首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although dam removal has become an increasingly popular tool for river restoration, there is limited knowledge regarding the ecological effects of dam removal. The purpose of our study was to document feeding habits of coexisting brook charr, brown trout, and rainbow trout above and below a dam that is in the process of a staged removal. Modification of sediment transport caused by Stronach Dam since 1912 has affected stream channel configuration, fish habitat, and many other physical and biological processes. In order to document salmonine feeding habits above and below the dam, we selected zones to represent downstream conditions and areas of river upstream of the dam that encompassed the original reservoir and a stretch of river further upstream that was not hydraulically influenced by the dam. Because physical habitat largely governs aquatic community composition in streams, we expected these effects to be reflected in the fish and macroinvertebrate communities. In particular, we expected limited prey availability and salmonine feeding in the impacted upstream and downstream zones characterized by fine substrate composition and greater macroinvertebrate diversity and salmonine feeding opportunities in the non-impacted zone characterized by coarse substrate. We also expected mean percent wet stomach content weights to be higher downstream, as other studies have documented an increase in piscivory on blocked migratory prey species downstream of dams. Contrary to expectations, the downstream zone of the river contained the highest abundance of drifting invertebrate taxa and, although differences in habitat occurred among the zones, the diversity of drifting macroinvertebrates and stomach contents of salmonines were similar throughout the river. Thus, in this case, the presence of altered habitat caused by a dam did not appear to negatively affect salmonine food habits. Consequently, we expect no major changes in salmonine food habits after the dam removal is completed.  相似文献   

2.
1. Populations in different locations can exchange individuals depending on the distribution and connectivity of suitable habitat, and the dispersal capabilities and behaviour of the organisms. We used an isotopic tracer, 15N, to label stoneflies (Leuctra ferruginea) to determine the extent of adult flight along stream corridors and between streams where their larvae live. 2. In four mass, mark‐capture experiments we added 15NH4Cl continuously for several weeks to label specific regions of streams within the Hubbard Brook Experimental Forest, NH, U.S.A. We collected adult stoneflies along the labelled streams (up to 1.5 km of stream length), on transects through the forest away from labelled sections (up to 500 m), and along an 800‐m reach of adjacent tributary that flows into a labelled stream. 3. Of 966 individual adult stoneflies collected and analysed for 15N, 20% were labelled. Most labelled stoneflies were captured along stream corridors and had flown upstream a mean distance of 211 m; the net movement of the population (upstream + downstream) estimated from the midpoint of the labelled sections was 126 m upstream. The furthest male and female travelled approximately 730 m and approximately 663 m upstream, respectively. We also captured labelled mature females along an unlabelled tributary and along a forest transect 500 m from the labelled stream, thus demonstrating cross‐watershed dispersal. 4. We conclude that the adjacent forest was not a barrier to dispersal between catchments, and adult dispersal linked stonefly populations among streams across a landscape within one generation. Our data on the extent of adult dispersal provide a basis for a conceptual model identifying the boundaries of these populations, whose larvae are restricted to stream channels, and whose females must return to streams to oviposit.  相似文献   

3.
4.
Man-made habitat fragmentation is a major concern in river ecology and is expected to have particularly detrimental effects on aquatic species with limited dispersal abilities, like the bullhead (Cottus gobio). We used ten microsatellite markers to investigate small-scale patterns of gene flow, current dispersal and neutral genetic diversity in a morphologically diverse river where fragmented and unfragmented sections could be compared. We found high genetic differentiation between sampling sites with a maximum F ST of 0.32 between sites separated by only 35 km. A significant increase of genetic differentiation with geographical distance was observed in the continuous river section as well as in the full dataset which included headwater populations isolated by anthropogenic barriers. Several lines of evidence are consistent with the hypothesis that such barriers completely block upstream movement while downstream dispersal may be little affected. In the unfragmented habitat, dispersal rates were also higher in the direction of water flow than against it. The resulting asymmetry in gene flow likely contributes to the decrease of genetic variation observed from the lower reaches towards the headwaters, which is particularly pronounced in physically isolated populations. Our findings suggest that headwater populations, due to their isolation and low genetic variation, may be particularly vulnerable to extinction.  相似文献   

5.
Tributary junctions are points in river networks where there can be an influx of organic matter and inorganic sediment. Addition of materials at tributary junctions is likely to alter food availability and habitat for aquatic organisms. We surveyed junctions of upland cobble-bed streams (stream orders 1–4, 2.2–10.8 m wide) in the Acheron River catchment (or watershed) in Victoria, Australia, to determine whether tributaries were an important source of suspended particulate matter, and whether benthic organic matter and coarse wood density increased at tributary junctions. We conducted measurements in high (austral spring 2005) and low flows (austral summer 2006) seasons. There were no systematic patterns in concentrations of suspended particulate matter with respect to positions within confluences (tributaries, upstream mainstem, downstream mainstem and confluence). However, total exports of suspended particulate matter in high-flow appeared to be the summation of exports from the upstream mainstem and the tributary in an approximate ratio of 2:1. In low flow, the 2:1 ratio was similar but the downstream mainstem value was similar to the upstream mainstem value (i.e., no clear summation). The fraction of organic matter in the suspended particulate matter did not depend on position within the junction, but was about 19% higher in the low-flow season. Tributaries had lower amounts of benthic organic matter than any measured positions in the mainstem, which themselves were indistinguishable. However, benthic organic matter was positively related to discharge ratio (tributary:mainstem), which may indicate that smaller, upriver junctions, which tended to have higher discharge ratios, were associated with higher standing crops of benthic organic matter. The distribution of coarse wood (logs and branches ≥10 cm diameter) was asystematic with respect to position in the junction. Overall, tributaries had little effect in these junctions, with the most evident effect being an increase of about one-third in exports of suspended particulate matter when flows are high.  相似文献   

6.
7.
Smith  H.  Wood  P.J. 《Hydrobiologia》2002,487(1):45-58
Limestone (karst) springs within the River Wye catchment (Derbyshire, U.K.) were investigated to examine the influence of physical and chemical characteristics and habitat variability on macroinvertebrate community composition. Flow permanence had a greater influence on the invertebrate community than any other physical or chemical variable examined. Clear differences in the macroinvertebrate community were observed between perennial (7) and intermittent springs (11) and the mainstem river. Springs support distinct communities, with some taxa exclusively recorded at the source or within the springbrook (e.g. Agabus guttatus [Paykull] and Micropterna lateralis [Stephens]). A degree of faunal overlap with the mainstem river occurred suggesting that perennial springs may form a refugium for many taxa and that intermittent springs are rapidly colonised by taxa from the mainstem river after the resumption of flow.  相似文献   

8.
Higher levels of genetic diversity of river macrophytes are expected in downstream parts because of potential accumulation of various genotypes from upstream sites. We assessed the clonal diversity and spatial genetic structure of fennel pondweed (Potamogeton pectinatus or Stuckenia pectinata) populations with emphasis on the estimation of dispersal via clonal propagules along a river in connection to upstream ponds. We analysed genetic diversity of 354 plant shoots sampled in 2005 and 2006 at three pond and five river sites in the Woluwe river catchment (Belgium). Nine microsatellite DNA markers revealed 88 genets of which 89% occurred in only one site. Clonal propagule dispersal was detected up to 10 km along the river. Few multilocus genotypes were repeatedly present along a major part of the river indicating vegetative spread. Populations of ponds contained a higher amount of clonal diversity, indicating the importance of local seed recruitment. A fine-scaled spatial genetic structure indicated that most seedling recruitment occurred at a distance <5 m in pond populations whereas clones in river sites were unrelated and showed no spatial autocorrelation. The clonal diversity decreased along the river from upstream to downstream due to establishment of few large clones.  相似文献   

9.
1. In complex landscapes such as river networks, organisms usually face spatio‐temporal heterogeneity and gradients in geomorphological, water, ecological or landscape characteristics are often observed at the catchment scale. These environmental variables determine developmental conditions for larval stages of freshwater insects and influence adult phenotypic characteristics. Environmental clines are therefore expected to generate morphological clines. Such a process has the potential to drive gradual geographical change in morphology‐dependent life history traits, such as dispersal. 2. We studied the influence of aquatic and terrestrial environmental factors on morphological variations in Calopteryx splendens across the Loire drainage. To investigate these effects we took explicitly into account the hierarchical structure of the river network. 3. We analysed eight morphological traits. Results showed significant body size variation between tributaries and the presence of a morphological cline at the drainage scale. We observed an effect of pH and water temperature on body size. Individuals in downstream sites were larger than individuals in upstream sites, and adults whose larval stages were exposed to alkaline pH and high temperatures during summer were larger. 4. Body size affects flight abilities in insects. Thus, our results suggest that morphological clines may generate an asymmetric dispersal pattern along the downstream–upstream axis, downstream populations dispersing farther than upstream ones. Such a process is expected to influence population genetic structure at the drainage scale if larval drift and floods do not balance an asymmetrical dispersal pattern of adults along the downstream–upstream gradient. To assess the influence of environmental gradients on the variation of life history traits it is important to understand the population biology of freshwater insects, and more generally of riverine organisms. It is also essential to integrate such data in conservation or restoration programmes.  相似文献   

10.
1. Studies of dispersal of macroinvertebrates in streams and rivers tend to be focused on drift, whilst benthic movements are usually considered to be less important.
2. Field-enclosure experiments with the mayfly Baetis rhodani indicate that net dispersal in this species is simply a proportional loss of individuals from the benthos.
3. Neither net upstream or downstream movements exhibited evidence of density-dependence in the form of curvilinear relationships between initial and final densities.
4. The net number of animals moving upstream did not differ significantly from the net number moving downstream.
5. The probable mechanisms behind density-independent dispersal are discussed, as are the implications for our understanding of population dynamics in relation to invertebrate drift.  相似文献   

11.
Shallow water habitat (SWH) is important for riverine fish and their invertebrate prey, yet the availability of SWH has declined in many systems due to human impacts. We evaluated the potential ecological benefits of restoring SWH by comparing zooplankton and phytoplankton from created backwaters (a floodplain feature connected to the river on the downstream end but disconnected at the upstream end) and chutes (a side channel of the river that diverts flow from the main channel through the chute and back into the main channel) on the lower Missouri River. We tested the hypothesis that backwaters support higher abundances of zooplankton and phytoplankton than chutes using data that were collected during the summer of 2010. As predicted, backwaters had more diverse cladoceran communities and greater abundances of rotifers, copepod nauplii, adult copepods, and cladocerans than chutes. Total algal biovolume was the same in chutes and backwaters; however, phytoplankton taxa richness was higher in backwaters, and there was a greater biovolume of green algae (Chlorophyta), Crypotophyta, cyanobacteria, and Euglenophyta in backwaters than in chutes. Differences in zooplankton and phytoplankton between backwaters and chutes appeared to be related to slower current velocities, longer retention times, and lower levels of turbidity and total suspended solids in backwaters. While chutes have the potential to provide greater habitat diversity than the mainstem, there were no differences in water quality or phytoplankton abundance, community structure, or diversity between these two habitats. Combined, our results suggest that created backwaters initially provide a greater potential food resource for native fishes. However, additional research is needed to determine whether chutes can also develop beneficial shallow water features over a longer period of time.  相似文献   

12.
Ecologists have long been interested in mechanisms governing community composition and assembly. Spatial connectivity is one potential mechanism that can have a large influence on community processes. In accordance with network metrics such as closeness and betweenness, headwater streams are more isolated than mainstem streams. Theory and observational studies predict that community structure in isolated locations of dispersal networks should respond more strongly to manipulations of local conditions, whereas well-connected communities subject to high levels of dispersal should not respond strongly to local manipulations. We experimentally investigated this prediction by manipulating habitat complexity in headwaters and mainstem streams while monitoring macroinvertebrate communities through time. As predicted, the manipulation of local habitat had a stronger influence in headwaters than mainstreams. Both taxon richness and community similarity showed strong responses to alterations in habitat complexity in headwaters, but not in mainstem streams. These findings support the hypothesis that location within a dispersal network affects the relative importance of local and regional factors in structuring the local communities within a spatially structured metacommunity. In addition, our results suggest that conservation strategies need to account for the possibility that the relative importance of local and regional drivers of community composition and assembly can vary spatially.  相似文献   

13.
An important process for the persistence of populations subjected to habitat loss and fragmentation is the dispersal of individuals between habitat patches. Dispersal involves emigration from a habitat patch, movement between patches through the surrounding landscape, and immigration into a new suitable habitat patch. Both landscape and physical condition of the disperser are known to influence dispersal ability, although disentangling these effects can often be difficult in the wild. In one of the first studies of its kind, we used an invertebrate model system to investigate how dispersal success is affected by the interaction between the habitat condition, as determined by food availability, and life history characteristics (which are also influenced by food availability). Dispersal of juvenile and adult mites (male and female) from either high food or low food natal patches were tested separately in connected three patch systems where the intervening habitat patches were suitable (food supplied) or unsuitable (no food supplied). We found that dispersal success was reduced when low food habitat patches were coupled to colonising patches via unsuitable intervening patches. Larger body size was shown to be a good predictor of dispersal success, particularly when the intervening landscape is unsuitable. Our results suggest that there is an interaction between habitat fragmentation and habitat suitability in determining dispersal success: if patches degrade in suitability and this affects the ability to disperse successfully then the effective connectance across landscapes may be lowered. Understanding these consequences will be important in informing our understanding of how species, and the communities in which they are embedded, may potentially respond to habitat fragmentation.  相似文献   

14.
Unidirectional water flow results in the downstream‐biased, asymmetric dispersal of many riverine organisms. However, little is known of how asymmetric dispersal influences riverine population structure and dynamics, limiting our ability to properly manage riverine organisms. A metapopulation of the freshwater pearl mussel Margaritifera laevis may be sensitive to river currents because mussels are repeatedly exposed to downstream drift during floods—a parasitic life stage is the only, limited period (~40 days) during which larvae (glochidia) can move upstream with the aid of host fish. We hypothesized that water‐mediated dispersal would overwhelm upstream dispersal via host fish, and therefore, that upstream subpopulations play a critical role as immigrant sources. To test this hypothesis, we examined the effects of both up‐ and downstream immigrant sources on the size of target subpopulations in the Shubuto River system, Hokkaido, Japan. We found that target subpopulation size was dependent on the upstream distribution range of reproductive subpopulations and the number of upstream tributaries, which are proxies for the number of potential immigrants moving downstream. In contrast, little influence was observed of downstream immigrant sources (proximity to downstream reproductive subpopulations). These results were consistent even after accounting for local environments and stream size. Our finding suggests that upstream subpopulations can be disproportionately important as immigrant sources when dispersal is strongly asymmetric.  相似文献   

15.
The trends in colonization and establishment of equilibrium benthic communities in a reclaimed coal strip-mined river channel were analyzed for 17 months after channel construction. The MacArthur-Wilson island colonization theories and an analysis of community composition by simultaneous daily comparisons between source and new channel communities were employed. Each downstream site attained an equilibrium condition at approximately twice the time required for a site 200 m closer to the upstream source area of drifting colonizers. When considering functional groups of aquatic invertebrates, the collector-gatherers and collector-filterers of detrital material were the initial colonizers. With respect to foraging habit, those invertebrates which were found commonly in the water column above the substrate, the swimmers and clingers, were found to be the initial colonizers of the most distant substrate islands. As habitat complexity increased, trophic complexity increased with priority of arrival and dispersal potential determined by trophic position and foraging habit. It is suggested that the Jaccard community association analysis be used to assess stable new community conditions. The index provides an indication in changes in diversity and density and can be compared with source area communities to determine simultaneous changes within both communities. Ultimately, the restored channel ‘islands’ become a continuous extension of the source area habitat. Colonization trends and time to stability are affected by number of pools, tributary streams, and elimination of rare species populations prior to reclamation.  相似文献   

16.
From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5-6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations.  相似文献   

17.
Gene flow in riverine species is constrained by the dendritic (branching) structure of the river network. Spatial genetic structure (SGS) of freshwater insects is particularly influenced by catchment characteristics and land use in the surroundings of the river. Gene flow also depends on the life cycle of organisms. Aquatic larvae mainly drift downstream whereas flying adults can disperse actively overland and along watercourses. In-stream movements can generate isolation by distance (IBD) at a local scale and differentiation between subcatchments. However, these patterns can be disrupted by overland dispersal. We studied SGS across the Loire River in the damselfly Calopteryx splendens which is able to disperse along and between watercourses. Our sampling design allowed us to test for overland dispersal effects on genetic differentiation between watercourses. Amplified fragment length polymorphism markers revealed high genetic differentiation at the catchment scale but the genetic structure did not reflect the geographical structure of sampling sites. We observed IBD patterns when considering the distance following the watercourse but also the Euclidean distance, i.e. the shortest distance, between pairs of sites. Altogether, our results support the hypothesis of overland dispersal between watercourses. From a conservation perspective, attention should be paid to the actual pathways of gene flow across complex landscapes such as river networks.  相似文献   

18.
Species occupying the same geographic range can exhibit remarkably different population structures across the landscape, ranging from highly diversified to panmictic. Given limitations on collecting population‐level data for large numbers of species, ecologists seek to identify proximate organismal traits—such as dispersal ability, habitat preference and life history—that are strong predictors of realized population structure. We examined how dispersal ability and habitat structure affect the regional balance of gene flow and genetic drift within three aquatic insects that represent the range of dispersal abilities and habitat requirements observed in desert stream insect communities. For each species, we tested for linear relationships between genetic distances and geographic distances using Euclidean and landscape‐based metrics of resistance. We found that the moderate‐disperser Mesocapnia arizonensis (Plecoptera: Capniidae) has a strong isolation‐by‐distance pattern, suggesting migration–drift equilibrium. By contrast, population structure in the flightless Abedus herberti (Hemiptera: Belostomatidae) is influenced by genetic drift, while gene flow is the dominant force in the strong‐flying Boreonectes aequinoctialis (Coleoptera: Dytiscidae). The best‐fitting landscape model for M. arizonensis was based on Euclidean distance. Analyses also identified a strong spatial scale‐dependence, where landscape genetic methods only performed well for species that were intermediate in dispersal ability. Our results highlight the fact that when either gene flow or genetic drift dominates in shaping population structure, no detectable relationship between genetic and geographic distances is expected at certain spatial scales. This study provides insight into how gene flow and drift interact at the regional scale for these insects as well as the organisms that share similar habitats and dispersal abilities.  相似文献   

19.
I examined the effects of isolation on the structure of both adult and larval dragonfly (Odonata: Anisoptera) communities forming at physically identical artificial ponds over two years. Isolation, whether measured by distance to the nearest source habitat or by connectivity to multiple sources, was significantly negatively related to the species richness of dragonflies observed at and collected in these ponds. These results indicate that dispersal and recruitment limitation acted as filters on the richness of communities at these artificial ponds. The richness of larval recruits in artificial ponds was lower than the richness of adult dispersers observed at ponds, and distance from a source habitat explained a greater fraction of the variation in larval than adult richness (83 and 50%, respectively). These results and a male biased sex-ratio in adults observed at artificial ponds suggest that isolated habitats may be more recruitment limited than observations of dispersers would suggest. A Mantel test indicated there was a spatial component to the composition of communities forming in tanks, and that distance between tanks and community dissimilarity (1-Jaccard's) were significantly positively related (r=0.52). This pattern suggests that their position with respect to alternative source environments influenced the composition of the communities that recruited into these ponds. These results provide further evidence of recruitment limitation in this system. Results from this study highlight the importance behaviorally limited dispersal may have in taxa morphologically capable of broad dispersal and suggest that the role of dispersal and recruitment limitation may be critical in shaping community structure across habitat gradients that include variation in habitat duration.  相似文献   

20.
Westslope cutthroat trout (Oncorhynchus clarki lewisi, Salmonidae) are native to the upper Columbia, Missouri, and South Saskatchewan river drainages of western North America and are at the northern periphery of their range in southeastern British Columbia, Canada. We examined geographical variation in allele frequencies at eight microsatellite loci in 36 samples of westslope cutthroat trout from British Columbia to assess levels of population subdivision and to test the hypothesis that different habitat types (principally mainstem vs. above migration barrier habitats) would influence levels of genetic diversity, genetic divergence among populations, and attainment of equilibrium between gene flow and genetic drift. Across all samples, the mean number of alleles per locus was 3.9 and mean expected heterozygosity was 0.56. Population subdivision was extensive with an overall Fst (theta) of 0.32. Populations sampled above migration barriers had significantly fewer alleles, lower expected heterozygosity, but greater average pairwise Fst than populations sampled from mainstem localities. We found evidence for isolation-by-distance from a significant correlation between genetic distance and geographical distance (r = 0.31), but the pattern was much stronger (r = 0.51) when above barrier populations and a population that may have been involved in headwater exchanges were removed. By contrast, isolation-by-distance was not observed when only above barrier populations were tested among themselves. Our data support the maintenance of separate demographic management strategies for westslope cutthroat trout inhabiting different river systems and illustrate how differing habitat structure (e.g. presence of migration barriers) may influence patterns of biodiversity and gene flow-drift equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号