首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought is the most crucial environmental factor that limits productivity of many crop plants. Exploring novel genes and gene combinations is of primary importance in plant drought tolerance research. Stress tolerant genotypes/species are known to express novel stress responsive genes with unique functional significance. Hence, identification and characterization of stress responsive genes from these tolerant species might be a reliable option to engineer the drought tolerance. Safflower has been found to be a relatively drought tolerant crop and thus, it has been the choice of study to characterize the genes expressed under drought stress. In the present study, we have evaluated differential drought tolerance of two cultivars of safflower namely, A1 and Nira using selective physiological marker traits and we have identified cultivar A1 as relatively drought tolerant. To identify the drought responsive genes, we have constructed a stress subtracted cDNA library from cultivar A1 following subtractive hybridization. Analysis of?~1,300 cDNA clones resulted in the identification of 667 unique drought responsive ESTs. Protein homology search revealed that 521 (78?%) out of 667 ESTs showed significant similarity to known sequences in the database and majority of them previously identified as drought stress-related genes and were found to be involved in a variety of cellular functions ranging from stress perception to cellular protection. Remaining 146 (22?%) ESTs were not homologous to known sequences in the database and therefore, they were considered to be unique and novel drought responsive genes of safflower. Since safflower is a stress-adapted oil-seed crop this observation has great relevance. In addition, to validate the differential expression of the identified genes, expression profiles of selected clones were analyzed using dot blot (reverse northern), and northern blot analysis. We showed that these clones were differentially expressed under different abiotic stress conditions. The implications of the analyzed genes in abiotic stress tolerance are discussed in our study.  相似文献   

2.
以火炬松热胁迫cDNA文库的EST序列为材料,对EST序列进行聚类、拼接等处理后,再进行Blast同源比对以及基因GO注释分析。研究结果如下:从Forest TreeDB数据库中下载了火炬松热胁迫cDNA文库的所有EST序列,共4 283条。EST序列经CAP3拼接后,获得2 062个UniGene,其中934个Contig,1 128个Singletons。对UniGene进行同源检索,按照GO的分子功能、生物过程和细胞组分三个不同分类角度分类,被赋予功能的基因数累计达4 661个,但365个(17.7%)的序列与核酸和蛋白数据库无序列同源性,即17.7%为新发现的基因。经对所有具有功能的基因研究发现,受外界胁迫表达的抗逆相关基因含量较高。上述研究结果对于研究火炬松热胁迫基因表达特征与抗逆分子机制具有一定的借鉴价值,以及开发火炬松新分子标记与开展分子辅助育种具有一定的指导意义。  相似文献   

3.
Wheat is an important staple crop, and its productivity is severely constrained by drought stress (DS). An understanding of the molecular basis of drought tolerance is necessary for genetic improvement of wheat for tolerance to DS. The two-component system (TCS) serves as a common sensor-regulator coupling mechanism implicated in the regulation of diverse biological processes (including response to DS) not only in prokaryotes, but also in higher plants. In the latter, TCS generally consists of two signalling elements, a histidine kinase (HK) and a response regulator (RR) associated with an intermediate element called histidine phosphotransferase (HPT). Keeping in view the possible utility of TCS in developing water use efficient (WUE) wheat cultivars, we identified and characterized 62 wheat genes encoding TCS elements in a silico study; these included 7 HKs, 45 RRs along with 10 HPTs. Twelve of the 62 genes showed relatively higher alterations in the expression under drought. The quantitative RT-PCR (qRT-PCR)-based expression analysis of these 12 TCS genes was carried out in wheat seedlings of a drought sensitive (HD2967) and a tolerant (Dharwar Dry) cultivar subjected to either dehydration stress or cytokinin treatment. The expression of these 12 genes under dehydration stress differed in sensitive and tolerant genotypes, even though for individual genes, both showed either up-regulation or down-regulation. In response to the treatment of cytokinin, the expression of type-A RR genes was higher in the tolerant genotype, relative to that in the sensitive genotype, the situation being reverse for the type-B RRs. These results have been discussed in the context of the role of TCS elements in drought tolerance in wheat.  相似文献   

4.
5.
6.
Vacuolar Ca2+-transporters could play an important role for salt tolerance in rice (Oryza sativa L.) root. Here, we compared the expression profiles of putative vacuolar cation/H+ exchanger (CAX) and calmodulin-regulated autoinhibited Ca2+-ATPase (ACA) in rice roots of salt tolerant cv. Pokkali and salt sensitive cv. IR29. In addition to five putative vacuolar CAX genes in the rice genome, a new CAX gene (OsCAX4) has been annotated. In the present study, we isolated the OsCAX4 gene and showed that its encoded protein possesses a unique transmembrane structure and is potentially involved in transporting not only Ca2+ but also Mn2+ and Cu2+. These six OsCAX genes differed in their mRNA expression pattern in roots of tolerant versus sensitive rice cultivars exposed to salt stress. For example, OsCAX4 showed abundant expression in IR29 (sensitive) upon prolonged salt stress. The mRNA expression profile of four putative vacuolar Ca2+-ATPases (OsACA4-7) was also examined. Under control conditions, the mRNA levels of OsACA4, OsACA5, and OsACA7 were relatively high and similar among IR29 and Pokkali. Upon salt stress, only OsACA4 showed first a decrease in its expression in Pokkali (tolerant), followed by a significant increase. Based on these results, a role of vacuolar Ca2+ transporter for salt tolerance in rice root was discussed.  相似文献   

7.
8.
9.
10.
11.
本研究以日本通草蛉Chrysoperla nipponensis (Okamoto)为材料,采用Oligo(dT)引物定向克隆构建cDNA文库并进行EST序列测定,旨在以基因库的形式进行种质资源的保存,为其遗传改良奠定基础,并为探讨其分类地位提供分子依据。对该文库质量分析表明:库容量为1.0×106,重组率为80.0%,平均插入片段为512 bp。测序后最终成功得到323条表达序列标签(expressed sequence tags,ESTs)序列,经Phrap程序聚类拼接后得到236条单基因簇(unigene),包括86个重叠群(congtigs)和150个单拷贝(singlets)。使用NCBI中的BlastN和BlastX程序对236条ESTs进行本地化搜索,BlastN的结果表明:180条ESTs(76.3%)没有注解,56条ESTs(23.7%)与GenBank上公布的序列有较高的同源性,其中一条序列被确定为该种的16S rRNA基因,利用MEGA软件构建了基于该16S rRNA序列草蛉科的系统发育树,结果显示通草蛉属Chrysoperla与叉草蛉属Dichochrysa、玛草蛉属Mallada、草蛉属Chrysopa的亲缘关系比较近,这与传统分类相吻合。BlastX的比对结果为197条ESTs(83.5%)有功能注解,39条ESTs(16.5%)无注解或score值小于100。使用GO(gene ontology)数据库对236条ESTs序列进行功能注释,结果表明:142条ESTs(59.7%)有注解,并表达出40多种基因产物。  相似文献   

12.

Background

Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project.

Results

We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology.

Conclusion

We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals.  相似文献   

13.
14.
To enrich differentially expressed sequence tags (ESTs) for aluminum (Al) tolerance, cDNA subtraction libraries were generated from Al-stressed roots of two wheat (Triticum aestivum L.) nearisogenic lines (NILs) contrasting in Al-tolerance gene(s) from the Al-tolerant cultivar Atlas 66, using suppression subtractive hybridization (SSH). Expression patterns of the ESTs were investigated with nylon filter arrays containing 614 cDNA clones from the subtraction library. Gene expression profiles from macroarray analysis indicated that 25 ESTs were upregulated in the tolerant NIL in response to Al stress. The result from Northern analysis of selected upregulated ESTs was similar to that from macroarray analysis. These highly expressed ESTs showed high homology with genes involved in signal transduction, oxidative stress alleviation, membrane structure, Mg2 transportation, and other functions. Under Al stress, the Al-tolerant NIL may possess altered structure or function of the cell wall, plasma membrane, and mitochondrion. The wheat response to Al stress may involve complicated defense-related signaling and metabolic pathways.The present experiment did not detect any induced or activated genes involved in the synthesis of malate and other organic acids in wheat under Al-stress.  相似文献   

15.
16.
Maiti AK  Jorissen M  Bouvagnet P 《Genome biology》2001,2(7):research0026.1-research00269

Background

Immotile cilia syndrome (ICS) or primary ciliary dyskinesia (PCD) is an autosomal recessive disorder in humans in which the beating of cilia and sperm flagella is impaired. Ciliated epithelial cell linings are present in many tissues. To understand ciliary assembly and motility, it is important to isolate those genes involved in the process.

Results

Total RNA was isolated from cultured ciliated nasal epithelial cells after in vitro ciliogenesis and expressed sequenced tags (ESTs) were generated. The functions and locations of 63 of these ESTs were derived by BLAST from two public databases. These ESTs are grouped into various classes. One group has high homology not only with the mitochondrial genome but also with one or more chromosomal DNAs, suggesting that very similar genes, or genes with very similar domains, are expressed from both mitochondrial and nuclear DNA. A second class comprises genes with complete homology with part of a known gene, suggesting that they are the same genes. A third group has partial homology with domains of known genes. A fourth group, constituting 33% of the ESTs characterized, has no significant homology with any gene or EST in the database.

Conclusions

We have shown that sufficient information about the location of ESTs could be derived electronically from the recently completed human genome sequences. This strategy of EST localization should be significantly useful for mapping and identification of new genes in the forthcoming human genome sequences with the vast number of ESTs in the dbEST database.  相似文献   

17.
Catfishes are commercially important fish for both the fisheries and aquaculture industry. Clarias batrachus, an Indian catfish species is economically important owing to its high demand. A normalized cDNA library was constructed from spleen of the Indian catfish to identify genes associated with immune function. One thousand nine hundred thirty seven ESTs were submitted to the GenBank with an average read length of approximately 700 bp. Clustering analysis of ESTs yielded 1,698 unique sequences, including 184 contigs and 1,514 singletons. Significant homology to known genes was found by homology searches against data in GenBank in 576 (34 %) ESTs, including similarity to functionally annotated unigenes for 158 ESTs. Additionally, 433 ESTs revealed similarity to unigenes and ESTs in the dbEST but the remaining 658 EST sequences (39 %) did not match any sequence in GenBank. Of a total of 1,698 ESTs generated, 65 ESTs were found to be associated with immune functions. Gene Ontology and KEGG pathway analyses of C. batrachus ESTs collectively revealed a preponderance of immune relevant pathways apart from the presence of pathways involved in protein processing, localization, folding and protein degradation. This study constitutes first EST analysis of lymphoid organ in aquaculturally important Indian catfish species and could pave the way for further research of immune-related genes and functional genomics in this catfish.  相似文献   

18.
19.
20.
The effect of heat stress on soluble proteins extracted from leaf tissues of bread (Triticum aestivum cv. Gönen-98, tolerant; cv. Cumhuriyet-75, susceptible; genome ABD) and durum (Triticum durum cv. Ege-88, tolerant; cv. Ankara-98, susceptible; genome AB) wheat cultivars differing in sensitivity to high temperature was examined by two-dimensional gel electrophoresis. At acclimation (37°C) and acclimation→high temperature (37°C→50°C) treatments compared to control (25°C), evaluation of gels revealed 31 proteins to be differentially expressed in first leaves as a result of heat stress in heat-susceptible and heat-tolerant cultivars of bread and durum wheats. All of the increased or decreased proteins in amount, newly synthesized and/or disappeared were in low-molecular-weight (LMW, 16.1–24.0 kDa) and generally acidic character (pI 4.8–6.9). The responses of the four cultivars were compared: Twenty-two of 31 proteins were detected as newly synthesized LMW heat shock proteins (LMW HSPs = small HSPs). The number of these sHSPs was different in cultivars which have the same genome. In addition, the number of the sHSPs in heat-tolerant cultivars was higher than in heat-susceptible cultivars. Some of the sHSPs were specific to cultivar. Most of the sHSPs synthesized at 37°C were also detected at 37°C→50°C treatment. It is suggested that sHSPs have special importance in two points: Firstly, sHSPs in cultivars showed abundance and diversity. Secondly, these proteins may play an important role in the acquiring of thermal tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号