首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kim HM  Wangemann P 《PloS one》2011,6(3):e17949
Loss-of-function mutations of SLC26A4/pendrin are among the most prevalent causes of deafness. Deafness and vestibular dysfunction in the corresponding mouse model, Slc26a4(-/-), are associated with an enlargement and acidification of the membranous labyrinth. Here we relate the onset of expression of the HCO(3) (-) transporter pendrin to the luminal pH and to enlargement-associated epithelial cell stretching. We determined expression with immunocytochemistry, cell stretching by digital morphometry and pH with double-barreled ion-selective electrodes. Pendrin was first expressed in the endolymphatic sac at embryonic day (E) 11.5, in the cochlear hook-region at E13.5, in the utricle and saccule at E14.5, in ampullae at E16.5, and in the upper turn of the cochlea at E17.5. Epithelial cell stretching in Slc26a4(-/-) mice began at E14.5. pH changes occurred first in the cochlea at E15.5 and in the endolymphatic sac at E17.5. At postnatal day 2, stria vascularis, outer sulcus and Reissner's membrane epithelial cells, and utricular and saccular transitional cells were stretched, whereas sensory cells in the cochlea, utricle and saccule did not differ between Slc26a4(+/-) and Slc26a4(-/-) mice. Structural development of stria vascularis, including vascularization, was retarded in Slc26a4(-/-) mice. In conclusion, the data demonstrate that the enlargement and stretching of non-sensory epithelial cells precedes luminal acidification in the cochlea and the endolymphatic sac. Stretching and luminal acidification may alter cell-to-cell communication and lead to the observed retarded development of stria vascularis, which may be an important step on the path to deafness in Slc26a4(-/-) mice, and possibly in humans, lacking functional pendrin expression.  相似文献   

2.
3.
Human pendrin (SCL26A4, PDS) is a 780 amino acid integral membrane protein with transport function. It acts as an electroneutral, sodium-independent anion exchanger for a wide range of anions, such as iodide, chloride, formate, bicarbonate, hydroxide and thiocyanate. Pendrin expression was originally described in the thyroid gland, kidney and inner ear. Accordingly, pendrin mutations with reduction or loss of transport function result in thyroid and inner ear abnormalities, manifested as syndromic (Pendred syndrome) and non-syndromic hearing loss with an enlarged vestibular aqueduct (ns-EVA). Pendred syndrome, the most common form of syndromic deafness, is an autosomal recessive disease characterized by sensorineural deafness due to inner ear malformations and a partial iodide organification defect that may lead to thyroid goiter. Later, it became evident that not only pendrin loss of function, but also up-regulation could participate in the pathogenesis of human diseases. Indeed, despite the absence of kidney dysfunction in Pendred syndrome patients, evidence exists that pendrin also plays a crucial role in this organ, with a potential involvement in the pathogenesis of hypertension. In addition, recent data underscore the role of pendrin in exacerbations of respiratory distresses including bronchial asthma and chronic obstructive pulmonary disease (COPD). Pendrin expression in other organs such as mammary gland, testis, placenta, endometrium and liver point to new, underscored pendrin functions that deserve to be further investigated.  相似文献   

4.
5.
Mutations in the anion exchanger pendrin are responsible for Pendred syndrome, an autosomal recessive disease characterized by deafness and goitre. Pendrin is highly expressed in kidney collecting ducts, where it acts as a chloride/bicarbonate exchanger and thereby contributes to the regulation of acid-base homoeostasis and blood pressure. The present study aimed to characterize the intrinsic properties of pendrin. Mouse pendrin was transfected in HEK (human embryonic kidney) 293 and OKP (opossum kidney proximal tubule) cells and its activity was determined by monitoring changes in the intracellular pH induced by variations of transmembrane anion gradients. Combining measurements of pendrin activity with mathematical modelling we found that its affinity for Cl-, HCO3- and OH- varies with intracellular pH, with increased activity at low intracellular pH. Maximal pendrin activity was also stimulated at low extracellular pH, suggesting the presence of both intracellular and extracellular proton regulatory sites. We identified five putative pendrin glycosylation sites, only two of which are used. Mutagenesis-induced disruption of pendrin glycosylation did not alter its cell-surface expression or polarized targeting to the apical membrane and basal activity, but fully abrogated its sensitivity to extracellular pH. The hither to unknown regulation of pendrin by external pH may constitute a key mechanism in controlling ionic exchanges across the collecting duct and inner ear.  相似文献   

6.
7.
SLC26A4/PDS mutations cause Pendred Syndrome and non-syndromic deafness. but some aspects of function and regulation of the SLC26A4 polypeptide gene product, pendrin, remain controversial or incompletely understood. We have therefore extended the functional analysis of wildtype and mutant pendrin in Xenopus oocytes, with studies of isotopic flux, electrophysiology, and protein localization. Pendrin mediated electroneutral, pH-insensitive, DIDS-insensitive anion exchange, with extracellular K((1/2)) (in mM) of 1.9 (Cl(-)), 1.8 (I(-)), and 0.9 (Br(-)). The unusual phenotype of Pendred Syndrome mutation E303Q (loss-of-function with normal surface expression) prompted systematic mutagenesis at position 303. Only mutant E303K exhibited loss-of-function unrescued by forced overexpression. Mutant E303C was insensitive to charge modification by methanethiosulfonates. The corresponding mutants SLC26A2 E336Q, SLC26A3 E293Q, and SLC26A6 E298Q exhibited similar loss-of-function phenotypes, with wildtype surface expression also documented for SLC26A2 E336Q. The strong inhibition of wildtype SLC26A2, SLC26A3, and SLC26A6 by phorbol ester contrasts with its modest inhibition of pendrin. Phorbol ester inhibition of SLC26A2, SLC26A3, and SLC26A6 was blocked by coexpressed kinase-dead PKCδ but was without effect on pendrin. Mutation of SLC26A2 serine residues conserved in PKCδ -sensitive SLC26 proteins but absent from pendrin failed to reduce PKCδ sensitivity of SLC26A2 (190).  相似文献   

8.
A study of the ultrastructure, vascularization, and innervation of the endolymphatic duct and sac of the rat has been performed by means of light- and electron-microscopic and immunocytochemical methods. Two different types of epithelial cells have been identified: the ribosome-rich cell and the mitochondria-rich cell. These two cell types make up the epithelium of the complete endolymphatic duct and sac, although differences in their quantitative distribution exist. The morphology of the ribosome-rich cells varies between the different parts of the endolymphatic duct and sac; the morphology of the mitochondria-rich cells remains constant. According to the epithelial composition, vascularization, and structural organization of the lamina propria, both duct and sac are subdivided into three different parts. A graphic reconstruction of the vascular network supplying the endolymphatic duct and sac shows that the vascular pattern varies among the different parts. In addition, the capillaries of the duct are of the continuous type, whereas those supplying the sac are of the fenestrated type. Nerve fibers do not occur within the epithelium of the endolymphatic duct and sac. A few nerve fibers regularly occur in the subepithelial compartment close to the blood vessels; these fibers have been demonstrated in whole-mount preparations by the application of the neuronal marker protein gene product 9.5. Single beaded fibers immunoreactive to substance P and calcitonin-gene related peptide are observed within the same compartment. Dopamine--hydroxylase-immunoreactive axons are restricted to the walls of arterioles. Morphological differences between the different portions of the endolymphatic duct and sac are discussed with regard to possible roles in fluid absorption and immunocompetence.Abbreviations CGRP Calcitonin gene-related peptide - DSP distal sac portion - DH dopamine--hydroxylase - ED endolymphatic duct - ES endolymphatic sac - EDP enlarged duct portion - IR immunoreactive - ISP intermediate sac portion - LIS lateral intercellular space - NDP narrow duct portion - PMA posterior meningeal artery - PVA posterior vestibular artery - PGP 9.5 protein gene product 9.5 - PSP proximal sac portion - SP substance P - TDP transitional duct portion - VVA vem of vestibular aqueduct  相似文献   

9.
Mutations of SLC26A4 are among the most prevalent causes of hereditary deafness. Deafness in the corresponding mouse model, Slc26a4−/−, results from an abnormally enlarged cochlear lumen. The goal of this study was to determine whether the cochlear enlargement originates with defective cochlear fluid transport or with a malfunction of fluid transport in the connected compartments, which are the vestibular labyrinth and the endolymphatic sac. Embryonic inner ears from Slc26a4+/− and Slc26a4−/− mice were examined by confocal microscopy ex vivo or after 2 days of organ culture. Culture allowed observations of intact, ligated or partially resected inner ears. Cochlear lumen formation was found to begin at the base of the cochlea between embryonic day (E) 13.5 and 14.5. Enlargement was immediately evident in Slc26a4−/− compared to Slc26a4+/− mice. In Slc26a4+/− and Slc26a4−/− mice, separation of the cochlea from the vestibular labyrinth by ligation at E14.5 resulted in a reduced cochlear lumen. Resection of the endolymphatic sacs at E14.5 led to an enlarged cochlear lumen in Slc26a4+/− mice but caused no further enlargement of the already enlarged cochlear lumen in Slc26a4−/− mice. Ligation or resection performed later, at E17.5, did not alter the cochlea lumen. In conclusion, the data suggest that cochlear lumen formation is initiated by fluid secretion in the vestibular labyrinth and temporarily controlled by fluid absorption in the endolymphatic sac. Failure of fluid absorption in the endolymphatic sac due to lack of Slc26a4 expression appears to initiate cochlear enlargement in mice, and possibly humans, lacking functional Slc26a4 expression.  相似文献   

10.
Control over ionic composition and volume of the inner ear luminal fluid endolymph is essential for normal hearing and balance. Mice deficient in either the EphB2 receptor tyrosine kinase or the cognate transmembrane ligand ephrin-B2 (Efnb2) exhibit background strain-specific vestibular-behavioral dysfunction and signs of abnormal endolymph homeostasis. Using various loss-of-function mouse models, we found that Efnb2 is required for growth and morphogenesis of the embryonic endolymphatic epithelium, a precursor of the endolymphatic sac (ES) and duct (ED), which mediate endolymph homeostasis. Conditional inactivation of Efnb2 in early-stage embryonic ear tissues disrupted cell proliferation, cell survival, and epithelial folding at the origin of the endolymphatic epithelium. This correlated with apparent absence of an ED, mis-localization of ES ion transport cells relative to inner ear sensory organs, dysplasia of the endolymph fluid space, and abnormally formed otoconia (extracellular calcite-protein composites) at later stages of embryonic development. A comparison of Efnb2 and Notch signaling-deficient mutant phenotypes indicated that these two signaling systems have distinct and non-overlapping roles in ES/ED development. Homozygous deletion of the Efnb2 C-terminus caused abnormalities similar to those found in the conditional Efnb2 null homozygote. Analyses of fetal Efnb2 C-terminus deletion heterozygotes found mis-localized ES ion transport cells only in the genetic background exhibiting vestibular dysfunction. We propose that developmental dysplasias described here are a gene dose-sensitive cause of the vestibular dysfunction observed in EphB–Efnb2 signaling-deficient mice.  相似文献   

11.
12.
Mutations of SLC26A4 are a common cause of human hearing loss associated with enlargement of the vestibular aqueduct. SLC26A4 encodes pendrin, an anion exchanger expressed in a variety of epithelial cells in the cochlea, the vestibular labyrinth and the endolymphatic sac. Slc26a4 Δ/Δ mice are devoid of pendrin and develop a severe enlargement of the membranous labyrinth, fail to acquire hearing and balance, and thereby provide a model for the human phenotype. Here, we generated a transgenic mouse line that expresses human SLC26A4 controlled by the promoter of ATP6V1B1. Crossing this transgene into the Slc26a4 Δ/Δ line restored protein expression of pendrin in the endolymphatic sac without inducing detectable expression in the cochlea or the vestibular sensory organs. The transgene prevented abnormal enlargement of the membranous labyrinth, restored a normal endocochlear potential, normal pH gradients between endolymph and perilymph in the cochlea, normal otoconia formation in the vestibular labyrinth and normal sensory functions of hearing and balance. Our study demonstrates that restoration of pendrin to the endolymphatic sac is sufficient to restore normal inner ear function. This finding in conjunction with our previous report that pendrin expression is required for embryonic development but not for the maintenance of hearing opens the prospect that a spatially and temporally limited therapy will restore normal hearing in human patients carrying a variety of mutations of SLC26A4.  相似文献   

13.
Pendrin and prestin both belong to a distinct anion transporter family called solute carrier protein 26A, or SLC26A. Pendrin (SLC26A4) is a chloride-iodide transporter that is found at the luminal membrane of follicular cells in the thyroid gland as well as in the endolymphatic duct and sac of the inner ear, whereas prestin (SLC26A5) is expressed in the plasma membrane of cochlear outer hair cells and functions as a unique voltage-dependent motor. We recently identified a motif that is critical for the motor function of prestin. We questioned whether it was possible to create a chimeric pendrin protein with motor capability by integrating this motility motif from prestin. The chimeric pendrin was constructed by substituting residues 160-179 in human pendrin with residues 156-169 from gerbil prestin. Non-linear capacitance and somatic motility, two hallmarks representing prestin function, were measured from chimeric pendrin-transfected human embryonic kidney 293 cells using the voltage clamp technique and photodiode-based displacement measurement system. We showed that this 14-amino acid substitution from prestin was able to confer pendrin with voltage-dependent motor capability despite the amino acid sequence disparity between pendrin and prestin. The molecular mechanism that facilitates motor function appeared to be the same as prestin because the motor activity depended on the concentration of intracellular chloride and was blocked by salicylate treatment. Radioisotope-labeled formate uptake measurements showed that the chimeric pendrin protein retained the capability to transport formate, suggesting that the gain of motor function was not at the expense of its inherent transport capability. Thus, the engineered pendrin was capable of both transporting anions and generating force.  相似文献   

14.
Pendrin mutations cause enlarged vestibular aqueducts and various degrees of sensorineural hearing loss. The selective abolition of pendrin causes dilation of the membranous labyrinth known as endolymphatic hydrops, loss of the endocochlear potential, and consequently loss of hearing function. Because Na+ transport is one of the most important driving forces for fluid transport, the epithelial Na+ channel (ENaC) is believed to play an important role in fluid volume regulation in the inner ear. Therefore, the dysfunction of Na+ transport through ENaC by the acidification of endolymph in Pendred syndrome is one of the potential causes of endolymphatic hydrops. We investigated the changes of ENaC expression and function during the development of the pendrin knock-out mouse. In the cochlea, the expression of β and γENaC was significantly increased at P56 in Pds−/− mice compared with Pds+/+ mice. In the vestibule, the expression of βENaC was significantly increased at P56, and γENaC expression significantly increased from P6 to P56 in Pds−/− mice. The ENaC-dependent trans-epithelial current was not significantly different between Pds+/+ and Pds−/− mice in Reissner’s membrane or the saccular extramacular roof epithelium at P0, but the current was significantly increased in Pds−/− mice at P56 compared with Pds+/+ mice. These findings indicate that the expression and function of ENaC were enhanced in Pds−/− mice after the development of endolymphatic hydrops as a compensatory mechanism. This result provides insight into the role of Na+ transport in the development and regulation of endolymphatic hydrops due to pendrin mutations.  相似文献   

15.
16.
Abnormal formation of otoconia, the biominerals of the inner ear, results in balance disorders. The inertial mass of otoconia activates the underlying mechanosensory hair cells in response to change in head position primarily during linear and rotational acceleration. Otoconia associate exclusively with the two gravity receptors, the utricle and saccule. The cristae sensory epithelium is associated with an extracellular gelatinous matrix known as cupula, equivalent to otoconia. During head rotation, the inertia of endolymphatic fluids within the semicircular canals deflects the cupula of the corresponding crista and activates the underlying mechanosensory hair cells. It is believed that detached free‐floating otoconia particles travel ectopically to the semicircular canal and cristae and are the culprit for benign paroxysmal positional vertigo (BPPV). The Slc26a4 mouse mutant harbors a missense mutation in pendrin. This mutation leads to impaired transport activity of pendrin and to defects in otoconia composition and distribution. All Slc26a4 loop/loop homozygous mutant mice are profoundly deaf but show inconsistent vestibular deficiency. A panel of behavioral tests was utilized in order to generate a scoring method for vestibular function. A pathological finding of displaced otoconia was identified consistently in the inner ears of mutant mice with severe vestibular dysfunction. In this work, we present a mouse model with a genetic predisposition for ectopic otoconia with a clinical correlation to BPPV. This unique mouse model can serve as a platform for further investigation of BPPV pathophysiology, and for developing novel treatment approaches in a live animal model.  相似文献   

17.
Pax3 mutations result in malformed inner ears in Splotch mutant mice and hearing loss in humans with Waardenburg’s syndrome type I. In the inner ear, Pax3 is thought to be involved mainly in the development of neural crest. However, recent studies have shown that Pax3-expressing cells contribute extensively to multiple inner ear structures, some of which were considered to be derived from the otic epithelium. To examine the specific functions of Pax3 during inner ear development, fate mapping of Pax3 lineage was performed in the presence or absence of functional Pax3 proteins using Pax3Cre knock-in mice bred to Rosa26 reporter (R26R) line. β-gal-positive cells were widely distributed in Pax3Cre/+; R26R inner ears at embryonic day (E) 15.5, including the endolymphatic duct, common crus, cristae, maculae, cochleovestibular ganglion, and stria vascularis. In the absence of Pax3 in Pax3Cre/Cre; R26R inner ears, β-gal-positive cells disappeared from regions with melanocytes such as the stria vascularis of the cochlea and dark cells in the vestibule. Consistently, the expression of Dct, a melanoblast marker, was also absent in the mutant inner ears. However, when examined at E11.5, β-gal positive cells were present in Pax3Cre/Cre mutant otocysts, whereas Dct expression was absent, suggesting that Pax3 lineage with a melanogenic fate migrated to the inner ear, yet failed to differentiate and survive without Pax3 function. Gross inner ear morphology was generally normal in Pax3Cre/Cre mutants, unless neural tube defects extended to the cranial region. Taken together, these results suggest that despite the extensive contribution of Pax3-expressing cells to multiple inner ear tissues, Pax3 function is required specifically for inner ear components with melanogenic fates.  相似文献   

18.
The endolymphatic sac is a non-sensory organ of the inner ear. It is connected to the endolymphatic compartment that is filled with endolymph, a potassium-rich fluid that bathes the apical side of inner ear sensory cells. The main functions ascribed to the endolymphatic sac are the regulation of the volume and pressure of endolymph, the immune response of the inner ear, and the elimination of endolymphatic waste products by phagocytosis. Functional alteration of these functions, leading to deficient endolymph homeostasis and/or altered inner ear immune response, may participate to the pathophysiology of Ménière's disease, an inner ear pathology that causes episodes of vertigo, sensorineural hearing loss and tinnitus, and is characterized by an increase in volume of the cochleo-vestibular endolymph (endolymphatic hydrops).  相似文献   

19.
Pendrin (SLC26A4, PDS) is an electroneutral anion exchanger transporting I(-), Cl(-), HCO(3)(-), OH(-), SCN(-) and formate. In the thyroid, pendrin is expressed at the apical membrane of the follicular epithelium and may be involved in mediating apical iodide efflux into the follicle; in the inner ear, it plays a crucial role in the conditioning of the pH and ion composition of the endolymph; in the kidney, it may exert a role in pH homeostasis and regulation of blood pressure. Mutations of the pendrin gene can lead to syndromic and non-syndromic hearing loss with EVA (enlarged vestibular aqueduct). Functional tests of mutated pendrin allelic variants found in patients with Pendred syndrome or non-syndromic EVA (ns-EVA) revealed that the pathological phenotype is due to the reduction or loss of function of the ion transport activity. The diagnosis of Pendred syndrome and ns-EVA can be difficult because of the presence of phenocopies of Pendred syndrome and benign polymorphisms occurring in the general population. As a consequence, defining whether or not an allelic variant is pathogenic is crucial. Recently, we found that the two parameters used so far to assess the pathogenic potential of a mutation, i.e. low incidence in the control population, and substitution of evolutionary conserved amino acids, are not always reliable for predicting the functionality of pendrin allelic variants; actually, we identified mutations occurring with the same frequency in the cohort of hearing impaired patients and in the control group of normal hearing individuals. Moreover, we identified functional polymorphisms affecting highly conserved amino acids. As a general rule however, we observed a complete loss of function for all truncations and amino acid substitutions involving a proline. In this view, clinical and radiological studies should be combined with genetic and molecular studies for a definitive diagnosis. In performing genetic studies, the possibility that the mutation could affect regions other than the pendrin coding region, such as its promoter region and/or the coding regions of functionally related genes (FOXI1, KCNJ10), should be taken into account. The presence of benign polymorphisms in the population suggests that genetic studies should be corroborated by functional studies; in this context, the existence of hypo-functional variants and possible differences between the I(-)/Cl(-) and Cl(-)/HCO(3)(-) exchange activities should be carefully evaluated.  相似文献   

20.
Pendred syndrome is an autosomal recessive disorder defined by sensorineural deafness, goiter and a partial organification defect of iodide. It is caused by biallelic mutations in the multifunctional anion transporter pendrin/SLC26A4. In human thyroid tissue, pendrin is localized at the apical membrane of thyroid follicular cells. The clinical phenotype of patients with Pendred syndrome and the fact that pendrin can mediate iodide efflux in transfected cells suggest that this anion exchanger may be involved in mediating iodide efflux into the follicular lumen, a key step in thyroid hormone biosynthesis. This concept has, however, been questioned. This review discusses supporting evidence as well as arguments questioning a role of pendrin in mediating iodide efflux in thyrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号