values, i.e. 12–13 nmol h−1 g−1 d.w. soil at 17°C and 36–88 nmol h−1 g−1 d.w. at 30°C. Acetate consumption was completely inhibited by chloroform. The respiratory index (RI) was < 0.27. Hence, acetate was apparently consumed by methanogenic bacteria. About 80–90% of the CH4 produced originated from the methyl group of acetate. The role of homoacetogenesis for acetate production was studied by measuring the incorporation of radioactive bicarbonate into acetate. In different experiments, CO2 incorporation accounted for fractions of 1–60% of the acetate produced, about 10% being the most likely value for steady-state conditions. The fraction increased at high H2 concentrations and decreased at high acetate concentrations. The rate of H2 production that was required for chemolithotrophic acetate production from CO2 was two orders of magnitude higher than the actually measured rate. Hence, most of the CO2 incorporation into acetate was caused by electron donors other than H2 (e.g., carbohydrates) and/or by exchange reactions. 相似文献
2.
We constructed two mesophilic anaerobic chemostats that were continuously fed with synthetic wastewater containing butyrate
as the sole source of carbon and energy. Steady-state conditions were achieved at dilution rates between 0.025 and 0.7 day−1. Butyrate, fed into the chemostat, was almost completely mineralized to CH4 and CO2 at dilution rates below 0.5 day−1. The butyrate-degrading methanogenic communities in the chemostats at dilution rates between 0.025 and 0.7 day−1 were monitored based on the 16S rRNA gene, using molecular biological techniques including clone library analysis, denaturing
gradient gel electrophoresis, and quantitative real-time polymerase chain reaction. The aceticlastic methanogen Methanosaeta and the hydrogenotrophic methanogen Methanoculleus dominated in methanogens at low dilution rates, whereas the aceticlastic methanogen Methanosaeta, Methanosarcina, the hydrogenotrophic methanogen Methanoculleus, and Methanospirillum dominated at high dilution rates. Bacteria affiliated with the family Syntrophaceae in the phylum Proteobacteria predominated at the low dilution rate of 0.025 day−1, whereas bacteria affiliated with the phylum Firmicutes and Candidate division OP3 predominated at high dilution rates. A significant quantity of bacteria closely related to the
genus Syntrophomonas was detected at high dilution rates. Dilution rate showed an apparent effect on archaeal and bacterial communities in the
butyrate-fed chemostats. 相似文献
3.
Soil microorganisms mediate many processes such as nitrification, denitrification, and methanogenesis that regulate ecosystem functioning and also feed back to influence atmospheric chemistry. These processes are of particular interest in freshwater wetland ecosystems where nutrient cycling is highly responsive to fluctuating hydrology and nutrients and soil gas releases may be sensitive to climate warming. In this review we briefly summarize research from process and taxonomic approaches to the study of wetland biogeochemistry and microbial ecology, and highlight areas where further research is needed to increase our mechanistic understanding of wetland system functioning. Research in wetland biogeochemistry has most often been focused on processes (e.g., methanogenesis), and less often on microbial communities or on populations of specific microorganisms of interest. Research on process has focused on controls over, and rates of, denitrification, methanogenesis, and methanotrophy. There has been some work on sulfate and iron transformations and wetland enzyme activities. Work to date indicates an important process level role for hydrology and soil nutrient status. The impact of plant species composition on processes is potentially critical, but is as yet poorly understood. Research on microbial communities in wetland soils has primarily focused on bacteria responsible for methanogenesis, denitrification, and sulfate reduction. There has been less work on taxonomic groups such as those responsible for nitrogen fixation, or aerobic processes such as nitrification. Work on general community composition and on wetland mycorrhizal fungi is particularly sparse. The general goal of microbial research has been to understand how microbial groups respond to the environment. There has been relatively little work done on the interactions among environmental controls over process rates, environmental constraints on microbial activities and community composition, and changes in processes at the ecosystem level. Finding ways to link process-based and biochemical or gene-based assays is becoming increasingly important as we seek a mechanistic understanding of the response of wetland ecosystems to current and future anthropogenic perturbations. We discuss the potential of new approaches, and highlight areas for further research. 相似文献
4.
5.
Characterisation of the microbial diversity in a pig manure storage pit using small subunit rDNA sequence analysis 总被引:1,自引:0,他引:1
The microbial community structure of pig manure slurry (PMS) was determined with comparative analysis of 202 bacterial, 44 archaeal and 33 eukaryotic small subunit (SSU) rDNA partial sequences. Based on a criterion of 97% of sequence similarity, the phylogenetic analyses revealed a total of 108, eight and five phylotypes for the Bacteria, Archaea and Eukarya lineages, respectively. Only 36% of the bacterial phylotypes were closely related (>or=97% similarity) to any previously known sequence in databases. The bacterial groups most often represented in terms of phylotype and clone abundance were the Eubacterium (22% of total sequences), the Clostridium (15% of sequences), the Bacillus-Lactobacillus-Streptococcus subdivision (20% of sequences), theMycoplasma and relatives (10% of sequences) and the Flexibacter-Cytophaga-Bacteroides (20% of sequences). The global microbial community structure and phylotype diversity show a close relationship to the pig gastrointestinal tract ecosystem whereas phylotypes from the Acholeplasma-Anaeroplasma and the Clostridium purinolyticum groups appear to be better represented in manure. Archaeal diversity was dominated by three phylotypes clustering with a group of uncultured microorganisms of unknown activity and only distantly related to the Thermoplasmales and relatives. Other Archaea were methanogenic H2/CO2 utilisers. No known acetoclastic Archaea methanogen was found. Eukaryotic diversity was represented by a pluricellular nematode, two Alveolata, a Blastocystis and an Entamoebidae. Manure slurry physico-chemical characteristics were analysed. Possible inhibitory effects of acetate, sulphide and ammonia concentrations on the microbial anaerobic ecosystem are discussed. 相似文献
6.
We present a paper that combines empirical and theoretical research about the trophic organization of biological communities. Some regularities are observed in the analysis of the relationship between the trophic structure (how the species are distributed among a set of feeding groups) of a number of African large mammal communities and the type of ecosystem. Different types of ecosystems are characterized by specific patterns in the trophic structure of the mammal community. In order to explain the origin of these patterns, we propose a model defining the underlying dynamic of mammal-dominated ecosystems. The main aim of this study is to show that it is possible to obtain a dynamic explanation of those patterns. The model is shown to spontaneously define different types of structures in community organization, related to those observed. We propose a model that could help to explain the correlation between different environmental factors and the abundance or diversity of herbivores, and which establishes a general mechanism that makes it possible to understand how some rules constrain the assembly of the communities. In addition, the proposed model leads us to see how biological communities can operate in an integrated way, which allows for the acceptance of their changes on large time-scales as evolutionary. In summary, we suggest that communities are unitary structures with coherent properties that result from the self-organizing dynamic of the whole system. 相似文献
7.
Jan Dolfing 《FEMS microbiology letters》1992,101(3):183-187
Abstract In the dense microbial aggregates usually found in methanogenic waste water treatment systems, hydrogen has to diffuse from producers to consumers at considerable rates. The ensuing hydrogen gradients dissipate part of the potential energy that would otherwise be available to the hydrogen-consuming organisms. The present paper evaluates the energetic consequences of this phenomenon. 相似文献
8.
Application of biocathode in microbial fuel cells: cell performance and microbial community 总被引:2,自引:0,他引:2
Chen GW Choi SJ Lee TH Lee GY Cha JH Kim CW 《Applied microbiology and biotechnology》2008,79(3):379-388
Instead of the utilization of artificial redox mediators or other catalysts, a biocathode has been applied in a two-chamber microbial fuel cell in this study, and the cell performance and microbial community were analyzed. After a 2-month startup, the microorganisms of each compartment in microbial fuel cell were well developed, and the output of microbial fuel cell increased and became stable gradually, in terms of electricity generation. At 20 ml/min flow rate of the cathodic influent, the maximum power density reached 19.53 W/m3, while the corresponding current and cell voltage were 15.36 mA and 223 mV at an external resistor of 14.9 Omega, respectively. With the development of microorganisms in both compartments, the internal resistance decreased from initial 40.2 to 14.0 Omega, too. Microbial community analysis demonstrated that five major groups of the clones were categorized among those 26 clone types derived from the cathode microorganisms. Betaproteobacteria was the most abundant division with 50.0% (37 of 74) of the sequenced clones in the cathode compartment, followed by 21.6% (16 of 74) Bacteroidetes, 9.5% (7 of 74) Alphaproteobacteria, 8.1% (6 of 74) Chlorobi, 4.1% (3 of 74) Deltaproteobacteria, 4.1% (3 of 74) Actinobacteria, and 2.6% (2 of 74) Gammaproteobacteria. 相似文献
9.
SDS and Triton X-100 added at their critical micelle concentrations (CMCs), increased phenanthrene solubility in the presence of sediments and inhibited phenanthrene biodegradation. Triton X-100 caused more inhibition than SDS. 16S rDNA analyses revealed that both surfactants changed the microbial communities of phenanthrene-degrading cultures. Further, after the surfactant additions, parts of the microbial populations were not detected and methane production decreased. Surfactant applications, necessary to achieve actual CMCs, alter microbial community structure and diminish methanogenic activity under anaerobic conditions. We propose that this change may be related to the inhibitory effects of SDS and Triton X-100 on phenanthrene biodegradation under methanogenic conditions. 相似文献
10.
皮肤作为人体最大的器官,上面定居着各种各样的微生物,它们大部分是无害的,甚至对人体有益。皮肤表面的生态环境因不同的表面特征和外部因素而呈现不同的格局,使得分布于皮肤上的微生物群落出现差异。分子生物学技术的发展使研究皮肤表面微生物群落的高度多样性和多变性成为可能,而且可从生态系统角度去理解和认识皮肤微生物。本文就皮肤微生物群落的主要特点、微生物群落与疾病的联系及其具体应用等方面作一综述。 相似文献
11.
12.
Electricity generation and microbial community changes in microbial fuel cells packed with different anodic materials 总被引:3,自引:0,他引:3
Four materials, carbon felt cube (CFC), granular graphite (GG), granular activated carbon (GAC) and granular semicoke (GS) were tested as packed anodic materials to seek a potentially practical material for microbial fuel cells (MFCs). The microbial community and its correlation with the electricity generation performance of MFCs were explored. The maximum power density was found in GAC, followed by CFC, GG and GS. In GAC and CFC packed MFCs, Geobacter was the dominating genus, while Azospira was the most populous group in GG. Results further indicated that GAC was the most favorable for Geobacter adherence and growth, and the maximum power densities had positive correlation with the total biomass and the relative abundance of Geobacter, but without apparent correlation with the microbial diversity. Due to the low content of Geobacter in GS, power generated in this system may be attributed to other microorganisms such as Synergistes, Bacteroidetes and Castellaniella. 相似文献
13.
Victor M. Gámez Reyes Sierra-Alvarez Rebecca J. Waltz James A. Field 《Biodegradation》2009,20(4):499-510
Citrate is an important component of metal processing effluents such as chemical mechanical planarization wastewaters of the
semiconductor industry. Citrate can serve as an electron donor for sulfate reduction applied to promote the removal of metals,
and it can also potentially be used by methanogens that coexist in anaerobic biofilms. The objective of this study was to
evaluate the degradation of citrate with sulfate-reducing and methanogenic biofilms. During batch bioassays, the citrate,
acetate, methane and sulfide concentrations were monitored. The results indicate that independent of the biofilm or incubation
conditions used, citrate was rapidly fermented with specific rates ranging from 566 to 720 mg chemical oxygen demand (COD)
consumed per gram volatile suspended solids per day. Acetate was found to be the main fermentation product of citrate degradation,
which was later degraded completely under either methanogenic or sulfate reducing conditions. However, if either sulfate reduction
or methanogenesis was infeasible due to specific inhibitors (2-bromoethane sulfonate), absence of sulfate or lack of adequate
microorganisms in the biofilm, acetate accumulated to levels accounting for 90–100% of the citrate-COD consumed. Based on
carbon balances measured in phosphate buffered bioassays, acetate, CO2 and hydrogen are the main products of citrate fermentation, with a molar ratio of 2:2:1 per mol of citrate, respectively.
In bicarbonate buffered bioassays, acetogenesis of H2 and CO2 increased the yield of acetate. The results taken as a whole suggest that in anaerobic biofilm systems, citrate is metabolized
via the formation of acetate as the main metabolic intermediate prior to methanogenesis or sulfate reduction. Sulfate reducing
consortia must be enriched to utilize acetate as an electron donor in order to utilize the majority of the electron-equivalents
in citrate. 相似文献
14.
Effects of an electric field and zero valent iron on anaerobic treatment of azo dye wastewater and microbial community structures 总被引:2,自引:0,他引:2
A zero valent iron (ZVI) bed with a pair of electrodes was packed in an anaerobic reactor aiming at enhancing treatment of azo dye wastewater. The experiments were carried out in three reactors operated in parallel: an electric field enhanced ZVI-anaerobic reactor (R1), a ZVI-anaerobic reactor (R2) and a common anaerobic reactor (R3). R1 presented the highest performance in removal of COD and color. Raising voltage in R1 further improved its performance. Scanning electron microscopy images displayed that the structure of granular sludge from R1 was intact after being fed with the high dye concentration, while that of R3 was broken. Fluorescence in situ hybridization analysis indicated that the abundance of methanogens in R1 was significantly greater than that in the other two reactors. Denaturing gradient gel electrophoresis showed that the coupling of electric field and ZVI increased the diversity of microbial community and especially enhanced bacterial strains responsible for decolorization. 相似文献
15.
16.
Trophic interactions within the microbial food web in the South China Sea revealed by size-fractionation method 总被引:2,自引:0,他引:2
Bingzhang Chen Zongling Wang 《Journal of experimental marine biology and ecology》2009,368(1):59-1223
To define nanoflagellate-bacteria interactions and potential trophic levels within the microbial food web in the oligotrophic South China Sea, we conducted fourteen size-fractionation experiments in which seawater was filtered through 1, 2, 5, 10, 20, 60, and 200 μm membranes or meshes and the growth of four groups of picoplankton, Prochlorococcus, Synechococcus, high DNA heterotrophic bacteria, and low DNA heterotrophic bacteria were monitored in each filtrate after 24 hours of incubation. Removing grazers by filtration would relieve the grazing pressure on lower trophic levels which finally influenced the net growth rates of picoplankton. The growth patterns of Prochlorococcus and Synechococcus were similar, with higher growth rates in the < 1 μm or < 2 μm treatments, a second peak in the < 10 μm treatments and often a third peak in the < 200 μm treatments. The net growth rates of low DNA heterotrophic bacteria were little influenced by size-fractionation. Due to a subgroup of high DNA heterotrophic bacteria with larger size and higher DNA content which appeared to resist the grazing by < 5 μm nanoflagellates, the net growth rates of high DNA heterotrophic bacteria were higher in the < 2 μm or < 5 μm treatments with a second peak in the < 60 μm treatments. A general pattern of five potential trophic levels (< 2 μm, 2-5 μm, 5-10 μm, 10-60 μm, 60-200 μm) was revealed combining all the experiments, confirming the existence of multiple trophic levels within the microbial food web in the oligotrophic South China Sea. 相似文献
17.
In this study a microbial community suitable for anaerobic digestion of carrot pomace was developed from inocula obtained from natural environmental sources. The changes along the process were monitored using pyrosequencing of the 16S rRNA gene. As the community adapted from a diverse natural community to a community with a definite function, diversity decreased drastically. Major bacterial groups remaining after enrichment were Bacilli (31-45.3%), Porphyromonadaceae (12.1-24.8%) and Spirochaetes (12.5-18.5%). The archaeal population was even less diverse and mainly represented by a single OTU that was 99.7% similar to Methanosarcina mazei. One enrichment which failed to produce large amounts of methane had shifts in the bacterial populations and loss of methanogenic archaea. 相似文献
18.
19.
Vinten AJ Artz RR Thomas N Potts JM Avery L Langan SJ Watson H Cook Y Taylor C Abel C Reid E Singh BK 《Journal of microbiological methods》2011,85(3):190-198
We investigated a range of microbiological community assays performed on scrapes of biofilms formed on artificial diffusing substrates deployed in 8 streams in eastern Scotland, with a view to using them to characterize ecological response to stream water quality. The assays considered were: Multiplex Terminal Restriction Fragment Length Polymorphism or M-TRFLP (a molecular method), Phospholipid Fatty Acid or PLFA analysis (a biochemical method) and MICRORESP™ (a physiological method) alongside TDI, diatom species, and chlorophyll a content. Four of the streams were classified as of excellent status (3-6 μg/L Soluble Reactive Phosphorus (SRP)) with respect to soluble P content under the EU Water Framework Directive and four were of borderline good/moderate or moderate status (43-577 μg/L SRP). At each site, 3 replicates of 3 solute diffusion treatments were deployed in a Latin square design. Solute diffusion treatments were: KCl (as a control solute), N and P (to investigate the effect of nutrient enrichment), or the herbicide isoproturon (as a “high impact” control, which aimed to affect biofilm growth in a way detectable by all assays). Biofilms were sampled after 4 weeks deployment in a low flow period of early summer 2006.The chlorophyll a content of biofilms after 4 weeks was 2.0 ± 0.29 mg/m2 (mean ± se). Dry matter content was 16.0 ± 13.1 g/m2. The M-TRFLP was successfully used for generating community profiles of cyanobacteria, algae and bacteria and was much faster than diatom identification. The PFLA and TDI were successful after an increase in the sample size, due to low counts. The MICRORESP™ assays were often below or near detection limit. We estimated the per-sample times for the successful assays as follows: M-TRFLP: 20 min, PLFA 40 min, TDI 90 min. Using MANOVA on the first 5 principal co-ordinates, all the assays except MICRORESP™ showed significant differences between sites, but none of the assays showed a significant effect of either initial stream trophic status (as classified by the EU Water Framework Directive using chemical standards for soluble P), or of the diffusing solute treatment. Multiple Procrustes analysis on the ordination results showed that the diatom and M-TRFLP data sets hold distinct, though as yet unexplored, information about the ecological factors affecting stream biofilms. The diatom data were subjected to principal components analysis, to identify which taxa were more strongly influenced by site variables, trophic status or treatment effects. These were Acnanthes lanceolata, A. minutissimma, Nitzchia spp., Coccineis spp. and Navicula spp. Further experimentation and data analysis on a larger number of sites, to identify specific M-TRFLP bands that could be used as indicators linked to specific taxa, are desirable. Results highlight the need for a multifactorial approach to understanding controls on stream ecology. 相似文献
20.
Lefebvre O Quentin S Torrijos M Godon JJ Delgenès JP Moletta R 《Applied microbiology and biotechnology》2007,75(1):61-69
The anaerobic treatment of saline effluents using halophilic and halotolerant microbial consortia is of major interest. Inhibition
of anaerobic digestion is known to occur at high salt content. However, it seems that the suitable adaptation of an anaerobic
sludge makes possible the treatment of saline wastewater. In this study, a non-saline anaerobic sludge was inoculated in two
anaerobic batch reactors operating with a different substrate (distillery vinasse and ethanol) and subjected to increasing
NaCl concentrations. The performance of the digesters appeared to be highly dependent on the nature of the substrate, and
a similar level of inhibition (i.e. around 90% of the specific loading rate and specific methanogenic activity) was stated
at 10 g l−1 of NaCl with distillery vinasse and 60 g l−1 of NaCl with ethanol. The characterization of the microflora and its adaptation to increasing NaCl conditions were also investigated
using molecular tools based on the analysis of genomic 16S rDNA. The microbial communities revealed a high diversity that
could be maintained in both reactors despite the increase in NaCl concentrations. 相似文献