首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In some cultures of the flagellate Chrysochromulina polylepis Manton et Parke, established from cells isolated from the massive bloom in Skagerrak and Kattegat in 1988, we observed, two motile cell types. They were termed authentic and alternate cells and differed with respect to scale morphology. To investigate whether or not the two cell forms were joined in a sexual life cycle, the relative DNA content per cell and relative size of cells of several clonal cultures of C. polylepis were determined by flow cytometry. Percentages of authentic and alternate cells in the cultures were estimated by transmission electron microscopy. Pure authentic cultures (α) contained cells with the lowest level of DNA and were termed haploid. Two pure alternate cultures (β) contained cells with double the DNA content of authentic cells and were termed diploid. Other pure alternate cultures contained haploid cells only, or both haploid and diploid cells. Three cell types were observed, each capable of vegetative propagation: authentic haploid, alternate haploid, and alternate diploid cells. Both the haploid and diploid alternate cells were larger than the haploid authentic cells. Cultures containing diploid cells appeared unstable: cell type ratio and ploidy ratio changed during the experiment where this cell type was present, particularly when grown in continuous light. In contrast, cultures with only haploid cells remained unchanged at all growth conditions tested. Light condition may influence cell type ratio and ploidy ratio. Our attempt to induce syngamy by mixing different authentic haploid clones did not result in mating. Assuming that the authentic and alternate cell types are of the same species, the life cycle of C. polylepis includes three flagellated scale-covered cell forms. Two of the cell types are haploid and may function as gametes, and the third is diploid, possibly being the result of syngamy.  相似文献   

2.
3.
Synthesis of deoxyribonucleic acid (DNA) in synchronized cultures of Oedogonium cardiacum has been studied by radioautography. The germinated zoospores are pulse-labelled for 15 min with thymidine-2-C14. Use of penicillin in the medium reduces the background in the radioautographs by suppressing the growth of bacteria on Oedogonium cells. Incorporation of labelled precursor is greatly enhanced by growing the cells in a conditioned inorganic medium. The length of the DNA synthesis period (S), as estimated from the curve of percentage of labelled cells versus age during the first cell cycle is about 5-7 hr. The rate of labelling in the nucleus is non-uniform showing a dip during the mid S period. Concomitant with the doubling of DNA in the nucleus a fourfold increase in the nuclear volume is observed.  相似文献   

4.
The cell kinetics of recurrent growth of the murine JB-1 ascites tumour have been investigated 0 hr and 24 hr after aspiration of the main part of the tumour in the plateau phase of growth. The experimental data: growth curve, percentage of labelled mitoses curve and continuous labelling curves combined with cytophotometric determination of single-cell DNA content were analysed using two alternative mathematical models for the cell kinetics. Investigations 24 hr after aspiration showed that the doubling time had decreased to 70 hr as compared with 240 hr in the plateau tumour. This was due to a release of non-proliferating cells into the cell cycle, resulting in an increase in the growth fraction from 44% to 72%. The decrease in the doubling time was also due to a shortening of the mean cell cycle time from 41 to 20.5 hr. The analysis rendered it likely that the aspiration caused a shift in the mode of cell loss from an age-specific elimination of old non-cycling cells with post-mitotic DNA content in the plateau tumour to an elimination of younger cells immediately after mitosis. Investigations from 0 to 10 hr after aspiration verified the release of non-proliferating cells with both G1 and G2 DNA content into the cell cycle. The release was initiated from 3 to 6 hr after aspiration. 24 hr after aspiration the experimental data did not indicate any further transition.  相似文献   

5.
Nuclei have been isolated from unsynchronized cultures of Chinese hamster fibroblasts after varying intervals of growth following the incorporation of thymidine -3H for 20 min. These nuclei were fractionated by unit gravity sedimentation in a stabilizing density gradient of sucrose, and fractions were analyzed for the concentration of nuclei, DNA, and radioactivity. A more rapidly sedimenting population of nuclei in the G2 phase of the cell cycle was separated from a group of nuclei in the G1 phase, and nuclei in progressive stages of DNA synthesis (S phase) were distributed between these two regions. The fractionation of intact cells by sedimentation according to their position in the cell cycle was found to be less satisfactory than the corresponding separation of nuclei. This probably results from the continuous accumulation of mass within individual cells throughout the entire cell cycle, whereas most of the mass of a nucleus is replicated during a relatively narrow interval of the total cell cycle.  相似文献   

6.
The effect of hydroxyurea and 5-fluorodeoxyuridine (FdUrd) on the course of growth (RNA and protein synthesis) and reproductive (DNA replication and nuclear and cellular division) processes was studied in synchronous cultures of the chlorococcal alga Scenedesmus quadricauda (Turp.) Bréb. The presence of hydroxyurea (5 mg·L?1)from the beginning of the cell cycle prevented growth and further development of the cells because of complete inhibition of RNA synthesis. In cells treated later in the cell cycle at the time when the cells were committed to division, hydroxyurea present in light affected the cells in the same way as a dark treatment without hydroxyurea; i. e. RNA synthesis was immediately inhibited followed after a short time period by cessation of protein synthesis. Reproductive processes including DNA replication to which the commitment was attained, however, were initiated and completed. DNA synthesis continued until the constant minimal ratio of RNA to DNA was reached. FdUrd (25 mg·L?1) added before initiation of DNA replication in control cultures prevented DNA synthesis in treated cells. Addition of FdUrd at any time during the cell cycle prevented or immediately stopped DNA replication. However, by adding excess thymidine (100 mg·L?1), FdUrd inhibition of DNA replication could be prevented. FdUrd did not affect synthesis of RNA, protein, or starch for at least one cell cycle. After removal of FdUrd, DNA synthesis was reinitiated with about a 2-h delay. The later in the cell cycle FdUrd was removed, the longer it took for DNA synthesis to resume. At exposures to FdUrd longer than two or three control cell cycles, cells in the population were gradually damaged and did not recover at all.  相似文献   

7.
Macromolecular syntheses in encysted Tetrahymena patula were studied using Feulgen fluorescence cytophotometry, autoradiography, and inhibitors of RNA and protein synthesis. Cycloheximide significantly depressed protein synthesis and D-actinomycin effectively blocked RNA synthesis. Under these conditions, the cells within the cyst were unable to divide. Both cytophotometric measurements and autoradiographic data with tritiated thymidine show that DNA synthesis does not occur during the encystment divisions. Excysted cells placed in nutrient broth medium showed a prolonged generation time after the first cell growth cycle, and by the third generation the mean DNA content per cell was almost triple that of starved excysted cells. These findings indicate that (a) the encystment divisions require RNA and protein synthesis, which are apparently effected through turnover, (b) the encystment division cycles occur in the absence of DNA synthesis, and (c) excysted cells placed in culture medium may go through more than one DNA replication per cell cycle.  相似文献   

8.
DNA metabolism in the slime mold Physarum polycephalum was studied by centrifugation in CsCl of lysates of cultures labeled with radioactive thymidine at various times in the cell cycle. During the G2 (premitotic) phase of the cell cycle, two components of the DNA are labeled. One component is lighter (buoyant density 1.686 g/cc) than the mean of the principal DNA (1.700 g/cc), and one is heavier (approximately 1.706 g/cc). The labeled light DNA was identified chemically by its denaturability, its susceptibility to DNase, and the recovery of its radioactivity in thymine. Cell fractionation studies showed that the heavy and the principal DNA components are located in the nucleus and that the light DNA is in the cytoplasm. The light DNA comprises approximately 10% of the DNA. About ⅓–½ of the light DNA is synthesized during the S period, and the remainder is synthesized throughout G2 (there is no G1 in Physarum). The light DNA is metabolically stable. A low, variable level of incorporation of radioactive thymidine into the principal, nuclear DNA component was observed during G2.  相似文献   

9.
MITOSIS AND THE PROCESSES OF DIFFERENTIATION OF MYOGENIC CELLS IN VITRO   总被引:31,自引:20,他引:11       下载免费PDF全文
The relation between the mitotic cycle and myoblast fusion has been studied in chick skeletal muscle in vitro. The duration of the cell cycle phases was the same in both early and late cultures. By tracing a cohort of pulse-labeled cells, it was found that myoblast fusion does not occur in S, G2, or M. Cell surface alterations required for fusion are dependent upon the position of the cell in the division cycle. In early cultures, fusion takes place only after a minimum delay of 5 hr from the time the cell has entered G1. The mitosis preceding fusion may condition the cell for the abrupt shift in synthetic activity that occurs in the subsequent G1. In older cultures fusion of labeled cells is diminished. Two factors account for the cessation of fusion in older cultures. First, the number of myogenic stem cells declines, but these cells do not disappear as the cultures mature. Their persistence was demonstrated by labeling dividing mononucleated cells in older cultures and challenging them with nascent myotubes. Some of these labeled cells were incorporated into the forming myotubes. Second, a block to fusion develops during myotube maturation. Well developed myotubes challenged with labeled competent myogenic cells failed to incorporate the labeled nuclei.  相似文献   

10.
The regulation of nucleotide excision repair and base excision repair by normal and repair deficient human cells was determined. Synchronous cultures of WI-38 normal diploid fibroblasts and Xeroderma pigmentosum fibroblasts (complementation group D) (XP-D) were used to investigate whether DNA repair pathways were modulated during the cell cycle. Two criteria were used: (1) unscheduled DNA synthesis (UDS) in the presence of hydroxyurea (HU) after exposure to UV light or after exposure to N-acetoxy-acetylaminofluorene (N-AcO-AAF) to quantitate nucleotide excision repair or UDS after exposure to methylmethane sulfonate (MMS) to measure base excision repair; (2) repair replication into parental DNA in the absence of HU after exposure to UV light. Nucleotide excision repair after UV irradiation was induced in WI-38 fibroblasts during the cell cycle reaching a maximum in cultures exposed 14–15 h after cell stimulation. Similar results were observed after exposure to N-AcO-AAF. DNA repair was increased 2–4-fold after UV exposure and was increased 3-fold after N-AcO-AAF exposure. In either instance nucleotide excision repair was sequentially stimulated prior to the enhancement of base excision repair which was stimulated prior to the induction of DNA replication. In contrast XP-D failed to induce nucleotide excision repair after UV irradiation at any interval in the cell cycle. However, base excision repair and DNA replication were stimulated comparable to that enhancement observed in WI-38 cells. The distinctive induction of nucleotide excision repair and base excision repair prior to the onset of DNA replication suggests that separate DNA repair complexes may be formed during the eucaryotic cell cycle.  相似文献   

11.
Stems 1, 2, 3 months old of Allium cepa L. were labelled with tritiated thymidine, fixed in FAA, sectioned, stained with the Feulgen reaction, and prepared for autoradiography. The serial transverse sections were outlined with a camera lucida, recording labelled nuclei as dots. These drawings were used for 3-dimensional reconstructions of the locations of labelled nuclei. Near the top of the stem, labelled nuclei occur in a broad band, whereas they occur in narrower bands at successively lower levels in the stem, and finally labelled nuclei disappear. The locations of the labelled nuclei correspond to the location of the primary thickening meristem (PTM) in the stem of onion as determined by previous histological and histochemical observations. Microspectrophotometry was used to measure the relative amounts of DNA in Feulgen-stained nuclei of the PTM in serial transverse sections of 1- and 2-month-old onion stems. A bimodal distribution was obtained which can be explained by changes in DNA levels during the cell cycle. No evidence of polyploid nuclei was observed. One can conclude, therefore, that the PTM is the site of cell division activity during the primary stem thickening process in onion.  相似文献   

12.
The patterns of alanine dehydrogenase, glutamate dehydrogenase and malate dehydrogenase activity were studied during the normal vegetative cell cycle and during the process of gametic differentiation and dedifferentiation in synchronized cultures of Chlamydomonas reinhardtii. During all three phases of growth and differentiation the synthesis of DNA was also measured. During gametic differentiation all three enzyme levels were suppressed compared to vegetative cells although DNA and cell number were comparable. During gametic dedifferentiation no DNA synthesis occurred during the first 24 h cycle and only a doubling during the second. It was not until the third cycle that a normal 4-fold increase in DNA was observed. Cell number followed a similar pattern. Athough the levels of alanine dehydrogenase and malate dehydrogenase were uniformly low during the first cycle when glutamate dehydrogenase increased 4-fold, during the second cycle the patterns of these enzymes changed markedly. The enzymes did not attain levels characteristic of vegetative cells until the third cycle.  相似文献   

13.
A KINETIC ANALYSIS OF MYOGENESIS IN VITRO   总被引:21,自引:11,他引:10       下载免费PDF全文
Conditions which yielded reproducible growth kinetics with extensive, relatively synchronous differentiation are described for chick muscle cultures. The effects of cell density and medium changes on the timing of cell fusion were examined. Low-density cultures which received a change of medium at 24 hr after plating show the highest rate of cell fusion, increasing from 15 to 80% fused cells in a 10 hr period. These optimal culture conditions were employed to reexamine two questions from the earlier literature on muscle culture: (a) can cells which normally would fuse at the end of one cell cycle be forced to go through another cell cycle before fusion; and (b) how soon after its final S period can a cell complete fusion? In answer to the first question, it was found that if the medium is changed, many cells which would otherwise fuse can be made to undergo another cell cycle before fusion. In the second case, radioautographs were made from cultures incubated with tritiated thymidine for various times at the beginning of the fusion period. These show labeled nuclei in myotubes as early as 3 hr after the beginning of the incubation period. This indicates that cells can fuse as early as the beginning of the G1 period, and suggests that there is not an obligatory exit from the cell cycle or a prolonged G1 period before cell fusion and differentiation during myogenesis.  相似文献   

14.
The mechanism of coordination between DNA replication and cell division was studied in Tetrahymena pyriformis GL-C by manipulation of the timing of these events with heat shocks and inhibition of DNA synthesis. Preliminary experiments showed that the inhibitor combination methotrexate and uridine (M + U) was an effective inhibitor of DNA synthesis. Inhibition of the progression of DNA synthesis with M + U in exponentially growing cells, in which one S period usually occurs between two successive divisions, or in heat-shocked cells, when successive S periods are known to occur between divisions, resulted in the complete suppression of the following division. In further experiments in which the division activities were reassociated with the DNA synthetic cycle by premature termination of the heat-shock treatment, it was shown that (a) the completion of one S period during the treatment was sufficient for cell division, (b) the beginning of division events suppressed the initiation of further S periods, and (c) if further S periods were initiated while the heat-shock treatment was continued, division preparations could not begin until the necessary portion of the S period was completed, even though DNA had previously been duplicated. It was concluded that a temporal incompatibility exists between DNA synthesis and division which may reflect a coupling mechanism which insures their coordination during the normal cell cycle.  相似文献   

15.
Light-grown cells of Ochromonas danica, which contain a single chloroplast per cell, were labeled with [methyl-3H]thymidine for 3 h (0.36 generations) and the distribution of labeled DNA among the progeny chloroplasts was followed during exponential growth in unlabeled medium for a further 3.3 generations using light microscope autoradiography of serial sections of entire chloroplasts. Thymidine was specifically incorporated into DNA in both nuclei and chloroplasts. Essentially all the chloroplasts incorporated label in the 3-h labeling period, indicating that chloroplast DNA is synthesized throughout the cell cycle. Nuclear DNA has a more limited S period. Both chloroplast DNA and nuclear DNA are conserved during 3.3 generations. After 3.3 generations in unlabeled medium, grains per chloroplast followed a Poisson distribution indicating essentially equal labeling of all progeny chloroplasts. It is concluded that the average chloroplast in cells of Ochromonas growing exponentially in the light contains at least 10 segregating DNA molecules.  相似文献   

16.
The cell kinetics of the murine JB-1 ascites tumour have been investigated on days 4, 7 and 10 after transplantation of 2·5 × 106 cells. The experimental data, growth curve, percentage of labelled mitoses curves, continuous labelling curves and cytophotometric determination of single-cell DNA content have been analysed by means of a mathematical model for the cell kinetics. The important result was the existence of 8% non-cycling cells with G2 DNA content in the 10-day tumour, while only 0·2 and 0% were observed in the 7- and 4-day tumours, respectively. The doubling times determined from the growth curve were 22·8, 70 and 240 hr, respectively, in the 4-, 7- and 10-day tumours. Growth fractions of 76, 67 and 44% were calculated for the same tumour ages. The mean cell cycle time increased from 14 to 44 hr from day 4 to 7 due to a proportional increase in the mean transit time of all phases in the cell cycle. In the 10-day tumour, the mean cell cycle changed to 41 hr and T G1 decreased to 0·5 hr. The cell production rate was 4·3%/hr in the 4-day tumour, 1·2%/hr in the 7-day tumour and 1·0%/hr in the 10-day tumour. The cell loss rates in the same tumours were 1·3, 0·2 and 0·7%/hr, respectively. The analysis made it probable that the mode of cell loss was an age-specific elimination of non-cycling cells with postmitotic DNA content.  相似文献   

17.
The increase in alkaline phosphatase in asynchronous cultures of HeLa S3 cells grown in medium supplemented with hydrocortisone is characterized by a lag period of 10–12 hr. Present studies utilizing synchronous cell populations indicate: (a) a minimum of 8–10 hr of incubation with hydrocortisone is necessary for maximum induction of alkaline phosphatase; (b) the increase in enzyme activity produced by hydrocortisone is initiated exclusively in the synthetic phase of the cell cycle; (c) alkaline phosphatase activity does not vary appreciably over a normal control cell cycle. Radioactive hydrocortisone is rapidly distributed into HeLa cells irrespective of their position in the cell cycle, indicating that inductive effects are not governed by selective permeability during the cell cycle. Hydrocortisone-1,2-[3H] diffuses back from the cell into the medium when the cells are incubated in fresh medium containing no hydrocortisone, and the alkaline phosphatase induction, under these conditions, is completely reversible.  相似文献   

18.
The centric diatom, Thalassiosira weissflogii Grun., can be induced to undergo spermatogenesis by exposing cells maintained at saturating levels of continuous light to either dim light or darkness. Using flow cytometry to determine the relative DNA and chlorophyll content per cell, the number of cells within a population that responded to and induction signal was measured. From 0 to over 90% of a population differentiated into male gametes depending upon both the induction trigger and the population examined, regardless of the average cell size of the population. Through the use of synchromized cultures, we demonstrated that responsiveness to an induction trigger was a function of cell cycle stage; cells in early G1 were not yet committed to complete mitosis and were induced to form male gametes, whereas cells further along in their cell cycle were unresponsive to these same cues. A simple model combining the influence of light on the mitotic cell cycle and on the induction of spermatogenesis is proposed to explain the observed diversity in population responses to changes in light conditions.  相似文献   

19.
Polyamines and the Cell Cycle of Catharanthus roseus Cells in Culture   总被引:1,自引:0,他引:1  
Maki H  Ando S  Kodama H  Komamine A 《Plant physiology》1991,96(4):1008-1013
Investigation was made on the effect of partial depletion of polyamines (PAs), induced by treatment with inhibitors of the biosynthesis of PAs, on the distribution of cells at each phase of the cell cycle in Catharanthus roseus (L.) G. Don. cells in suspension cultures, using flow cytometry. More cells treated with inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) were accumulated in the G1 phase than those in the control, while the treatment with an inhibitor of spermidine (SPD) synthase showed no effect on the distribution of cells. The endogenous levels of the PAs, putrescine (PUT), SPD, and spermine (SPM), were determined during the cell cycle in synchronous cultures of C. roseus. Two peaks of endogenous level of PAs, in particular, of PUT and SPD, were observed during the cell cycle. Levels of PAs increased markedly prior to synthesis of DNA in the S phase and prior to cytokinesis. Activities of ADC and ODC were also assayed during the cell cycle. Activities of ADC was much higher than that of ODC throughout the cell cycle, but both activities of ODC and ADC changed in concert with changes in levels of PAs. Therefore, it is suggested that these enzymes may regulate PA levels during the cell cycle. These results indicate that inhibitors of PUT biosynthesis caused the suppression of cell proliferation by prevention of the progression of the cell cycle, probably from the G1 to the S phase, and PUT may play more important roles in the progression of the cell cycle than other PAs.  相似文献   

20.
When vitamin B12 is added to B12-deficient cultures of Euglena gracilis, the cells undergo two relatively synchronous cell divisions within a shorter than usual period of time, apparently as a result of a transitory shortening of the cell cycle. The first cell division pulse, occurring 4.5 h after addition of B12, is preceded by the completion of DNA duplication, but appears to involve no net synthesis of RNA or protein. Before the second round of cell division at about 11 h, a significant amount of DNA synthesis is observed. This time it is accompanied by a minor increase in the RNA and protein content of the culture. The cellular contents of RNA and protein were observed to decrease steadily after the resumption of cell division in B12-depleted cultures receiving the vitamin. Ultimately all three macromolecules returned to their nondeficient, plateau stage levels; by this time, cell division had ceased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号