首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The toxicity of chlorinated aliphatic hydrocarbons on acetoclastic methanogens in anaerobic granular sludge was determined using a standardized anaerobic bioassay method. Most of the chloroaliphatics tested were strong inhibitors of methanogenesis. Tri- and tetrachloride derivatives of methane and ethane were the most highly toxic compounds tested, with concentrations of less than 18 mg/l resulting in 50% inhibition (IC50) of the methanogenic activity. Dichlorinated compounds were less toxic, with IC50 values ranging from 40 mg/l to 100 mg/l. On the other hand, perchlorinated derivatives of ethane and ethene were scarcely inhibitory at concentrations near their maximum water solubility. The toxicity caused by chlorinated aliphatic hydrocarbons was reversible. The comparison of structurally related compounds indicated that unsaturated chloroaliphatics were less toxic than their saturated counterparts. A reverse correlation between the electric dipole moment of these compounds and their methanogenic toxicity is discussed. Received: 9 July 1996 / Received revision: 11 October 1996 / Accepted: 18 October 1996  相似文献   

2.
3.
The relationship between biodiversity and ecosystem stability is poorly understood in microbial communities. Biofilm communities in small bioreactors called microbial electrolysis cells (MEC) contain moderate species numbers and easy tractable functional traits, thus providing an ideal platform for verifying ecological theories in microbial ecosystems. Here, we investigated the resilience of biofilm communities with a gradient of diversity, and explored the relationship between biodiversity and stability in response to a pH shock. The results showed that all bioreactors could recover to stable performance after pH disturbance, exhibiting a great resilience ability. A further analysis of microbial composition showed that the rebound of Geobacter and other exoelectrogens contributed to the resilient effectiveness, and that the presence of Methanobrevibacter might delay the functional recovery of biofilms. The microbial communities with higher diversity tended to be recovered faster, implying biofilms with high biodiversity showed better resilience in response to environmental disturbance. Network analysis revealed that the negative interactions between the two dominant genera of Geobacter and Methanobrevibacter increased when the recovery time became longer, implying the internal resource or spatial competition of key functional taxa might fundamentally impact the resilience performances of biofilm communities. This study provides new insights into our understanding of the relationship between diversity and ecosystem functioning.  相似文献   

4.
Insects of the family Chironomidae, also known as chironomids, are distributed worldwide in a variety of water habitats. These insects display a wide range of tolerance toward metals and organic pollutions. Bacterial species known for their ability to degrade toxicants were identified from chironomid egg masses, leading to the hypothesis that bacteria may contribute to the survival of chironomids in polluted environments. To gain a better understanding of the bacterial communities that inhabit chironomids, the endogenous bacteria of egg masses and larvae were studied by 454-pyrosequencing. The microbial community of the egg masses was distinct from that of the larval stage, most likely due to the presence of one dominant bacterial Firmicutes taxon, which consisted of 28% of the total sequence reads from the larvae. This taxon may be an insect symbiont. The bacterial communities of both the egg masses and the larvae were found to include operational taxonomic units, which were closely related to species known as toxicant degraders. Furthermore, various bacterial species with the ability to detoxify metals were isolated from egg masses and larvae. Koch-like postulates were applied to demonstrate that chironomid endogenous bacterial species protect the insect from toxic heavy metals. We conclude that chironomids, which are considered pollution tolerant, are inhabited by stable endogenous bacterial communities that have a role in protecting their hosts from toxicants. This phenomenon, in which bacteria enable the continued existence of their host in hostile environments, may not be restricted only to chironomids.  相似文献   

5.
Problems with deflocculation and solids separation in biological wastewater treatment systems are linked to fluctuations in physicochemical conditions. This study examined the composition of activated sludge bacterial communities in lab-scale sequencing batch reactors treating bleached kraft mill effluent, under transient temperature conditions (30 to 45 °C) and their correlation to sludge settleability problems. The bacterial community composition of settled and planktonic biomass samples in the reactors was monitored via denaturing gradient gel electrophoresis of 16S ribosomal RNA gene fragments. Our analysis showed that settled biomass has a different community composition from the planktonic biomass (49 ± 7% difference based on Jaccard similarity coefficients; p < 0.01). During times of poor sludge compression, the settled and planktonic biomass became more similar. This observation supports the hypothesis that settling problems observed were due to deflocculation of normally settling flocs rather than the outgrowth of non-settling bacterial species.  相似文献   

6.
The effect of configuration of activated sludge systems on heavy metal toxicity was investigated. Two bench-scale completely mixed activated sludge systems were operated identically in order to determine the toxic effects of Cr(VI), Zn(II) and industrial wastewater on the activated sludge biomass. One system was operated with an aerobic selector and the other without. Batch experiments based on OECD 209 (Organisation for Economic Cooperation and Development) were performed using a respirometer to find out potential toxicity reduction effect of an aerobic selector. The IC50 (concentration of a chemical that exhibits 50% respiration inhibition) values of Cr(VI), Zn(II) and industrial wastewater in the activated sludge were determined. Results indicated that the heavy metals and industrial wastewater caused less inhibitory effect on the selector activated sludge system in comparison to the conventional activated sludge system. Cr(VI) was found to exert higher inhibition on both systems.  相似文献   

7.
Protozoan predators form an essential component of activated sludge communities that is tightly linked to wastewater treatment efficiency. Nonetheless, very little is known how protozoan predation is channelled via bacterial communities to affect ecosystem functioning. Therefore, we experimentally manipulated protozoan predation pressure in activated-sludge communities to determine its impacts on microbial diversity, composition and putative functionality. Different components of bacterial diversity such as taxa richness, evenness, genetic diversity and beta diversity all responded strongly and positively to high protozoan predation pressure. These responses were non-linear and levelled off at higher levels of predation pressure, supporting predictions of hump-shaped relationships between predation pressure and prey diversity. In contrast to predation intensity, the impact of predator diversity had both positive (taxa richness) and negative (evenness and phylogenetic distinctiveness) effects on bacterial diversity. Furthermore, predation shaped the structure of bacterial communities. Reduction in top-down control negatively affected the majority of taxa that are generally associated with increased treatment efficiency, compromising particularly the potential for nitrogen removal. Consequently, our findings highlight responses of bacterial diversity and community composition as two distinct mechanisms linking protozoan predation with ecosystem functioning in activated sludge communities.Subject terms: Microbial communities, Biodiversity  相似文献   

8.
The use of soil microorganisms in ecological risk assessment is hampered by an unclear dose-response relationship for most contaminants. Establishing dose-response curves for soil microbial communities requires that one have a clear estimate of exposure at the site of toxic action and a response free of confounding environmental factors. It is not clear what methods can estimate toxicant dose at the site of toxic action or determine microbial response to a toxicant. Pollution-induced community tolerance (PICT) is one possible estimate of microbial toxicant exposure. The PICT hypothesis is that the tolerance of a microbial community is proportional to the in situ dose. This method automatically corrects for differences due to differences in soil physical-chemical variables between samples. Various components of the soil nitrogen cycle can act as microbial bioindicators of toxicant impacts. Estimating denitrifica-tion activity presents a number of advantages over other components of the nitrogen cycle. Denitrifying bacteria come from a diversity of habitats, can be autotrophic or heterotrophic, and denitrification is a well-defined enzymatic system, which allows the use of molecular tools. Determining denitrification may be a good estimate of effects of toxicants on microbial communities. However, given the state of our ignorance regarding soil microbial community structure and function, redundant estimates of exposure and effect are necessary to adequately characterize the response of microbial communities to toxicants.  相似文献   

9.
Temporal variation of general and rare bacterial taxa was investigated using pyrosequencing of 16S rRNA gene from activated sludge samples collected bimonthly for a two-year period. Most of operational taxonomic units (OTUs) were allocated to rare taxa (89.6%), but the rare taxa comprised a small portion of the community in terms of abundance of sequences analyzed (28.6%). Temporal variations in OTUs richness significantly differed between the two taxa groups in which the rare taxa showed a higher diversity and a more fluctuating pattern than the general taxa. Furthermore, the two taxa groups were constrained by different explanatory variables: influent BOD, effluent BOD, and DO were the significant (P?<?0.05) parameters affecting the pattern of the general taxa, while temperature was the factor for the rare taxa. Over the test period, the general taxa persisted for a longer time (i.e., lower turnover rate) in the bioreactor than the rare taxa. In conclusion, this study demonstrated clear differences in temporal dynamic patterns for the general and rare bacterial taxa in an activated sludge bioreactor, which would be a foundation for better understanding the bacterial ecology of activated sludge.  相似文献   

10.
活性污泥微生物菌群研究方法进展   总被引:20,自引:0,他引:20  
活性污泥是活性污泥法处理污水系统的功能主体。人类对活性污泥微生物菌群的认识随着其研究方法的发展而逐步深入。传统培养方法只能检测到活性污泥中1%~15%的微生物。随着一系列基于免培养的分子生物学技术的出现,活性污泥中菌群的复杂性和多样性以惊人的速度被人们认识,大量依靠传统检测方法未能发现却在活性污泥中起关键作用的微生物逐渐被发现。许多模拟活性污泥菌群生存环境条件的现代培养技术开始发展,且已成功培养了一部分传统培养方法不能培养的细菌类群,这为研究基于免培养方法发现的大量新的微生物菌群的生理特性和作用机制提供了可能,也无疑将把人们对活性污泥菌群的认识推向一个新的层次.主要介绍活性污泥微生物菌群研究的一系列方法,从传统培养方法到基于免培养的现代分子生物学技术,再到现代培养技术,着重论述了现代分子生物学技术及其在活性污泥微生物菌群研究中的进展。  相似文献   

11.
The cultivated and uncultivated bacterial communities of an activated sludge plant were studied. Two samples were taken and a total of 516 bacterial isolates were classified into groups using their whole-cell protein patterns. The distribution of bacteria into protein-pattern groups differed significantly between the two samples, suggesting variation in culturable bacterial flora. Partial 16S rRNA gene sequences were determined for representatives of the commonest protein-pattern groups. Most of the sequences obtained were previously unknown, but relatively closely related to known sequences of organisms belonging to the α, β or γ subclasses of the proteobacteria, the first two subclasses being predominant. This classification of bacteria isolated on a diluted nutrient-rich medium differed from recent culture-dependent studies using nutrient-rich media. The uncultivated bacterial community was studied by analyzing ten partial 16S rRNA gene sequences cloned directly from activated sludge. None of the cloned sequences was identical to those determined for culturable organisms; or to those in the GenBank database. They were, however, related to the α or β subclasses of the proteobacteria, or to the gram-positive bacteria with a high G+C DNA content. Received: 4 November 1996 / Received revision: 24 February 1997 / Accepted: 28 February 1997  相似文献   

12.
A series of 72-hour growth inhibition tests with green alga Desmodesmus (Scenedesmus) subspicatus (ISO 8692) has been performed to test the delayed fluorescence (DF) parameters as possible endpoint measurements. Sensitivity to five toxicants with direct and indirect effects on photosynthesis was tested, and the median effective concentration (EC50) values derived from the cell concentration, absorbance and DF were compared. The sensitivity of DF intensity (DFI) was comparable with the two endpoints suggested in ISO 8692 for all five toxicants: potassium dichromate, 3,5-dichlorophenol (3,5-DCP), DCMU, copper and cadmium. In the case of potassium dichromate and copper, DFI was more sensitive than the other endpoints in this study. The analysis of DF relaxation kinetics showed a specific response to the herbicide DCMU. Additionally, a 24-hour test was performed with the same toxicant concentrations (except copper), where DFI was measured 30 minutes, one hour and 24 hours after the exposure. The influence of toxicants on DFI after a 24-hour exposure was comparable with the effects after 72 hours. Only 3,5-DCP influenced DFI after 30 minutes. DF proved to be a simple, reliable and rapid measurement to assess toxicity in algal tests, which can to some extent differentiate among various toxicants.  相似文献   

13.
Bioaugmentation in activated sludge: current features and future perspectives   总被引:24,自引:0,他引:24  
Bioaugmentation of activated sludge systems with specialised bacterial strains could be a powerful tool to improve several aspects in wastewater treatment processes, such as improved flocculation and degradation of recalcitrant compounds. This review focuses on the addition of strains to activated sludge to enhance the biodegradation of recalcitrant compounds, either through the activity of the inoculated strain or after transfer of degradative plasmids to activated sludge bacteria. Different factors that improve the aggregation of the sludge flocs and their influence on biodegradation are described. This review further deals with the role of bacterial plasmids in natural genetic exchange between inoculated and indigenous sludge bacteria, and in the construction of new genetically modified organisms. The few successful cases of bioaugmentation described in this review, together with future research, must lead to a better understanding of sludge bioaugmentation. Received: 5 January 1998 / Received revision: 20 April 1998 / Accepted: 20 April 1998  相似文献   

14.
Bacterial community structure and the predominant nitrifying activities and populations in each compartment of a three-compartment activated sludge system were determined. Each compartment was originally inoculated with the same activated sludge community entrapped in polyethylene glycol gel granules, and ammonium nitrogen was supplied to the system in an inorganic salts solution at a rate of 5.0 g of N liter of granular activated sludge−1 day−1. After 150 days of operation, the system was found to comprise a series of sequential nitrifying reactions (K. Noto, T. Ogasawara, Y. Suwa, and T. Sumino, Water Res. 32:769–773, 1998), presumably mediated by different bacterial populations. Activity data showed that all NH4-N was completely oxidized in compartments one and two (approximately half in each), but no significant nitrite oxidation was observed in these compartments. In contrast, all available nitrite was oxidized to nitrate in compartment three. To study the microbial populations and communities in this system, total bacterial DNA isolated from each compartment was analyzed for community structure based on the G+C contents of the component populations. Compartment one showed dominant populations having 50 and 67% G+C contents. Compartment two was similar in structure to compartment one. The bacterial community in compartment three had dominant populations with 62 and 67% G+C contents and retained the 50% G+C content population only at a greatly diminished level. The 50% G+C content population from compartment one hybridized strongly with amo (ammonia monooxygenase) and hao (hydroxylamine oxidoreductase) gene probes from Nitrosomonas europaea. However, the 50% G+C content population from compartment two hybridized strongly with the hao probe but only weakly with the amo probe, suggesting that the predominant ammonia-oxidizing populations in compartments one and two might be different. Since different activities and populations come to dominate in each compartment from an identical inoculum, it appears that the nitrification processes may be somewhat incompatible, resulting in a series of sequential reactions and different communities in this three-compartment system.  相似文献   

15.
In this study, sludge was taken from a municipal wastewater treatment plant that contained a nearly equal number of archaeal amoA genes (5.70 × 106 ± 3.30 × 105 copies mg sludge−1) to bacterial amoA genes (8.60 × 106 ± 7.64 × 105 copies mg sludge−1) and enriched in three continuous-flow reactors receiving an inorganic medium containing different ammonium concentrations: 2, 10, and 30 mM NH4+–N (28, 140, and 420 mg N l−1). The abundance and communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in enriched nitrifying activated sludge (NAS) were monitored at days 60 and 360 of the operation. Early on, between day 0 and day 60 of reactor operation, comparative abundance of AOA amoA genes to AOB amoA genes varied among the reactors depending on the ammonium levels found in the reactors. As compared to the seed sludge, the number of AOA amoA genes was unchanged in the reactor with lower ammonium level (0.06 ± 0.04 mgN l−1), while in the reactors with higher ammonium levels (0.51 ± 0.33 and 0.25 ± 0.10 mgN l−1), the numbers of AOA amoA genes were deteriorated. By day 360, AOA disappeared from the ammonia-oxidizing consortiums in all reactors. The majority of the AOA sequences from all NASs at each sampling period fell into a single AOA cluster, however, suggesting that the ammonium did not affect the AOA communities under this operational condition. This result is contradictory to the case of AOB, where the communities varied significantly among the NASs. AOB with a high affinity for ammonia were present in the reactors with lower ammonium levels, whereas AOB with a low affinity to ammonia existed in the reactors with higher ammonium levels.  相似文献   

16.
We report on the first study trialling a newly-developed, functional gene microarray (FGA) for characterising bacterial and archaeal ammonia oxidisers in activated sludge. Mixed liquor (ML) and media biofilm samples from a full-scale integrated fixed-film activated sludge (IFAS) plant were analysed with the FGA to profile the diversity and relative abundance of ammonia-oxidising archaea and bacteria (AOA and AOB respectively). FGA analyses of AOA and AOB communities revealed ubiquitous distribution of AOA across all samples – an important finding for these newly-discovered and poorly characterised organisms. Results also revealed striking differences in the functional ecology of attached versus suspended communities within the IFAS reactor. Quantitative assessment of AOB and AOA functional gene abundance revealed a dominance of AOB in the ML and approximately equal distribution of AOA and AOB in the media-attached biofilm. Subsequent correlations of functional gene abundance data with key water quality parameters suggested an important functional role for media-attached AOB in particular for IFAS reactor nitrification performance and indicate possible functional redundancy in some IFAS ammonia oxidiser communities. Results from this investigation demonstrate the capacity of the FGA to resolve subtle ecological shifts in key microbial communities in nitrifying activated sludge and indicate its value as a tool for better understanding the linkages between the ecology and performance of these engineered systems.  相似文献   

17.
Wastewater treatment plants use a variety of bioreactor types and configurations to remove organic matter and nutrients. Little is known regarding the effects of different configurations and within-plant immigration on microbial community dynamics. Previously, we found that the structure of ammonia-oxidizing bacterial (AOB) communities in a full-scale dispersed growth activated sludge bioreactor correlated strongly with levels of NO2 ? entering the reactor from an upstream trickling filter. Here, to further examine this puzzling association, we profile within-plant microbial biogeography (spatial variation) and test the hypothesis that substantial microbial immigration occurs along a transect (raw influent, trickling filter biofilm, trickling filter effluent, and activated sludge) at the same full-scale wastewater treatment plant. AOB amoA gene abundance increased >30-fold between influent and trickling filter effluent concomitant with NO2 ? production, indicating unexpected growth and activity of AOB within the trickling filter. Nitrosomonas europaea was the dominant AOB phylotype in trickling filter biofilm and effluent, while a distinct “Nitrosomonas-like” lineage dominated in activated sludge. Prior time series indicated that this “Nitrosomonas-like” lineage was dominant when NO2 ? levels in the trickling filter effluent (i.e., activated sludge influent) were low, while N. europaea became dominant in the activated sludge when NO2 ? levels were high. This is consistent with the hypothesis that NO2 ? production may cooccur with biofilm sloughing, releasing N. europaea from the trickling filter into the activated sludge bioreactor. Phylogenetic microarray (PhyloChip) analyses revealed significant spatial variation in taxonomic diversity, including a large excess of methanogens in the trickling filter relative to activated sludge and attenuation of Enterobacteriaceae across the transect, and demonstrated transport of a highly diverse microbial community via the trickling filter effluent to the activated sludge bioreactor. Our results provide compelling evidence that substantial immigration between coupled process units occurs and may exert significant influence over microbial community dynamics within staged bioreactors.  相似文献   

18.
The effects of growth type, including attached growth, suspended growth, and combined growth, on the characteristics of communities of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were studied in three lab-scale Anaerobic/Anoxicm-Oxicn (AmOn) systems. These systems amplified activated sludge, biofilms, and a mixture of activated sludge and biofilm (AS-BF). Identical inocula were adopted to analyze the selective effects of mixed growth patterns on nitrifying bacteria. Fluctuations in the concentration of nitrifying bacteria over the 120 days of system operation were analyzed, as was the composition of nitrifying bacterial community in the stabilized stage. Analysis was conducted using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and real-time PCR. According to the DGGE patterns, the primary AOB lineages were Nitrosomonas europaea (six sequences), Nitrosomonas oligotropha (two sequences), and Nitrosospira (one sequence). The primary subclass of NOB community was Nitrospira, in which all identified sequences belonged to Nitrospira moscoviensis (14 sequences). Nitrobacter consisted of two lineages, namely Nitrobacter vulgaris (three sequences) and Nitrobacter alkalicus (two sequences). Under identical operating conditions, the composition of nitrifying bacterial communities in the AS-BF system demonstrated significant differences from those in the activated sludge system and those in the biofilm system. Major varieties included several new, dominant bacterial sequences in the AS-BF system, such as N. europaea and Nitrosospira and a higher concentration of AOB relative to the activated sludge system. However, no similar differences were discovered for the concentration of the NOB population. A kinetic study of nitrification demonstrated a higher maximum specific growth rate of mixed sludge and a lower half-saturation constant of mixed biofilm, indicating that the AS-BF system maintained relatively good nitrifying ability.  相似文献   

19.
Mycobacterium sp. strain THO100 and Rhodococcus sp. strain TM1 were isolated from a morpholine-containing enrichment culture of activated sewage sludge. Strain THO100, but not strain TM1, was able to degrade alicyclic amines such as morpholine, piperidine, and pyrrolidine. The mixed strains THO100 and TM1 showed a better growth on piperidine as the substrate than the pure strain THO100 because strain TM1 was able to reduce the level of glutaraldehyde (GA) produced during piperidine degradation. GA was toxic to strain THO100 (IC50 = 28.3 μM) but less toxic to strain TM1 (IC50 = 215 μM). Strain THO100 possessed constitutive semialdehyde dehydrogenases, namely Sad1 and Sad2, whose activities toward succinic semialdehyde (SSA) were strongly inhibited by GA. The two isozymes were identified as catalase–peroxidase (KatG = Sad1) and semialdehyde dehydrogenase (Sad2) based on mass spectrometric analyses of tryptic peptides and database searches of the partial DNA sequences of their genes. In contrast, strain TM1 containing another constitutive enzyme Gad1 could oxidize both SSA and GA. This study suggested that strain TM1 possessing Gad1 played a synergistic role in reducing the toxic and inhibitory effects of GA produced in the degradation of piperidine by strain THO100.  相似文献   

20.
4-Benzoyl-1-(4-methyl-imidazol-5-yl)-carbonylthiosemicarbazide (1) was synthesized, and its antibacterial and type IIA topoisomerase (DNA gyrase and topoisomerase IV) activity evaluated. (1) was found to have high therapeutic potential against opportunistic Gram-positive bacteria, and inhibitory activity against topoisomerase IV (IC50 = 90 μM) but not against DNA gyrase. An increase in activity against topoisomerase IV (IC50 = 14 μM) was observed when the imidazole moiety of (1) was replaced with the indole group in 4-benzoyl-1-(indol-2-yl)-carbonylthiosemicarbazide (2). However, (2) showed only weak antibacterial activity. Although the results of the bacterial type IIA topoisomerases inhibition study did not parallel antibacterial activities, our observations strongly imply that a 4-benzoylthiosemicarbazide scaffold can be developed into an efficient Gram-positive antibacterial targeting topoisomerase IV. The difference in activity against type IIA topoisomerases between (1) and (2) was further investigated by docking studies, which suggested that these compounds target the ATP binding pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号