首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect on arachidonate metabolism of two compounds (BW755C and benoxaprofen) which have been reported to inhibit 5' lipoxygenase in leukocytes has been evaluated in human polymorphonuclear leukocytes (PMN) stimulated with the calcium ionophore A23187 and serum-treated zymosan (STZ). The syntheses of leukotriene B4 (LTB4) and thromboxane B2 (TXB2) from endogenous substrate were determined by specific radioimmunoassays as indicators of 5' lipoxygenase and cyclo-oxygenase activity in the PMN respectively. Benoxaprofen inhibited the synthesis of leukotriene B4 by human PMN stimulated with the calcium ionophore A23187, but it was approximately 5 times less potent than BW755C. However, benoxaprofen (IC50 1.6 X 10(-4)M) was approximately 100 times less potent than BW755C (IC50 1.7 X 10(-6)M) at inhibiting leukotriene B4 synthesis induced by serum-treated zymosan. Both drugs inhibited thromboxane synthesis by leukocytes stimulated with A23187 or serum-treated zymosan at similar concentrations (approximately 5 X 10(-6)M). The data obtained using STZ as stimulus are consistent with previous in vivo studies and indicate that benoxaprofen is a relatively selective inhibitor of cyclo-oxygenase. However, this selectivity was far less apparent when A23187 was used as a stimulus to release the eicosanoids which suggests that this inhibition could be via an indirect mechanism and therefore A23187 should be used with caution as a stimulus of 5' lipoxygenase for evaluating inhibitors of eicosanoid synthesis.  相似文献   

2.
Essential fatty acid (EFA) deficiency, induced by elimination of the dietary (n-6) fatty acids, has been shown to limit inflammatory cell influx and consequent enhanced eicosanoid production in experimental glomerulonephritis and hydronephrosis. To determine whether EFA-deficiency exerts anti-inflammatory effects following left ventricular myocardial infarction (LVMI), male weanling rabbits were fed EFA-deficient diet for 3 months prior to 60 minutes of distal left circumflex coronary artery occlusion followed by reperfusion. One and 4 days later, corresponding to infiltration of cardiac tissue with polymorphonuclear (PMN) and mononuclear leukocytes respectively, infarcted hearts were buffer perfused and stimulated to produce eicosanoids with f-met-leu-phe or bradykinin. One day following LVMI, the hearts of EFA-deficient rabbits demonstrated a marked suppression of PMN infiltration and eicosanoid production relative to controls. Four days following myocardial infarction, no differences were observed in mononuclear cell invasion, collagen deposition, or eicosanoid production between EFA-deficient and normal hearts. Our data show that EFA-deficiency inhibits PMN influx and consequent enhanced eicosanoid production without affecting the later appearance of mononuclear cells, collagen deposition, or eicosanoid production. Recent studies have shown that suppression of PMN invasion limits the extent of tissue damage following LVMI. Selective inhibition of PMN infiltration is possible and may be useful in the management of acute myocardial infarction.  相似文献   

3.
The effect on arachidonate metabolism of two compounds (BW755C and benoxaprofen) which have been reported to inhibit 5′ lipoxygenase in leukocytes has been evaluated in human polymorphonuclear leukocytes (PMN) stimulated with the calcium ionophore A23187 and serum-treated zymosan (STZ). The syntheses of leukotriene B4 (LTB4) and thromboxane B2 (TXB2) from endogenous substrate were determined by specific radioimmunoassays as indicators of 5′ lipoxygenase and cyclo-oxygenase activity in the PMN respectively. Benoxaprofen inhibited the synthesis of leukotriene B4 by human PMN stimulated with the calcium ionophore A23187, but it was approximately 5 times less potent than BW755C. However, benoxaprofen (IC50 1.6 × 10−4M) was approximately 100 times less potent than BW755C (IC50 1.7 × 10−6M) at inhibiting leukotriene B4 synthesis induced by serum-treated zymosan. Both drugs inhibited thromboxane synthesis by leukocytes stimulated with A23187 or serum-treated zymosan at similar concentrations (approximately 5 × 10−6M). The data obtained using STZ as stimulus are consistent with previous studies and indicate that benoxaprofen is a relatively selective inhibitor of cylco-oxygenase. However, this selectivity was far less apparent when A23187 was used as a stimulus to release the eicosanoids which suggests that this inhibition could be via an indirect mechanism and therefore A23187 should be used with caution as a stimulus of 5′ lipoxygenase for evaluating inhibitors of eicosanoid synthesis.  相似文献   

4.
Essential fatty acid (EFA) deficiency has been shown to protect against the glomerulonephritis in a murine model of systemic lupus erythematosus. Since macrophages are an important cellular constituent of the inflammatory lesion, the effects of EFA deficiency on the eicosanoid metabolism and function of these cells were determined. EFA-deficient macrophages exhibited a depletion of phospholipid arachidonate and an accumulation of 20:3(n-9); phosphatidylinositol was the phospholipid most affected. When these macrophages were stimulated with unopsonized zymosan, they produced markedly less leukotriene C4 and B4 than control macrophages. EFA-deficient macrophages also synthesized leukotriene C3 from endogenous 20:3(n-9). No leukotriene B3 was detected. In contrast to the effects on leukotriene production, prostaglandin and thromboxane production were only minimally affected by EFA deficiency. When challenged with zymosan, EFA-deficient macrophages released less arachidonate relative to control macrophages and released half again as much 20:3(n-9) as arachidonate. Release of arachidonate from phosphatidylcholine in the EFA-deficient cells was highly selective for arachidonate; however, release of arachidonate from phosphatidylinositol was depressed relative to control and was not selective. Incubation of macrophages with exogenous arachidonate and 20:3(n-9) established that 20:3(n-9) decreased leukotriene C4 and B4 synthesis from arachidonate but did not affect prostaglandin production. To determine the functional effects of the deficiency state, receptor-mediated pinocytosis and phagocytosis were also examined in EFA-deficient cells. EFA-deficient macrophages exhibited a marked reduction in receptor-mediated pinocytosis. Phagocytosis, however, was unaffected by the deficiency state. These effects on macrophage eicosanoid metabolism and function may comprise a significant component of the anti-inflammatory effect of EFA deficiency.  相似文献   

5.
Dietary polyunsaturated fatty acid modulation exerts a beneficial effect in immune-mediated glomerulonephritis. To elucidate the mechanisms underlying this phenomenon, the effects of essential fatty acid (EFA) deficiency on the heterologous phase of nephrotoxic nephritis in rats (induced by the injection of a rabbit antiglomerular basement membrane antibody) were studied. The heterologous phase of nephrotoxic nephritis was characterized by an invasion of leukocytes into the glomerulus. Polymorphonuclear neutrophils predominated early on (3 h), whereas macrophages predominated at 24 and 72 h. EFA deficiency selectively prevented the influx of macrophages into the glomerulus. The invasion of polymorphonuclear neutrophils, in contrast, was unaffected. The influx of leukocytes into the glomerulus during nephritis was accompanied by a marked enhancement (10- to 40-fold) in glomerular thromboxane and leukotriene B4 production. EFA deficiency largely attenuated this change. Renal dysfunction during the heterologous phase of nephritis was manifested as azotemia, polyuria, sodium retention, and proteinuria. With EFA deficiency, polyuria, azotemia, and sodium retention were not seen. Proteinuria was reduced by approximately 85%. To address whether the lack of macrophage migration into the glomerulus in the context of nephritis with EFA deficiency might be due to a functional defect in macrophage migration, the chemotactic responsiveness of EFA-deficient macrophages was examined. EFA-deficient macrophages displayed normal chemotactic migration toward activated C. In sum, EFA deficiency prevents the invasion of macrophages into the glomerulus in nephrotoxic nephritis and attenuates the accompanying metabolic and functional alterations, but does not affect macrophage chemotactic responsiveness. Alterations in macrophage elicitation and lipid mediator generation by inflamed glomeruli thus appear to be central to the salutary effect of dietary polyunsaturated fatty acid modification on glomerulonephritis.  相似文献   

6.
Dietary polyunsaturated fatty acid manipulation exerts a strikingly protective effect in models of tissue inflammation and injury. A critical element of this effect appears to revolve around leukocyte trafficking but underlying mechanisms are ill understood. In the current study it was observed that essential fatty acid (EFA) deficiency markedly impaired the capacity of resident macrophages to spread and adhere. This effect was not a simple function of the alteration of membrane fatty acid composition. Elicited EFA-deficient macrophages were equally adherent to elicited control cells, despite the fact that they were equally EFA-deficient relative to resident EFA-deficient cells. With respect to the mechanism underlying defective macrophage adherence in EFA deficiency, no change in the expression of cell surface adherence molecules (Fc receptor, Mac-1, or LFA-1) was noted with the deficiency state. Also, an adherence defect could not be induced in normal cells pharmacologically with cyclooxygenase blockade, lipoxygenase blockade, or a platelet-activating factor receptor antagonist. In contrast, phospholipase inhibition was able to induce a spreading and adherence defect in resident macrophages similar to that seen with EFA deficiency. Using several phospholipase inhibitors, a correlation between phospholipase inhibition and impairment of adherence was observed. Adding back exogenous fatty acids to cells after phospholipase inhibition demonstrated that normal adherence was reconstituted with arachidonate. This alteration in macrophage spreading and adherence with EFA deficiency may be an important component of the anti-inflammatory effect of dietary polyunsaturated fatty acid manipulation. Additionally, these results suggest that arachidonate may be an intracellular mediator of leukocyte adherence.  相似文献   

7.
The synthesis and release of leukotriene B4 (LTB4) from canine polymorphonuclear leukocytes (PMNs) was characterized in terms of incubation time, temperature and effects of calcium ionophore A23187 concentrations. Maximal LTB4 concentrations were determined when canine PMNs were incubated with 10 microM A23187. Increasing LTB4 concentrations were determined through 10 min incubation. The maximal LTB4 concentrations (310 +/- 30 pg LTB4/2.5 x 10(5) cells) determined at 10 min did not change through a 55 min incubation period. Greater LTB4 concentrations were synthesized by canine PMNs at 37 degrees C (268 +/- 12 pg LTB4/2.5 x 10(5) cells) than at 25 degrees C (206 +/- 11 pg LTB4/2.5 x 10(5) cells) or 5 degrees C (59 +/- 3 pg LTB4/2.5 x 10(5) cells). The synthesis of LTB4 in canine PMNs was inhibited by incubation of the cells with either of two known lipoxygenase inhibitors, BWA4C or BW755C. BWA4C inhibited LTB4 synthesis with an approximate IC50 = 0.1 microM, whereas BW755C inhibited LTB4 synthesis with an approximate IC50 = 10 microM. These results indicate canine PMNs have the capability to synthesize large quantities of LTB4 when stimulated with calcium ionophore A23187. Furthermore, the 5-lipoxygenase inhibitors BWA4C, an acetohydroxyamic acid, and BW755C, a phenyl pyrazoline, can readily inhibit LTB4 synthesis in canine PMNs.  相似文献   

8.
Directed migration of polymorphonuclear neutrophils (PMN) is required for adequate host defense against invading organisms and leukotriene B(4) (LTB(4)) is one of the most potent PMN chemoattractants. LTB(4) exerts its action via binding to BLT1, a G protein-coupled receptor. G protein-coupled receptors are phosphorylated by G protein-coupled receptor kinases (GRK) in an agonist-dependent manner, resulting in receptor desensitization. Recently, it has been shown that the human BLT1 is a substrate for GRK6. To investigate the physiological importance of GRK6 for inflammation and LTB(4) signaling in PMN, we used GRK6-deficient mice. The acute inflammatory response (ear swelling and influx of PMN into the ear) after topical application of arachidonic acid was significantly increased in GRK6(-/-) mice. In vitro, GRK6(-/-) PMN showed increased chemokinetic and chemotactic responses to LTB(4). GRK6(-/-) PMN respond to LTB(4) with a prolonged increase in intracellular calcium and prolonged actin polymerization, suggesting impaired LTB(4) receptor desensitization in the absence of GRK6. However, pre-exposure to LTB(4) renders both GRK6(-/-) as well as wild-type PMN refractory to restimulation with LTB(4), indicating that the presence of GRK6 is not required for this process to occur. In conclusion, GRK6 deficiency leads to prolonged BLT1 signaling and increased neutrophil migration.  相似文献   

9.
The cellular and extracellular distribution of leukotriene B4 (LTB4) generated in human neutrophilic polymorphonuclear leukocytes (PMN) stimulated with unopsonized zymosan has been compared with that generated in PMN activated by the calcium ionophore. The amounts of extracellular and intracellular LTB4 were quantitated by radioimmunoassay. The authenticity of the immunoreactive LTB4 was confirmed by the elution of a single immunoreactive peak after reverse phase-high performance liquid chromatography (RP-HPLC) at the retention time of synthetic LTB4, by the identical elution time of a peak of radiolabeled product derived from [3H]arachidonic acid-labeled PMN with the immunoreactive product, and by the comparable chemotactic activity on a weight basis of immunoreactive LTB4 and synthetic LTB4 standard. Under optimal conditions of stimulation by unopsonized zymosan, more than 78% of the generated immunoreactive LTB4 remained intracellular, whereas with optimal activation by the ionophore, less than 8.6% of immunoreactive LTB4 was retained. Resolution by RP-HPLC of the products from the supernatants and cell extracts of [3H]arachidonic acid-labeled PMN stimulated with unopsonized zymosan and those stimulated with calcium ionophore allowed identification and measurement of 5-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-LTB4, LTB4, and omega oxidation products of LTB4 by radioactivity. With zymosan stimulation of PMN, 5-HETE and the 6-trans-LTB4 diastereoisomers were not released, LTB4 was partially released, and the omega oxidation products of LTB4 were preferentially extracellular in distribution. In contrast, with ionophore stimulation, only 5-HETE had any duration of intracellular residence being equally distributed intra- and extracellularly throughout the 30-min period of observation; 6-trans-LTB4, LTB4, and the omega oxidation products of LTB4 were retained at less than 19%. The respective distributions of 5-HETE after zymosan and ionophore stimulation were not altered by the introduction of albumin to the reaction mixtures to prevent reacylation, or by hydrolysis of the cell extract to uncover any product that had been reacylated. The finding that stimulation of PMN with unopsonized zymosan results in the cellular retention of 5-lipoxygenase products suggests that release of these metabolites may be an event that is regulated separately from their generation.  相似文献   

10.
Acute lung injury (ALI) is identified with the targeting/sequestration of polymorphonuclear leukocytes (PMN) to the lung. Instrumental to PMN targeting are chemokines [e.g., macrophage inflammatory protein-2 (MIP-2), keratinocyte-derived chemokine (KC), etc.] produced by macrophage, PMN, and other resident pulmonary cells. However, the relative contribution of resident pulmonary macrophages as opposed to PMN in inducing ALI is poorly understood. We therefore hypothesize that depletion of peripheral blood PMN and/or the oblation of a macrophage-mediated PMN chemokine signal (via macrophage deficiency) will reduce the inflammation and ALI observed in mice following hemorrhage (Hem) and subsequent sepsis (CLP) in our murine model of ALI. To examine this we pretreated mice with either 500 microg anti-mouse Gr1 antibody/animal (to deplete PMN) or subjected mice deficient in mature macrophage (B6C3Fe-a/a-CsF1op) to Hem (90 min at 35 +/- 5 mmHg) followed by resuscitation. Twenty-four hours post-Hem, mice were subjected to CLP and killed 24 h later, and lung tissue samples were collected. Our data showed that in the absence of either peripheral blood PMN or mature tissue macrophages there was a suppression of IL-6, KC, and MIP-2 levels in lung tissue from Hem/CLP mice as well as a reduction in PMN influx to the lung and lung injury (bronchoalveolar lavage fluid protein). In contrast, lung tissue IL-10 and TNF-alpha levels were suppressed in the macrophage-deficient Hem/CLP mice compared with PMN-depleted Hem/CLP mice. Together, these data suggest that both the PMN and the macrophage are required to induce inflammation seen here, however, macrophage not PMN regulate the release of IL-10, independent of local changes in TNF.  相似文献   

11.
The lipoxins (LX) are autacoids that act within a local inflammatory milieu to dampen neutrophil recruitment and promote resolution. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) and 15-oxoprostaglandin 13-reductase, also termed leukotriene B(4) 12-hydroxydehydrogenase (PGR/LTB(4)DH), are two enzymatic activities appreciated for their roles in the metabolism of prostaglandins and LTB(4). Here, we determined whether these oxidoreductases also catalyze the conversion of lipoxin A(4) (LXA(4)) and assessed the activities of these LXA(4) metabolites. 15-Oxo-LXA(4) was generated by incubating LXA(4) with 15-PGDH and NAD(+) for studies of its further conversion. PGR/LTB(4)DH catalyzed the NADH-dependent reduction of 15-oxo-LXA(4) to yield 13,14-dihydro-15-oxo-LXA(4). With NADH as a cofactor, 15-PGDH acted as a 15-carbonyl reductase and catalyzed the conversion of 13,14-dihydro-15-oxo-LXA(4) to 13, 14-dihydro-LXA(4). Human polymorphonuclear leukocytes (PMN) exposed to native LXA(4), 15-oxo-LXA(4), or 13,14-dihydro-LXA(4) did not produce superoxide anions. At concentrations where LXA(4) and a metabolically stable LXA(4) analog potently inhibited leukotriene B(4)-induced superoxide anion generation, the further metabolites were devoid of activity. Neither 15-oxo-LXA(4) nor 13, 14-dihydro-LXA(4) effectively competed with (3)H-labeled LXA(4) for specific binding to recombinant LXA(4) receptor (ALXR). In addition, introducing recombinant PGR/LTB(4)DH into a murine exudative model of inflammation increased PMN number by approximately 2-fold, suggesting that this enzyme participates in the regulation of PMN trafficking. These results establish the structures of LXA(4) further metabolites and indicate that conversion of LXA(4) to oxo- and dihydro- products represents a mode of LXA(4) inactivation in inflammation. Moreover, they suggest that these eicosanoid oxidoreductases have multifaceted roles controlling the levels of specific eicosanoids involved in the regulation of inflammation.  相似文献   

12.
Essential fatty acid (EFA) deficiency in mice induces fat malabsorption. We previously reported indications that the underlying mechanism is located at the level of the intestinal mucosa. We have investigated the effects of EFA deficiency on small intestinal morphology and function. Mice were fed an EFA-deficient or control diet for 8 wk. A 72-h fat balance, the EFA status, and small intestinal histology were determined. Carbohydrate absorptive and digestive capacities were assessed by stable isotope methodology after administration of [U-(13)C]glucose and [1-(13)C]lactose. The mRNA expression and enzyme activity of lactase, and concentrations of the EFA linoleic acid (LA) were measured in small intestinal mucosa. Mice fed the EFA-deficient diet were markedly EFA-deficient with a profound fat malabsorption. EFA deficiency did not affect the histology or proliferative capacity of the small intestine. Blood [13C6]glucose appearance and disappearance were similar in both groups, indicating unaffected monosaccharide absorption. In contrast, blood appearance of [13C]glucose, originating from [1-(13)C]lactose, was delayed in EFA-deficient mice. EFA deficiency profoundly reduced lactase activity (-58%, P<0.01) and mRNA expression (-55%, P<0.01) in mid-small intestine. Both lactase activity and its mRNA expression strongly correlated with mucosal LA concentrations (r=0.77 and 0.79, respectively, P<0.01). EFA deficiency in mice inhibits the capacity to digest lactose but does not affect small intestinal histology. These data underscore the observation that EFA deficiency functionally impairs the small intestine, which in part may be mediated by low LA levels in the enterocytes.  相似文献   

13.
M E Goldyne  L Rea 《Prostaglandins》1987,34(6):783-795
The ability of leukotriene B4 (LTB4) to influence T cell and natural killer (NK) cell functions makes the question of LTB4 generation by these cells important to address. Consequently, LTB4 generation was evaluated in a human (Jurkat), and in a murine (EL-4) T cell line as well as in a rat NK cell line (RNK-16). Incubation of each of the 3 cell lines with [1-14C]arachidonic acid alone or in the presence of phytohemagglutinin (PHA), of calcium ionophore A23187, or of concanavalin A (Con A) plus the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) failed to generate radiolabelled LTB4 or other eicosanoids as determined by thin layer radiochromatography. Using two different radioimmunoassays for LTB4 also failed to demonstrate the generation of LTB4 under basal or stimulated conditions. These results support earlier studies that demonstrate that T cells are not capable of de novo synthesis of prostaglandins, thromboxanes, or leukotrienes and also provide evidence that NK cells also do not have the capacity to generate LTB4 or other eicosanoids. Our findings are also critically discussed in relation to studies claiming eicosanoid synthesis by T cells.  相似文献   

14.
Leukotriene B(4) (LTB(4)) biosynthesis by polymorphonuclear leukocytes (PMNs) is an important factor of inflammatory responses. PMNs also release LTA(4), an unstable intermediate that can be taken up by neighboring cells and metabolized into LTC(4). Most studies of LT synthesis have been carried out using human PMNs, but very little information is available about mouse PMNs. Mouse bone marrow PMNs were found to synthesize eicosanoids upon stimulation with A23187, fMLP, or zymosan. The major eicosanoids produced are LTB(4) and 5-hydroxyeicosatetraenoic acid, with some nonenzymatic products of LTA(4) hydrolysis. No cysteinyl leukotrienes were produced, in contrast to what was observed with human blood neutrophil preparations. Human megakaryoblast-like MEG-01 cells synthesized thromboxane B(2) and prostaglandin E(2) in response to A23187 but produced no 5-lipoxygenase (5-LO)-derived eicosanoids. When mouse bone marrow cells (mBMCs) and MEG-01 cells were stimulated during coincubation, LTC(4) and LTD(4) were produced. Mouse peritoneal macrophages from 5-LO-deficient mice were able to synthesize LTC(4) when incubated with mBMCs from wild-type mice, demonstrating transcellular exchange of LTA(4) from mBMCs into murine peritoneal macrophages. These data demonstrate that murine bone marrow PMNs are a valid model for the study of LT biosynthesis, which now offers the possibility to investigate specific biochemical pathways through the use of transgenic mice.  相似文献   

15.
Essential fatty acid (EFA) deficiency in mice decreases plasma triglyceride (TG) concentrations and increases hepatic TG content. We evaluated in vivo and in vitro whether decreased hepatic secretion of TG-rich very low-density lipoprotein (VLDL) contributes to this consequence of EFA deficiency. EFA deficiency was induced in mice by feeding an EFA-deficient (EFAD) diet for 8 wk. Hepatic VLDL secretion was quantified in fasted EFAD and EFA-sufficient (EFAS) mice using the Triton WR-1339 method. In cultured hepatocytes from EFAD and EFAS mice, VLDL secretion into medium was measured by quantifying [(3)H]-labeled glycerol incorporation into TG and phospholipids. Hepatic expression of genes involved in VLDL synthesis and clearance was measured, as were plasma activities of lipolytic enzymes. TG secretion rates were quantitatively similar in EFAD and EFAS mice in vivo and in primary hepatocytes from EFAD and EFAS mice in vitro. However, EFA deficiency increased the size of secreted VLDL particles, as determined by calculation of particle diameter, particle sizing by light scattering, and evaluation of the TG-to-apoB ratio. EFA deficiency did not inhibit hepatic lipase and lipoprotein lipase activities in plasma, but increased hepatic mRNA levels of apoAV and apoCII, both involved in control of lipolytic degradation of TG-rich lipoproteins. EFA deficiency does not affect hepatic TG secretion rate in mice, but increases the size of secreted VLDL particles. Present data suggest that hypotriglyceridemia during EFA deficiency is related to enhanced clearance of altered VLDL particles.  相似文献   

16.
Injection of nephrotoxic serum into rats results in glomerular inflammation and proteinuria. Rats placed on an essential fatty acid (EFA)-deficient diet are protected from the glomerular macrophage infiltration and the ensuing proteinuria. To account for this protection, we studied EFA-deficient rats to determine if there were defects in macrophage chemotaxis. We also investigated the possibility that EFA deficiency diminishes the production of a glomerular chemoattractant for monocytes. In microchemotaxis assays EFA-deficient macrophages migrated normally. EFA-deficient serum did not appear to contain a chemotactic inhibitor. Cultured glomeruli from control and control nephritic rats were found to elaborate a chemoattractant for monocytes. This chemoattractant activity was markedly enhanced after induction of nephritis, was heat stable, was not altered by inhibition of cyclooxygenase, lipoxygenase, or platelet-activating factor, and did not depend on C or the glomerular inflammatory cell infiltrate. EFA-deficient glomeruli harvested from animals receiving injections with nephrotoxic serum produced markedly less chemoattractant activity than glomeruli from control nephritic animals. Lipid extraction of nephritic glomeruli from control animals yielded chemoattractant activity in the organic phase. Extracts of EFA-deficient nephritic glomeruli had considerably less activity. We propose that EFA deficiency attenuates glomerular inflammation by inhibiting the ability of glomeruli to produce a specific lipid monocyte chemoattractant after exposure to a nephritic stimulus.  相似文献   

17.
The generation of the 5-lipoxygenase product, leukotriene B4 (LTB4) by human mononuclear phagocytes (monocytes) following incubation with 25 different uropathogenic strains of Escherichia coli correlated with the haemolytic activity of the strains (r = 0.572, P less than 0.01). LTB4 generation by human neutrophils (PMN), however, was unrelated to this haemolytic potential (r = 0.164). In contrast, both prelabelled monocytes and PMN were stimulated by haemolytic strains of E. coli and by haemolytic culture supernatants to release significant amounts of [3H]arachidonic acid. There was a significant correlation between haemolytic activity and [3H]arachidonic acid release generated by individual strains from monocytes (r = 0.804, P less than 0.001) and PMN (r = 0.888, P less than 0.001). In addition, nonhaemolytic strains but not their culture supernatants were capable of causing slow release of both [3H]arachidonic acid and LTB4 from PMN and mononuclear cells. These results suggest that both the possession of haemolytic activity, and the direct interaction of bacteria with the leukocyte surface are mechanisms by which uropathogenic strains of E. coli may cause the release and metabolism of arachidonic acid. In addition, there was synergistic augmentation by nonhaemolytic bacteria of the PMN LTB4 response to haemolytic culture supernatants or to low doses of the calcium ionophore A23187. These results support an ionophore-like mechanism for the activation of the cell by haemolysin. LTB4 generation by PMN incubated with haemolytic supernatants was also augmented by particulate zymosan in a manner dependent on the dose of zymosan, suggesting that the direct interaction of E. coli with PMN may involve an activation mechanism similar to that for zymosan. These results demonstrate differing responses of peripheral mononuclear cells and PMN from the same donors to identical strains of E. coli and suggest that the generation of the potent chemotactic agent LTB4 in response to E. coli infection in vivo need not depend solely on the elaboration of cytotoxic haemolysins by individual strains.  相似文献   

18.
Incubation of human leukocytes with opsonized zymosan or IgG immune complexes led to a time dependent release of leukotrienes (LT) B4 and C4. After 3-4 min, the levels of LTB4 were 93 and 35 pmol/3*10(7) cells, respectively [corrected]. These amounts were 2-4 times lower than those released by leukocytes stimulated with the calcium ionophore A 23187. The levels of LTC4 were 8 and 20 times lower than those of LTB4 after incubation with opsonized zymosan or immune complexes, respectively. Heat-inactivation of the serum prior to zymosan coating decreased the effect of opsonized zymosan. Uncoated zymosan was an even weaker stimulus of leukotriene formation. These results suggest that both complement factors and immunoglobulins play a pivotal role in activating leukotriene synthesis in a mixed suspension of human leukocytes.  相似文献   

19.
This study investigates the effect of platelet/neutrophil interactions on eicosanoid production. Human platelets and polymorphonuclear leukocytes (PMNs) were stimulated alone and in combination, with calcium ionophore A23187 and the resulting eicosanoids 12S-hydroxy-(5Z,8Z,10E,14Z)-eicosatetraenoic acid (12-HETE), 12S-heptadecatrienoic acid (HHT), 5S,12R-dihydroxy-(6Z,8E,10E,14Z)-eicosatetraenoi c acid (LTB4) and 5S-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE) were measured by HPLC. The addition of PMNs to platelet suspensions caused a 104% increase in 12-HETE, a product of 12-lipoxygenase activity, but had only a modest effect on the cyclooxygenase product HHT (increase of 18%). By using PMNs labelled with [14C]arachidonic acid it was shown that the increases in these platelet eicosanoids could be accounted for by translocation of released arachidonic acid from PMNs to platelets and its subsequent metabolism. The observation that 12-lipoxygenase was about five times more efficient than cyclooxygenase at utilising exogenous arachidonic acid during the platelet/PMN interactions was confirmed in experiments in which platelets were stimulated with A23187 in the presence of [14C]arachidonic acid. Stimulations of platelets with thrombin in the presence of PMNs resulted in a decrease in 12-HETE and HHT levels of 40% and 26%, respectively. The presence of platelets caused a small increase in neutrophil LTB4 output but resulted in a decrease in 5-HETE production of 43% during stimulation with A23187. This study demonstrates complex biochemical interactions between platelets and PMNs during eicosanoid production and provides evidence of a mechanism to explain the large enhancement in 12-HETE production.  相似文献   

20.
In this study we have determined the role of endogenous interleukin (IL)-10 on leucocyte recruitment and production of the CC chemokine macrophage inflammatory protein-1alpha (MIP-1alpha) in a murine model of acute inflammation. Intraperitoneal injection of zymosan produced a dose-dependent cellular infiltration which was concomitant with MIP-1alpha release in the lavage fluids. Release of this chemokine had a functional role since treatment of mice with a specific anti-MIP-1alpha antibody reduced both neutrophil and monocyte accumulation into the peritoneal cavity. An unexpected increase in cell influx and MIP-1alpha production was measured following depletion of resident peritoneal macrophages, as achieved by a 3-day liposome treatment. A similar result was obtained when the zymosan peritonitis response was elicited in IL-10 knock-out mice. In summary we propose a functional cross talk between endogenous IL-10 and this CC chemokine during the host inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号