首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
gamma-Zein, a maize storage protein with an N-terminal proline-rich repetitive domain (gamma-ZNPRD), is located at the periphery of protein bodies. This domain appears to be indispensable for the aggregation of the protein on the surface of the organelle. The peptide (VHLPPP)8, spanning the gamma-ZNPRD, adopts a polyproline II (PPII) conformation that gives an amphipathic helix different from the alpha-helix. We used atomic force microscopy to study the surface organisation of the octamer, and transmission electron microscopy to visualise aggregates of the peptide in aqueous solution. We consider two self-assembly patterns that take account of the observed features. The micellar one fits best with the experimental results presented. Moreover, we found that this peptide has properties associated with surfactants, and form micelles in solution. This spontaneous amphipathic arrangement of the gamma-ZNPRD suggests a mechanism of gamma-zein deposition inside maize protein bodies.  相似文献   

2.
Zeins are maize storage proteins that accumulate inside large vesicles called protein bodies. gamma-Zein lines the inner surface of the protein body membrane, and its N-terminal, proline-rich, repetitive domain with the sequence (VHLPPP)(8) appears to be necessary for the accumulation of the protein within the organelle. Synthetic (VHLPPP)(8) adopts an amphipathic polyproline II conformation and forms cylindrical micelles in aqueous solution. Here we explore the interaction of (VHLPPP)(8) with soybean phosphatidylcholine unilamellar lipid vesicles and examine its effect on the stability and permeability of the liposome membrane. The amphipathic N-terminal domain of gamma-zein interacts with the membrane and assembles to form extended domains over the phospholipid membrane. The interaction between the peptide and the membrane increases the stability and permeability of the liposome membrane. The spontaneous amphipathic aggregation of (VHLPPP)(8) on the membrane suggests a mechanism of gamma-zein deposition inside maize protein bodies.  相似文献   

3.
Refolding of denatured RNase A as a model of inclusion bodies was performed by reversed micelles formulated with sodium di-2-ethylhexyl sulfosuccinate (AOT) in isooctane. In the novel refolding process, a solid-liquid extraction was utilized as an alternative to the ordinary protein extraction by reversed micelles based on a liquid-liquid extraction. First, the effects of operational parameters such as concentration of AOT, W(o) (= [H(2)O]/[AOT]), and pH were examined on the solubilization of solid denatured proteins into a reversed micellar solution. The solubilization was facilitated by a high AOT concentration, a high W(o) value, and a high pH in water pools. These conditions are favorable for the dispersion of the solid protein aggregates in an organic solvent. Second, the renaturation of the denatured RNase A solubilized into the reversed micellar solution was conducted by addition of glutathione as a redox reagent. A complete renaturation of RNase A was accomplished by adjusting the composition of the redox reagent even at a high protein concentration in which protein aggregation would usually occur in aqueous media. In addition, the renaturation rates were improved by optimizing water content (W(o)) and the pH of water pools in reversed micelles. Finally, the recovery of renatured RNase A from the reversed micellar solution was performed by adding a polar organic solvent such as acetone into the reversed micellar solution. This precipitation method was effective for recovering proteins from reversed micellar media without any significant reduction in enzymatic activity.  相似文献   

4.
Glu-Leu-Arg ("ELR") CXC chemokines interleukin-8 (IL-8) and melanoma growth stimulatory activity (MGSA) recruit neutrophils by binding and activating two receptors, CXCR1 and CXCR2. CXCR1 is specific, binding only IL-8 with nanomolar affinity, whereas CXCR2 is promiscuous, binding all ELRCXC chemokines with high affinity. Receptor signaling consists of two events: interactions between the ligand N-terminal loop (N-loop) and receptor N-terminal domain (N-domain) residues (site I), and between the ligand N-terminal ELR and the receptor juxtamembrane domain (J-domain) residues (site II). It is not known how these interactions mediate ligand affinity and selectivity, and whether binding at one site influences binding and function at the other. Sequence analysis and structure-function studies have suggested that the receptor N-domain plays an important role in ligand selectivity. Here, we report ligand-binding properties and structural characteristics of the CXCR1 N-domain in solution and in detergent micelles that mimic the native membrane environment. We find that IL-8 binds the N-domain with significantly higher affinity in micelles than in solution (approximately 1 microM versus approximately 20 microM) and that MGSA does not bind the N-domain in solution but does in micelles with appreciable affinity (approximately 3 microM). We find that the N-domain is structured in micelles and that the entire N-domain interacts with the micelle in an extended fashion. We conclude that the micellar environment constrains the N-domain, and this conformational restraint influences its ligand-binding properties. Most importantly, our data suggest that for both ligands, site I interaction provides similar affinity and that differential coupling between site I and II interactions is responsible for the observed differences in affinity.  相似文献   

5.
Dermaseptins are antimicrobial peptides from frog skin that have high membrane-lytic activity against a broad spectrum of microorganisms. The structure of dermaseptin B2 in aqueous solution, in TFE/water mixtures, and in micellar and nonmicellar SDS was analyzed by CD, FTIR, fluorescence, and NMR spectroscopy combined with molecular dynamics calculations. Dermaseptin B2 is unstructured in water, but helical conformations, mostly in segment 3-18, are stabilized by addition of TFE. SDS titration showed that dermaseptin B2 assumes nonhelical structures at SDS concentrations far below the critical micellar concentration and helical structures at micellar concentrations. Dermaseptin B2 bound to SDS micelles (0.4 mM peptide, 80 mM SDS) adopts a well-defined amphipathic helix between residues 11-31 connected to a more flexible helical segment spanning residues 1-8 by a flexible hinge region around Val9 and Gly10. Experiments using paramagnetic probes showed that dermaseptin B2 lies near the surface of SDS micelles and that residue Trp3 is buried in the SDS micelle, but close to the surface. A slow exchange equilibrium occurs at higher peptide/SDS ratios (2 mM peptide, 80 mM SDS) between forms having distinct sets of resonances in the N-terminal 1-11 segment. This equilibrium could reflect different oligomeric states of dermaseptin B2 interacting with SDS micelles. Structure-activity studies on dermaseptin B2 analogues showed that the N-terminal 1-11 segment is an absolute requirement for antibacterial activity, while the C-terminal 10-33 region is also important for full antibiotic activity.  相似文献   

6.
A novel process has been developed to improve the refolding yield of denatured proteins. It uses reversed micelles to isolate denatured protein molecules from each other and thus, upon refolding, reduces the intermolecular interactions which lead to aggregation. The feasibility of this process was first demonstrated with Ribonuclease A as a model protein. In the present work, we expanded the scope of this study to better understand both the general mechanisms of protein refolding in reversed micelles and the biotechnological applicability of the process. First, we investigated the interactions between the individual components of the reversed micellar system (the protein molecule, the denaturant guanidine hydrochloride (GuHCl), and the surfactant (AOT)) during the refolding process. We then extended our studies to a more hydrophobic protein, gamma-interferon, which aggregates upon refolding in aqueous solution. However, it was also found to aggregate in our reversed micelle process during the extraction step. Since gamma-interferon is a much more hydrophobic protein than RNase, we hypothesize that interactions between hydrophobic amino acids and the surfactant layer may interfere with refolding. This hypothesis was tested by studying the refolding of chemically modified RNase. The substitution of 55% of the surface lysine residues with hydrophobic caproyl groups caused a significant decrease in the refolding yield of RNase in the reversed micellar system without affecting aqueous solution renaturation. In addition, the extraction efficiency of the enzyme from reversed micelles back into aqueous solution was severely reduced and resulted in aggregation. These experiments indicate that unfolded hydrophobic Proteinsinteract with the Surfactant molecules, which limits their ability to refold in reversed micelles.  相似文献   

7.
The N-terminal domain of enzyme IIA(Glc) of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system confers amphitropism to the protein, allowing IIA(Glc) to shuttle between the cytoplasm and the membrane. To further understand this amphitropic protein, we have elucidated, by NMR spectroscopy, the solution structure of a synthetic peptide corresponding to the N-terminal domain of IIA(Glc). In water, this peptide is predominantly disordered, consistent with previous data obtained in the absence of membranes. In detergent micelles of dihexanoylphosphatidylglycerol (DHPG) or sodium dodecylsulfate (SDS), however, residues Phe 3-Val 10 of the peptide adopt a helical conformation in the ensemble of structures calculated on the basis of NOE-derived distance restraints. The root mean square deviations for superimposing the backbone atoms of the helical region are 0.18 A in DHPG and 0.22 A in SDS. The structure, chemical shifts, and spin-spin coupling constants all indicate that, of the four lysines in the N-terminal domain of IIA(Glc), only Lys 5 and Lys 7 in the amphipathic helical region interact with DHPG. In addition, the peptide-detergent interactions were investigated using intermolecular NOESY experiments. The aliphatic chains of anionic detergents DHPG, SDS, and 2,2-dimethyl-2-silapentane-5-sulfonate sodium salt (DSS) all showed intermolecular NOE cross-peaks to the peptide, providing direct evidence for the putative membrane anchor of IIA(Glc) in binding to the membrane-mimicking micelles.  相似文献   

8.
Heat-induced conformational changes in lipoxygenase 3 were characterized by differential scanning calorimetry. The positions of the observed transitions were sensitive to the composition of the buffer. In particular, lipoxygenase 3 heated in carbonate buffer at pH 8.0 formed large soluble aggregates. Variable-temperature circular dichroism revealed that the formation of the aggregates was not accompanied by the unfolding of the C-terminal domain, which is composed primarily of alpha-helix. The aggregates were investigated using size exclusion chromatography, native polyacrylamide gel electrophoresis, dynamic light scattering, and electron microscopy. The data were consistent with the formation of roughly spherical particles with an average hydrodynamic radius of 26 nm and an approximate composite molecular weight of 10,000,000 Da. To account for the formation of soluble aggregates from lipoxygenase 3, we propose that hydrophobic amino acid residues are exposed by unfolding of the N-terminal beta-barrel domain of the protein resulting in the formation of protein micelles with a hydrophilic surface composed of the C-terminal domains.  相似文献   

9.
The prion protein is usually pictured as globular structured C-terminal domain that is linked to an extended flexible N-terminal tail. However, in its physiological form, it is a glycoprotein tethered to the cell surface via a C-terminal GPI anchor. The low solubility of PrP even without GPI anchor and its strong tendency for aggregation has forced most structural investigations to be performed at low pH and mostly with N-terminally truncated variants. In the present study, we have used a synthetic peptide related to the PrP tetra-octarepeat region, i.e., the sequence (Pro-His-Gly-Gly-Gly-Trp-Gly-Gln)(4), for NMR structural analysis of its preferred conformation in DPC micelles as membrane mimic. Well-defined and identical loops are observed between the four octarepeats that are linked by flexible Gly-Gly-Gly sequences. Interaction with the micelles is mainly through the tryptophan residues that appear to act as anchors. Copper binding to the peptide in the presence of DPC micelles revealed marked conformational rearrangements although binding to the micelles is preserved. Interestingly, titration experiments point to cooperative effects for the four binding sites. A destabilization of the DPC micelles by the peptide parallels the destabilizing effect of the prion protein on membranes so that the octarepeat region appears to be very membrane-active. How the physico-chemical properties reported here are linked to the function and significance of the prion protein remains a puzzle as long as the functional mechanism of the prion protein is not precisely elucidated. Nevertheless, our results emphasize the strong influence of the (membrane) environment on the PrP properties.  相似文献   

10.
The purpose of this study was to determine whether human galanin, a pleiotropic 30-amino acid neuropeptide, expresses amphipathic properties in vitro and, if so, whether these properties modulate its vasoactive effects in the intact peripheral microcirculation. We found that human galanin aggregates in an aqueous solution and forms micelles with a critical micellar concentration (CMC) of 0.4 microM. In addition, the peptide interacted with model membrane as indicated by long and significant increase of the surface pressure of the biomimetic monolayer membrane in vitro. Interactions of human galanin with sterically stabilized phospholipid micelles (SMM) were not associated with a significant change in peptide conformation. Using intravital microscopy, we found that suffusion of human galanin alone elicited significant concentration-dependent vasoconstriction in the intact hamster cheek pouch. This response was amplified when human galanin in SSM was suffused onto the cheek pouch. The effects of human galanin alone and in SSM were mediated by galanin receptors because galantide, a galanin receptor antagonist, abrogated galanin-induced vasoconstriction. Collectively, these data show that human galanin expresses amphipathic properties in the presence of phospholipids which in turn amplifies its vasoactive effects in the intact peripheral microcirculation.  相似文献   

11.
《Biophysical journal》2022,121(8):1549-1559
Peptide self-assembly is an exciting and robust approach to create novel nanoscale materials for biomedical applications. However, the complex interplay between intra- and intermolecular interactions in peptide aggregation means that minor changes in peptide sequence can yield dramatic changes in supramolecular structure. Here, we use two-dimensional infrared spectroscopy to study a model amphiphilic peptide, KFE8, and its N-terminal acetylated counterpart, AcKFE8. Two-dimensional infrared spectra of isotope-labeled peptides reveal that AcKFE8 aggregates comprise two distinct β-sheet structures although KFE8 aggregates comprise only one of these structures. Using an excitonic Hamiltonian to simulate the vibrational spectra of model β-sheets, we determine that the spectra are consistent with antiparallel β-sheets with different strand alignments, specifically a two-residue shift in the register of the β-strands. These findings bring forth new insights into how N-terminal acetylation may subtly impact secondary structure, leading to larger effects on overall aggregate morphology. In addition, these results highlight the importance of understanding the residue-level structural differences that result from changes in peptide sequence to facilitate the rational design of peptide materials.  相似文献   

12.
The proline-rich N-terminal domain of gamma-zein has been reported in relevant processes, which include its ability to cross the cell membranes. Evidences indicate that synthetic hexapeptide (PPPVHL), naturally found in N-terminal portion of gamma-zein, can adopt the polyproline II (PPII) conformation in aqueous solution. The secondary structure of gamma-zein in maize protein bodies had been analyzed by solid state Fourier transform infrared and nuclear magnetic resonance spectroscopies. However, it was not possible to measure PPII content in physiological environment since the beta-sheet and PPII signals overlap in both solid state techniques. Here, the secondary structure of gamma-zein has been analyzed by circular dichroism in SDS aqueous solution with and without ditiothreitol (DTT), and in 60% of 2-propanol and water with DTT. The results show that gamma-zein has high helical content in all solutions. The PPII conformation was present at about 7% only in water/DTT solution.  相似文献   

13.
Wang D  Song Y  Li J  Wang C  Li F 《Biochimica et biophysica acta》2011,1808(6):1639-1644
DMT1 is an integral membrane protein with 12 putative transmembrane domains. As a divalent metal ion transporter, it plays an important role in metal ion homeostasis from bacteria to human. Loss-function mutations at the conserved motif DPGN located within the first transmembrane domain (TMD1) of DMT1 indicate the significance of TMD1 in the biological function of the protein. In the present work, we study the structure, topology and metal ion binding of DMT1-TMD1 peptide by nuclear magnetic resonance using sodium dodecyl sulfate and dodecylphosphocholine micelles as membrane mimics. We find that the peptide forms an α-helix-extended segment-α-helix configuration in which the motif DPGN locates at the central flexible region. The N-terminal part of the peptide is deeply embedded in micelles, while the motif section and the C-terminal part are close to the surface of micelles. The peptide can bind to Mn2+ and Co2+ ions by the side chains of the negatively charged residues in the motif section and the C-terminal part of TMD1. The crucial role of the central flexible region and the C-terminal part of TMD1 in metal ion capture is confirmed by the binding of the N-terminal part truncated TMD1 to metal ions.  相似文献   

14.
The chemical synthesis by solid-phase methods of a novel amphiphilic peptide, peptide-conjugate amphiphile (PCA), containing in the same molecule three different functions: (i) the N,N-bis[2-[bis(carboxy-ethyl)amino]ethyl]-L-glutamic acid (DTPAGlu) chelating agent, (ii) the CCK8 bioactive peptide, and (iii) a hydrophobic moiety containing four alkyl chains with 18 carbon atoms each, is reported. In water solution at pH 7.4, PCA self-assembles in very stable micelles at very low concentration [critical micellar concentration (cmc) values of 5 x 10(-7) mol kg(-1)] as confirmed by fluorescence spectroscopy. The structural characterization, obtained with small-angle neutron scattering (SANS) measurements, indicates that the aggregates are substantially represented by ellipsoidal micelles with an aggregation number of 39 +/- 2 and the two micellar axes of about 52 and 26 A.  相似文献   

15.
This article reports that a reversed micellar solution is useful for refolding proteins directly from a solid source. The solubilization of denatured RNase A, which had been prepared by reprecipitation from the denaturant protein solution, into reversed micelles formulated with sodium di-2-ethylhexyl sulfosuccinate (AOT) has been investigated by a solid-liquid extraction system. This method is an alternative to the ordinary protein extraction in reversed micelles based on the liquid-liquid extraction. The solid-liquid extraction method was found to facilitate the solubilization of denatured proteins more efficiently in the reversed micellar media than the ordinary phase transfer method of liquid extraction. The refolding of denatured RNase A entrapped in reversed micelles was attained by adding a redox reagent (reduced and oxidized glutathion). Enzymatic activity of RNase A was gradually recovered with time in the reversed micelles. The denatured RNase A was completely refolded within 30 h. In addition, the efficiency of protein refolding was enhanced when reversed micelles were applied to denatured RNase A containing a higher protein concentration that, in the case of aqueous media, would lead to protein aggregation. The solid-liquid extraction technique using reversed micelles affords better scale-up advantages in the direct refolding process of insoluble protein aggregates.  相似文献   

16.
Ciliate Euplotes octocarinatus centrin (EoCen) is a member of the EF-hand superfamily of calcium-binding proteins, which often associated with the centrosomes and basal bodies. To explore the possible structural role of EoCen, we initiated a physicochemical study of the self-assembly properties of the purified protein in vitro. The native PAGE results indicate that only the integral protein shows multimers in the presence of Lu(3+). The dependence of Lu(3+) induced self-assembly of EoCen on various chemical and physical factors, including temperature, protein concentration, ionic strength and pH, was characterized using resonance light scattering (RLS). Control experiments with different metal ions suggest that Ca(2+) and Lu(3+) bindings to the N-terminal domain of EoCen are all positive to the self-assembly of the protein, and Lu(3+) exhibits the stronger effect, however, Mg(2+) alone cannot take the same effect. The experiments of 2-ptoluidinylnaphthalene-6-sulfonate (TNS) binding and ionic strength demonstrate that the lutetium(III)-dependent self-assembly is closely related to the exposure of hydrophobic cavity. Control experiment on pH value with EoCen and the fragments of it, N-terminal domain of EoCen (N-EoCen), indicates that the electrostatic effect is of small tendency to be served as the main driving force in the self-assembly of EoCen. The specific oligomerization form of the protein was exhibited by cross-linking experiment.  相似文献   

17.
Interest centers here on whether a polyproline II helix can propagate through adjacent non-proline residues, and on shedding light on recent experimental observations suggesting the presence of significant PP(II) structure in a short alanine-based peptide with no proline in the sequence. For this purpose, we explored the formation of polyproline II helices in proline-rich peptides with the sequences Ac-(Pro)(3)-X-(Pro)(3)-Gly-Tyr-NH(2), with X = Pro (PPP), Ala (PAP), Gln (PQP), Gly (PGP), and Val (PVP), and Ac-(Pro)(3)-Ala-Ala-(Pro)(3)-Gly-Tyr-NH(2) (PAAP), by using a theoretical approach that includes a solvent effect as well as cis <--> trans isomerization of the peptide groups and puckering conformations of the pyrrolidine ring of the proline residues. Since (13)C chemical shifts have proven to be useful for identifying secondary-structure preferences in proteins and peptides, and because values of the dihedral angles (phi,psi) are the main determinants of their magnitudes, we have, therefore, computed the Boltzmann-averaged (13)C chemical shifts for the guest residues in the PXP peptide (X = Pro, Ala, Gln, Gly, and Val) with a combination of approaches, involving molecular mechanics, statistical mechanics, and quantum mechanics. In addition, an improved procedure was used to carry out the conformational searches and to compute the solvent polarization effects faster and more accurately than in previous work. The current theoretical work and additional experimental evidence show that, in short proline-rich peptides, alanine decreases the polyproline II helix content. In particular, the theoretical evidence accumulated in this work calls into question the proposal that alanine has a strong preference to adopt conformations in the polyproline II region of the Ramachandran map.  相似文献   

18.
Fragments of integral membrane proteins have been used to study the physical chemical properties of regions of transporters and receptors. Ste2p(G31-T110) is an 80-residue polypeptide which contains a portion of the N-terminal domain, transmembrane domain 1 (TM1), intracellular loop 1, TM2 and part of extracellular loop 1 of the α-factor receptor (Ste2p) from Saccharomyces cerevisiae. The structure of this peptide was previously determined to form a helical hairpin in lyso-palmitoylphosphatidyl-glycerol micelles (LPPG) [1]. Herein, we perform a systematic comparison of the structure of this protein fragment in micelles and trifluoroethanol (TFE):water in order to understand whether spectra recorded in organic:aqueous medium can facilitate the structure determination in a micellar environment. Using uniformly labeled peptide and peptide selectively protonated on Ile, Val and Leu methyl groups in a perdeuterated background and a broad set of 3D NMR experiments we assigned 89% of the observable atoms. NOEs and chemical shift analysis were used to define the helical regions of the fragment. Together with constraints from paramagnetic spin labeling, NOEs were used to calculate a transiently folded helical hairpin structure for this peptide in TFE:water. Correlation of chemical shifts was insufficient to transfer assignments from TFE:water to LPPG spectra in the absence of further information.  相似文献   

19.
The influence of micelle hydration degree (w0) and AOT concentration on fluorescence, circular dichroism (CD), catalytic activity, and stability of catalase in Aerosol OT (AOT) reversed micelles in heptane was investigated. The quantitative parameters--differential fluorescence of catalase (DeltaI), protein molar ellipticity ([theta]lambda), initial rate of catalytic reaction, catalase efficiency (kcat/Km), and rate constant of enzyme inactivation (kin, sec-1)--decreased with increasing AOT concentration in micellar systems, reflecting the interaction of solubilized catalase with the AOT micellar aggregates in heptane. The dependences of all these parameters on increasing hydration degree of micelles (w0) were characterized by the appearance of maxima at w0 of 8, 15-18, and 26-30. These maxima are suggested to reflect three different states of catalase in the micellar system, distinguished by their conformations and catalytic activity, which is determined by the micellar microenvironment of the enzyme.  相似文献   

20.
The neurotoxicity of beta-amyloid protein (beta AP) fragments may be a result of their solution conformation, which is very sensitive to solution conditions. In this work we describe NMR and CD studies of the conformation of beta AP(12-28) in lipid (micelle) environments as a function of pH and lipid type. The interaction of beta AP(12-28) with zwitterionic dodecylphosphocholine (DPC) micelles is weak and alters the conformation when compared to water solution alone. By contrast, the interaction of the peptide with anionic sodium dodecylsulfate (SDS) micelles is strong: beta AP(12-28) is mostly bound, is alpha-helical from K16 to V24, and aggregates slowly. The pH-dependent conformation changes of beta AP(12-28) in solution occur in the pH range at which the side-chain groups of E22, D23, H13, and H14 are deprotonated (pKas ca. 4 and 6.5); the interaction of beta AP(12-28) with SDS micelles alters the pH-dependent conformational transitions of the peptide whereas the weak interaction with DPC micelles causes little change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号