首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to establish the gene frequency of six polymorphisms of the ABCB1, CYP3A5, CYP2C19, and P2RY12 genes in a population resident of Mexico City. The proteins encoded by these genes have been associated with the absorption, and biotransformation of clopidogrel. The ABCB1 T3435C, CYP3A5 V3* A6986G, P2RY12 G52T, P2RY12 C34T, CYP2C19 V2* and V3* (positions G681A and G636A, respectively), polymorphisms were analyzed by 5′ exonuclease TaqMan genotyping assays in a group of 269 healthy unrelated Mexican Mestizo individuals. The CYP2C19 V3* G636A polymorphism was not detected in the Mexican Mestizos population. However, the studied population presented significant differences (P < 0.05) in the distribution of the T3435C, A6986G, G681A, G52T and C34T polymorphisms when compared to reported frequencies of Amerindian of South America, Caucasian, Asian, and African populations. In summary, the distribution of the ABCB1, CYP3A5, CYP2C19, and P2RY12 gene polymorphisms distinguishes to the Mexican Mestizos population from other ethnic groups.  相似文献   

2.
3.
4.
5.
6.
Fluorophore tagged proteins are used in Arabidopsis thaliana to understand their functional role in plant development. This requires the analysis of their spatial localization in planta. However, the localization analysis is often perturbed by a significant overlap of the fluorophores used to label proteins of interest and the optical filtering methods available on the confocal microscope. This problem can be addressed by the use of spectral imaging with linear unmixing the image data. We applied this method to help us identify double transgenic A. thaliana lines which expressed two fluorescently tagged auxin transporter proteins: the auxin efflux protein PIN-FORMED-3 (PIN3), tagged with green fluorescent protein (GFP), and the auxin influx protein LIKE-AUX1-3 (LAX3), tagged with yellow fluorescent protein (YFP). This method allows the reliable separation of overlapping GFP and YFP fluorescence signals and subsequent localization analysis highlighting the potential benefit of this methodology in studies of lateral root development.  相似文献   

7.
8.
9.
10.
Pinoresinol reductase and pinoresinol/lariciresinol reductase play important roles in an early step of lignan biosynthesis in plants. The activities of both enzymes have also been detected in bacteria. In this study, pinZ, which was first isolated as a gene for bacterial pinoresinol reductase, was constitutively expressed in Arabidopsis thaliana under the control of the cauliflower mosaic virus 35S promoter. Higher reductive activity toward pinoresinol was detected in the resultant transgenic plants but not in wild-type plant. Principal component analysis of data from untargeted metabolome analyses of stem, root, and leaf extracts of the wild-type and two independent transgenic lines indicate that pinZ expression caused dynamic metabolic changes in stems, but not in roots and leaves. The metabolome data also suggest that expression of pinZ influenced the metabolisms of lignan and glucosinolates but not so much of neolignans such as guaiacylglycerol-8-O-4′-feruloyl ethers. In-depth quantitative analysis by liquid chromatography–tandem mass spectrometry (LC-MS/MS) indicated that amounts of pinoresinol and its glucoside form were markedly reduced in the transgenic plant, whereas the amounts of glucoside form of secoisolariciresinol in transgenic roots, leaves, and stems increased. The detected levels of lariciresinol in the transgenic plant following β-glucosidase treatment also tended to be higher than those in the wild-type plant. Our findings indicate that overexpression of pinZ induces change in lignan compositions and has a major effect not only on lignan biosynthesis but also on biosynthesis of other primary and secondary metabolites.  相似文献   

11.
12.
The molecular interactions between grapevine and the obligate biotrophic fungus Erysiphe necator are not understood in depth. One reason for this is the recalcitrance of grapevine to genetic modifications. Using defense-related Arabidopsis mutants that are susceptible to pathogens, we were able to analyze key components in grapevine defense responses. We have examined the functions of defense genes associated with the salicylic acid (SA) pathway, including ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), EDS1-LIKE 2 (EDL2), EDL5 and PHYTOALEXIN DEFICIENT 4 (PAD4) of two grapevine species, Vitis vinifera cv. Cabernet Sauvignon, which is susceptible to E. necator, and V. aestivalis cv. Norton, which is resistant. Both VaEDS1 and VvEDS1 were previously found to functionally complement the Arabidopsis eds1-1 mutant. Here we show that the promoters of both VaEDS1 and VvEDS1 were induced by SA, indicating that the heightened defense of Norton is related to its high SA level. Other than Va/VvEDS1, only VaEDL2 complemented Arabidopsis eds1-1, whereas Va/VvPAD4 did not complement Arabidopsis pad4-1. Bimolecular fluorescence complementation results indicated that Vitis EDS1 and EDL2 proteins interact with Vitis PAD4 and AtPAD4, suggesting that Vitis EDS1/EDL2 forms a complex with PAD4 to confer resistance, as is known from Arabidopsis. However, Vitis EDL5 and PAD4 did not interact with Arabidopsis EDS1 or PAD4, correlating with their inability to function in Arabidopsis. Together, our study suggests a more complicated EDS1/PAD4 module in grapevine and provides insight into molecular mechanisms that determine disease resistance levels in Vitis species native to the North American continent.  相似文献   

13.
14.
The influence of geldanamycin (GA), a specific inhibitor of heat-shock protein Hsp90, on the synthesis of Hsp70 and Hsp90 and thermotolerance of Arabidopsis thaliana seedlings has been studied. Incubation of seedlings with GA under normal conditions induced synthesis of these stress proteins. Treatment of seeds with the Hsp90 inhibitor resulted in elevated constitutive levels of Hsp70 and Hsp90 in seedlings, as well as increased induction of their synthesis under heat shock. The GA effect increased with its concentration. Hsp up-regulation promoted thermotolerance of seedlings. The findings suggest autoregulation of heatshock protein synthesis and regulation of plant tolerance by Hsp90.  相似文献   

15.
Understanding the key role of turgor pressure in plant growth and development is important for recognizing the mechanical behavior of plant cell wall material deposition. In this study, we developed a micromechanics model to demonstrate how uniaxial strain influences turgor pressure of isolated Arabidopsis thaliana protoplasts, and their deformation and morphogenesis. In this model, the protoplast is treated as an elastic inclusion in a surrounding agarose gel, allowing the turgor pressure in response to the 20 % uniaxial strain exerted on the protoplast–agarose gel composite material system. Based on the Eshelby method and the Mori–Tanaka’s theory (Eshelby in Proc R Soc Lond A 241(1226):376–396, 1957; Mori and Tanaka in Acta Metall 21(5):571–574, 1973), turgor pressure can be taken into account as a uniform strain acting on protoplasts. By using this model, the relationship between the plant cell morphology changes, and their effective properties are derived with a theoretical basis.  相似文献   

16.
The influence of the CaMV 35S promoter/enhancer on expression profiles of four Arabidopsis thaliana pollen- and/or embryo-specific promoters, APRS, ESL, MXL, and DLL, was tested in transgenic tobacco plants. Individual promoters were fused to the gus reporter gene and cloned in head-to-head orientation with the CaMV 35S:hpt expression unit within the same T-DNA. With the exception of the TATA-less promoter DLL, all other combinations generated interactions between the promoter under investigation and 35S promoter/enhancer resulting in ectopic β-glucuronidase (GUS) expression in vegetative organs and tissues, the most susceptible being the stem, followed by callus, leaf, and root. To eliminate this crosstalk, DNA spacers of length 1, 2 and 5 kb were cloned between the interacting sequences. Ectopic GUS staining was dependent on the affected promoter as well as the distance between the 5′-end of the CaMV 35S promoter and the reporter gene translation start site. When this distance was less than 1 kb strong ectopic GUS staining was observed in all vegetative tissues, similar to the CaMV35S:gus expression profile in transgenic tobacco plants. Insertion of spacer DNA sequences of increasing length resulted in gradual reduction of ectopic GUS staining in tested plants. Of the tissues and organs related to plant reproduction, only anthers and seed coats in the early stages of seed development showed ectopic GUS staining. Developing pollen and embryos showed a pattern of GUS activity consistent with the predicted role of a developmental stage-specific promoter in transgenic tobacco plants.  相似文献   

17.
The level of heterogeneity and genetic variability of cells in a suspension of Arabidopsis thaliana cultured in vitro for more than seven years was studied. The considerable heterogeneity of the suspension in cell size was shown. As revealed by nuclear DNA cytophotometry, the suspension culture was mixoploid and the amount of DNA in the cells varied from 4 to 16 C. However, PCR with 6 RAPD- and 4 ISSR-primers and their intragroup combinations showed the lowest degree of variability of DNA markers. The genetic distances of clones obtained from a suspension culture of the parent plant were only 1.5%. Differences between the clones were identified with only one pair of 31 primer combinations tested, indicating low level of genetic heterogeneity of the suspension. The results showed that variations in the amount of DNA in the suspension culture cells are not accompanied by significant changes in the DNA sequence.  相似文献   

18.
19.
The cold-responsive (COR) genes play an important role in cold acclimation of higher plants. Here, a tight correlation between chloroplast functionality and COR15A expression, and the functional characterization of Arabidopsis COR15A involved in salt/osmotic stress, were revealed. COR15A gene is light inducible and expressed in light-grown seedlings. The expression level of COR15A was reduced when chloroplasts were damaged by norflurazon treatment. By using several albino mutants, seca1, secy1, and tic20, all of which exhibited severe defects in both structure and function of chloroplast, it was shown that the accumulation of COR15A mRNA depends on chloroplast functionality. Real-time RT-PCR and GUS-staining assays demonstrated that COR15A was induced by salt/osmotic stress partially via ABA. Overexpression of COR15A in Arabidopsis resulted in the seedlings displaying hypersensitivity to salt/osmotic stress. All these results suggest that plant acquire the ability to fully express COR15A only after the development of functional chloroplasts, COR15A may be involved in response to salt/osmotic stress during early stages of plant development.  相似文献   

20.
Trehalose is a non-reducing disaccharide that accumulates to large quantities in microbial cells, but in plants it is generally present in very low, barely-detectible levels. A notable exception is the desiccation-tolerant plant Selaginella lepidophylla, which accumulates very high levels of trehalose in both the hydrated and dehydrated state. As trehalose is known to protect membranes, proteins, and whole cells against dehydration stress, we have been interested in the characterization of the trehalose biosynthesis enzymes of S. lepidophylla; they could assist in engineering crop plants towards better stress tolerance. We previously isolated and characterized trehalose-6-phosphate synthases from Arabidopsis thaliana (desiccation sensitive) and S. lepidophylla (desiccation tolerant) and found that they had similar enzymatic characteristics. In this paper, we describe the isolation and characterization of trehalose-6-phosphate phosphatase from S. lepidophylla and show that its catalytic activities are also similar to those of its homolog in A. thaliana. Screening of an S. lepidophylla cDNA library using yeast trehalose biosynthesis mutants resulted in the isolation of a large number of trehalose biosynthesis genes that were of microbial rather than plant origin. Thus, we suggest that the high trehalose levels observed in S. lepidophylla are not the product of the plant but that of endophytes, which are known to be present in this plant. Additionally, the high trehalose levels in S. lepidophylla are unlikely to account for its desiccation tolerance, because its drought-stress-sensitive relative, S. moellendorffii, also accumulated high levels of trehalose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号