首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nogo-A is originally identified as an inhibitor of axon regeneration from the CNS myelin. Nogo-A is mainly expressed by oligodendrocytes, and also by some neuronal subpopulations, particularly in the developing nervous system. Although extensive studies have uncovered regulatory roles of Nogo-A in neurite outgrowth inhibition, precursor migration, neuronal homeostasis, plasticity and neurodegeneration, its cell-autonomous functions in neurons are largely uncharacterized. Here, we show that HIV-1 trans-activating-mediated amino-Nogo-A protein transduction into cultured primary cortical neurons achieves an almost complete neuroprotection against oxidative stress induced by exogenous hydrogen peroxide (H(2)O(2)). Endogenously expressed neuronal Nogo-A is significantly downregulated upon H(2)O(2) treatment. Furthermore, knockdown of Nogo-A results in more susceptibility to acute oxidative insults and markedly increases neuronal death. Interacting with peroxiredoxin 2 (Prdx2), amino-Nogo-A reduces reactive oxygen species (ROS) generation and extracellular signal-regulated kinase phosphorylation to exert neuroprotective effects. Structure-function mapping experiments reveal that, out of NiG-Δ20, a novel region comprising residues 290-562 of amino-Nogo-A is indispensable for preventing oxidative neuronal death. Moreover, mutagenesis analysis confirms that cysteine residues 424, 464 and 559 are involved in the inhibition of ROS generation and neuroprotective role of amino-Nogo-A. Our data suggest that neuronal Nogo-A might play a cell-autonomous role in improving neuronal survival against oxidative insult through interacting with Prdx2 and scavenging of ROS.  相似文献   

2.
Hyperthermia is a promising anticancer treatment used in combination with radiotherapy and chemotherapy. Temperatures above 41.5 °C are cytotoxic and hyperthermia treatments can target a localized area of the body that has been invaded by a tumor. However, non-lethal temperatures (39–41 °C) can increase cellular defenses, such as heat shock proteins. This adaptive survival response, thermotolerance, can protect cells against subsequent cytotoxic stress such as anticancer treatments and heat shock (>41.5 °C). Autophagy is another survival process that is activated by stress. This study aims to determine whether autophagy can be activated by heat shock at 42 °C, and if this response is mediated by reactive oxygen species (ROS). Autophagy was increased during shorter heating times (<60 min) at 42 °C in cells. Levels of acidic vesicular organelles (AVO) and autophagy proteins Beclin-1, LC3-II/LC-3I, Atg7 and Atg12-Atg5 were increased. Heat shock at 42 °C increased levels of ROS. Increased levels of LC3 and AVOs at 42 °C were inhibited by antioxidants. Therefore, increased autophagy during heat shock at 42 °C (<60 min) was mediated by ROS. Conversely, heat shock at 42 °C for longer times (1?3 h) caused apoptosis and activation of caspases in the mitochondrial, death receptor and endoplasmic reticulum (ER) pathways. Thermotolerant cells, which were developed at 40 °C, were resistant to activation of apoptosis at 42 °C. Autophagy inhibitors 3-methyladenine and bafilomycin sensitized cells to activation of apoptosis by heat shock (42 °C). Improved understanding of autophagy in cellular responses to heat shock could be useful for optimizing the efficacy of hyperthermia in the clinic.  相似文献   

3.
Heat shock protects HCT116 and H460 cells from TRAIL-induced apoptosis   总被引:5,自引:0,他引:5  
Heat shock proteins have been shown to protect cells from a variety of stressful conditions, including hyperthermia, oxidative and DNA damage, serum withdrawal, and a variety of chemicals. HSP27, HSP70, and HSP90 have been shown to downregulate different aspects of apoptosome assembly. TRAIL is a member of the TNF family of ligands and is a promising anti-cancer agent. It has been shown to be nontoxic to most normal cell types, while it is a potent killer of many different cancer cells. TRAIL engages both the receptor-mediated (extrinsic) and the mitochondria-initiated (intrinsic) cascades. We tested whether heat shock affects TRAIL-induced apoptosis in different cancer cells. TRAIL treatment does not induce HSP27, HSP70, or HSP90 levels. Nonetheless, when treated with TRAIL for 3 h after release from heat shock, the human colon cancer cell line HCT116 is protected from apoptosis whereas the human colon cancer cell line SW480 is not. This pattern is consistent with the previously observed behavior of HCT116 as Type II cells that depend on mitochondrial signaling and SW480 as Type I, whose TRAIL-induced death is not sensitive to inhibition of caspase 9. Moreover, the failure of heat shock to protect SW480 cells is not due to a lack of HSP70 or HSP90 upregulation. HSP70 and HSP90 are induced 3 h after release from heat shock, whereas HSP27 is induced much later. Thus, the observed protective effect against TRAIL is probably due to the anti-apoptotic effects of HSP70 and HSP90. These results further illustrate interactions between TRAIL receptor signaling and the intrinsic cell death pathway and have practical implications for the potential use of TRAIL and hyperthermia in cancer therapy.  相似文献   

4.
Regardless of rapid progression in the field of autophagy, it remains a challenging task to understand the cross talk with apoptosis. In this study, we overexpressed Ulk1 in HeLa cells and evaluated the apoptosis-inducing potential of the Ulk1 gene in the presence of cisplatin. The gain of function of Ulk1 gene showed a decline in cell viability and colony formation in HeLa cells. The Ulk1-overexpressing cells showed higher apoptotic attributes by an increase in the percentage of annexin V, escalated expression of Bax/Bcl2 ratio, and caspase-9, -3/7 activities. Further, reactive oxygen species (ROS) generation was found to be much higher in HeLa-Ulk1 than in the mock group. Scavenging the ROS by N-acetyl-L-cysteine increased cell viability and colony number as well as mitochondrial membrane potential (MMP). Our data showed that Ulk1 on entering into mitochondria inhibits the manganese dismutase activity and intensifies the mitochondrial superoxide level. The Ulk1-triggered autophagy (particularly mitophagy) resulted in a fall in ATP; thus the nonmitophagic mitochondria overwork the electron-transport cycle to replenish energy demand and are inadvertently involved in ROS overproduction that led to apoptosis. In this present investigation, our results decipher a previously unrecognized perspective of apoptosis induction by a key autophagy protein Ulk1 that may contribute to identification of its tumor-suppressor properties through dissecting the connection among cellular bioenergetics, ROS, and MMP.  相似文献   

5.
Viral protein R (Vpr) of human immunodeficiency virus type 1 (HIV-1) is an accessory protein that plays an important role in viral pathogenesis. This pathogenic activity of Vpr is related in part to its capacity to induce cell cycle G2 arrest and apoptosis of target T cells. A screening for multicopy suppressors of these Vpr activities in fission yeast identified heat shock protein 70 (Hsp70) as a suppressor of Vpr-induced cell cycle arrest. Hsp70 is a member of a family of molecular chaperones involved in innate immunity and protection from environmental stress. In this report, we demonstrate that HIV-1 infection induces Hsp70 in target cells. Overexpression of Hsp70 reduced the Vpr-dependent G2 arrest and apoptosis and also reduced replication of the Vpr-positive, but not Vpr-deficient, HIV-1. Suppression of Hsp70 expression by RNA interference (RNAi) resulted in increased apoptosis of cells infected with a Vpr-positive, but not Vpr-defective, HIV-1. Replication of the Vpr-positive HIV-1 was also increased when Hsp70 expression was diminished. Vpr and Hsp70 coimmunoprecipitated from HIV-infected cells. Together, these results identify Hsp70 as a novel anti-HIV innate immunity factor that targets HIV-1 Vpr.  相似文献   

6.
Iron overload (IO) caused by frequent blood transfusion in hematological diseases has become a major concern. In this study, up-regulation of heme oxygenase-1 (HO-1), a protector against oxidative stress, was observed in bone marrow mesenchymal stem cells (BMMSCs) at the early stage of IO and had favorable prognosis in an IO mouse model. Given that the protective role of HO-1 in IO damage of BMMSCs was still unknown, the mechanism was explored in vitro and in vivo. BMMSCs were transfected with HO-1/siHO-1 in vitro, and the mouse model was established to further evaluate the effect of HO-1 on IO in vivo. As a result, HO-1 decreased the apoptotic rate of BMMSCs with IO through reducing intracellular reactive oxygen species (ROS) but increasing IL-10 secretion. In addition, IL-10 was mediated by HO-1 via the ERK pathway. Intracellular iron was down-regulated by hepcidin depending on IL-10. In conclusion, HO-1 protects BMMSCs from ROS by secreting IL-10 upon iron overload.  相似文献   

7.
Heme oxygenase-1 (HO-1), the rate-limiting enzyme of heme catabolism, is known to modulate various cellular functions, including cytokine production, cell proliferation, and apoptosis, in stress-related conditions. However, the role of HO-1 in the auditory system remains elusive. Herein, we demonstrate that pharmacologic induction of HO-1 along with catalytic activation significantly suppressed apoptosis of HEI-OC1 cells induced by cisplatin. Studies of ectopic expression of pcDNA3-HO-1 and siRNA of HO-1 further revealed the protective role of HO-1 against cisplatin in HEI-OC1 cells. Among the catabolic metabolites of HO-1, both carbon monoxide (CO) and bilirubin were directly involved in the protective role of HO-1 against cisplatin through inhibition of reactive oxygen species generation. Furthermore, pharmacological induction of HO-1 completely prevented the destruction of outer hair cell arrays by cisplatin through a CO-dependent mechanism in organotrophic culture of the rat primary organ of Corti explants. These results suggest that HO-1 may serve as a safeguard of auditory sensory hair cells against a variety of challenges of oxidative stress, including noise trauma, presbycusis, and ototoxic drugs, respectively.  相似文献   

8.
Arsenic, a human carcinogen, possesses a serious environmental threat but the mechanism of its toxicity remains unclear. Knowledge of how arsenic induces cell death and how cells escape the death path may help to understand arsenic carcinogenesis. We have investigated the nature of sodium arsenite-induced cell death in Chinese hamster ovary K1 cells. Following phosphate-citric acid buffer extraction, apoptotic cells with lower DNA content than the G1 cells were detected by flow cytometry. Immediately after 4 h of 40 μM arsenite treatment, no appreciable fraction of cells with sub-G1 DNA content was detected; however, the sub-G1 cell fraction increased with postarsenite incubation time, and detectable increase started at 8 h of incubation, whereas the intracellular peroxide level as measured by the fluorescent intensity of 2′,7′-dichlorofluorescein increased immediately following a 4-h arsenite treatment. Simultaneous treatment with arsenite plus antioxidant (N-acetyl-cysteine, Trolox, and Tempo); copper ion chelator (neocuproine); protein kinase inhibitor (H-7) or protein synthesis inhibitor (cycloheximide) reduced the fraction of sub-G1 cell and internucleosomal DNA degradation. Trolox, neocuproine, or cycloheximide given after arsenite treatment also effectively reduced apoptosis. These results lead to a working hypothesis that arsenite-induced apoptosis in CHO-K1 cells is triggered by the generation of hydrogen peroxide, followed by a copper-mediated Fenton reaction that catalyzes the production of hydroxyl radicals, which selectively activates protein kinase through de novo synthesis of macromolecules. © 1996 Wiley-Liss, Inc.  相似文献   

9.
BC-8, a rat histiocytoma undergoes apoptosis after heat shock, which is due to lack of an effective heat shock response. Heat shock induced generation of free radicals, which in turn are involved in the induction of apoptotic death in BC-8 cells. Treatment of BC-8 cells with N-acetylcysteine partially inhibited the heat induced apoptosis. Introduction of Bcl-2 gene in these cells did not protect them from apoptotic death, whereas transfection with hsp-70 gene did render these cells resistant to heat induced apoptosis transiently. Heat shock also downregulated the expression of Bcl-2 and p53 in these cells. These observations suggested that the heat shock induced apoptosis was mediated through reactive oxygen species and controlled upstream of Bcl-2 check point.  相似文献   

10.
11.
Evidence that curcumin may have anticancer activities has renewed interest in its potential to prevent and treat disease. In this study, we show that curcumin-mediated rapid generation of reactive oxygen species (ROS) leads to apoptosis by modulating different apoptotic pathways in mouse fibroblast L929 cells. We show for the first time that curcumin-induced rapid ROS generation causes the release of apoptosis inducing factor (AIF) from the mitochondria to the cytosol and nucleus, hence, leading to caspase 3-independent apoptosis. However, our studies also show that curcumin induces the release of cytochrome c from mitochondria, causing activation of caspase 3, and concomitant PARP cleavage, which is the hallmark of caspase-dependent apoptosis. Furthermore, curcumin-induced ROS generation leads to the induction of the proapoptotic protein p53 and its effector protein p21 and down-regulation of cell cycle regulatory proteins such as Rb and cyclin D1 and D3. Both glutathione (GSH) and N-acetylcysteine (NAC) pretreatment resulted in the complete inhibition of curcumin-induced ROS generation, AIF release from mitochondria, and caspase activation. Additionally, pretreatment of L929 cells with these antioxidants completely blocked the induction of p53-dependent p21 accumulation. In conclusion, our data show that in addition to caspase 3 activation, curcumin-induced rapid ROS generation leads to AIF release, and the activation of the caspase-independent apoptotic pathway.  相似文献   

12.
Inhibition of Fas-mediated apoptosis in B cell lymphomas by thiol antioxidants (glutathione and N-acetylcysteine) supported previous studies, suggesting that Fas-stimulated ROS generation may play a role in Fas-mediated apoptosis. Thus, the goal of the current study was to determine if Fas stimulation could induce ROS generation and what role, if any, it played in apoptosis. Fas crosslinking induced rapid generation of ROS (within 15 min) well before the appearance of characteristic apoptotic changes. Overexpression of catalase or superoxide dismutase suggested that Fas induced production of both superoxide anion and hydrogen peroxide. ROS generation was only observed, however, in cells that were sensitive to apoptosis and not in B cells inherently resistant to anti-Fas or in those in which resistance was induced by B cell receptor crosslinking. The exogenous addition of 250 microM hydrogen peroxide could reverse the resistant phenotype and sensitize cells to Fas-induced apoptosis. In Fas-sensitive cells, depletion of endogenous antioxidant defenses with buthionine sulfoximine increased the sensitivity to Fas-induced apoptosis, while overexpression of antioxidant enzymes and antiapoptotic proteins suggested a role for Fas-induced production of hydrogen peroxide in apoptosis. Further analysis suggested a redox-sensitive step early in Fas signaling at the level of initiator caspase (caspase-8) activation. Thus, the data suggest that the level of oxidative stress, either from exogenous sources or generated endogenously upon receptor stimulation, regulates the sensitivity to Fas-mediated apoptosis.  相似文献   

13.
《Free radical research》2013,47(12):1240-1247
The biological activities of C60-bis(N,N-dimethylpyrrolidinium iodide), a water-soluble cationic fullerene derivative, on human promyeloleukaemia (HL-60) cells were investigated. The pyrrolidinium fullerene derivative showed cytotoxicity in HL-60 cells. The characteristics of apoptosis, such as DNA fragmentation and condensation of chromatin in HL-60 cells, were observed by exposure to the pyrrolidinium fullerene derivative. Caspase-3 and -8 were activated and cytochrome c was also released from mitochondria. The generation of reactive oxygen species (ROS) by the pyrrolidinium fullerene derivative was observed by DCFH-DA, a fluorescence probe for the detection of ROS. Pre-treatment with α-tocopherol suppressed cell death and intracellular oxidative stress caused by the pyrrolidinium fullerene derivative. The apoptotic cell death induced by the pyrrolidinium fullerene derivative was suggested to be mediated by ROS generated by the pyrrolidinium fullerene derivative.  相似文献   

14.
Oxidative stress may be an important determinant of the severity of acute pancreatitis. One-electron reduction of oxidants generates reactive oxygen species (ROS) via redox cycling, whereas two-electron detoxification, e.g. by NAD(P)H:quinone oxidoreductase, does not. The actions of menadione on ROS production and cell fate were compared with those of a non-cycling analogue (2,4-dimethoxy-2-methylnaphthalene (DMN)) using real-time confocal microscopy of isolated perfused murine pancreatic acinar cells. Menadione generated ROS with a concomitant decrease of NAD(P)H, consistent with redox cycling. The elevation of ROS was prevented by the antioxidant N-acetyl-l-cysteine but not by the NADPH oxidase inhibitor diphenyliodonium. DMN produced no change in reactive oxygen species per se but significantly potentiated menadione-induced effects, probably via enhancement of one-electron reduction, since DMN was found to inhibit NAD(P)H:quinone oxidoreductase detoxification. Menadione caused apoptosis of pancreatic acinar cells that was significantly potentiated by DMN, whereas DMN alone had no effect. Furthermore, bile acid (taurolithocholic acid 3-sulfate)-induced caspase activation was also greatly increased by DMN, whereas DMN had no effect per se. These results suggest that acute generation of ROS by menadione occurs via redox cycling, the net effect of which is induction of apoptotic pancreatic acinar cell death. Two-electron detoxifying enzymes such as NAD(P)H:quinone oxidoreductase, which are elevated in pancreatitis, may provide protection against excessive ROS and exert an important role in determining acinar cell fate.  相似文献   

15.
Fhit protein is lost in most cancers, its restoration suppresses tumorigenicity, and virus-mediated FHIT gene therapy induces apoptosis and suppresses tumors in preclinical models. We have used protein cross-linking and proteomics methods to characterize a Fhit protein complex involved in triggering Fhit-mediated apoptosis. The complex includes Hsp60 and Hsp10 that mediate Fhit stability and may affect import into mitochondria, where it interacts with ferredoxin reductase, responsible for transferring electrons from NADPH to cytochrome P450 via ferredoxin. Viral-mediated Fhit restoration increases production of intracellular reactive oxygen species, followed by increased apoptosis of lung cancer cells under oxidative stress conditions; conversely, Fhit-negative cells escape apoptosis, carrying serious oxidative DNA damage that may contribute to an increased mutation rate. Characterization of Fhit interacting proteins has identified direct effectors of the Fhit-mediated apoptotic pathway that is lost in most cancers through loss of Fhit.  相似文献   

16.
Role of reactive oxygen species (ROS) in apoptosis induction   总被引:28,自引:0,他引:28  
Reactive oxygen species (ROS) and mitochondria play an important role in apoptosis induction under both physiologic and pathologic conditions. Interestingly, mitochondria are both source and target of ROS. Cytochrome c release from mitochondria, that triggers caspase activation, appears to be largely mediated by direct or indirect ROS action. On the other hand, ROS have also anti-apoptotic effects. This review focuses on the role of ROS in the regulation of apoptosis, especially in inflammatory cells.  相似文献   

17.
Isoalantolactone, a sesquiterpene lactone compound possesses antifungal, antibacteria, antihelminthic and antiproliferative activities. In the present study, we found that isoalantolactone inhibits growth and induces apoptosis in pancreatic cancer cells. Further mechanistic studies revealed that induction of apoptosis is associated with increased generation of reactive oxygen species, cardiolipin oxidation, reduced mitochondrial membrane potential, release of cytochrome c and cell cycle arrest at S phase. N-Acetyl Cysteine (NAC), a specific ROS inhibitor restored cell viability and completely blocked isoalantolactone-mediated apoptosis in PANC-1 cells indicating that ROS are involved in isoalantolactone-mediated apoptosis. Western blot study showed that isoalantolactone increased the expression of phosphorylated p38 MAPK, Bax, and cleaved caspase-3 and decreased the expression of Bcl-2 in a dose-dependent manner. No change in expression of phosphorylated p38 MAPK and Bax was found when cells were treated with isoalantolactone in the presence of NAC, indicating that activation of these proteins is directly dependent on ROS generation. The present study provides evidence for the first time that isoalantolactone induces ROS-dependent apoptosis through intrinsic pathway. Furthermore, our in vivo toxicity study demonstrated that isoalantolactone did not induce any acute or chronic toxicity in liver and kidneys of CD1 mice at dose of 100 mg/kg body weight. Therefore, isoalantolactone may be a safe chemotherapeutic candidate for the treatment of human pancreatic carcinoma.  相似文献   

18.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

19.
Reactive oxygen species (ROS) are known to play an important role in glutamate-induced neuronal cell death. In the present study, we examined whether NADPH oxidase serves as a source of ROS production and plays a role in glutamate-induced cell death in SH-SY5Y human neuroblastoma cells. Stimulation of the cells with glutamate (100 mM) induced apoptotic cell death and increase in the level of ROS, and these effects of glutamate were significantly suppressed by the inhibitors of the NADPH oxidase, diphenylene iodonium, apocynin, and neopterine. In addition, RT-PCR revealed that SH-SY5Y cells expressed mRNA of gp91phox, p22phox and cytosolic p47phox, p67phox and p40phox, the components of the plasma membrane NADPH oxidase. Treatment with glutamate also resulted in activation and translocation of Rac1 to the plasma membrane. Moreover, the expression of Rac1N17, a dominant negative mutant of Rac1, significantly blocked the glutamate-induced ROS generation and cell death. Collectively, these results suggest that the plasma membrane-bound NADPH oxidase complex may play an essential role in the glutamate-induced apoptotic cell death through increased production of ROS.  相似文献   

20.
The redox regulator thioredoxin-1 (Trx-1) is required for the redox potential of the cell and exerts important functions in cell growth and apoptosis. Severe oxidative stress has been implicated in the oxidation of proteins and cell death. However, the role of low doses of reactive oxygen species (ROS) is poorly understood. Here, we show that 10 and 50 microM H2O2 and short-term exposure to shear stress significantly increased Trx-1 mRNA and protein levels in endothelial cells. Since it is known that Trx-1 exerts anti-apoptotic functions, we next investigated whether low doses of ROS can inhibit basal and serum-depletion induced endothelial cell apoptosis. Indeed, treatment of endothelial cells with 10 and 50 microM H2O2 significantly reduced apoptosis induction. Reduction of Trx-1 expression using an antisense oligonucleotide approach resulted in the induction of apoptosis and abolished the inhibitory effect of low doses of H2O2. Taken together, our results demonstrate that low doses of ROS act as signaling molecules and exert anti-apoptotic functions in endothelial cells via upregulation of the redox-regulator Trx-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号