首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the changes in antioxidative enzyme activities of two sweet potato cultivars under waterlogging and high-light conditions in the growth chamber. The activities of antioxidative enzymes were measured from leaf crude extract of sweet potato during the first five days of the treatments. Activities of superoxide dismutase and catalase were consistently increased in Taoyuan 1 sweet potato over time under waterlogging and high-light conditions. However, decreases in both superoxide dismutase and catalase activities were observed for cultivar Yongtsai under waterlogging and high-light conditions. Waterlogging, together with high-light intensity, impairs superoxide dismutase and catalase activities in the cultivar Yongtsai indicating its greater susceptibility to waterlogging and high-light stress. In contrast, the increase in activities of superoxide dismutase and catalase in Taoyuan 1 indicated its greater ability to detoxify reactive oxygen species during the treatment and ensured its reduced susceptibility to waterlogging and high-light stress. The activities of peroxidase may be inactivated by high-light treatment and, therefore, may not be associated with tolerance of sweet potato plants to waterlogging and high-light stress. Differences in susceptibility to waterlogging and high-light conditions in the leafy vegetable Yongtsai and storage root Taoyuan 1 are discussed.  相似文献   

2.
The activities of three enzymes of phenolic biosynthesis and six of general metabolism were studied at 24-hour intervals between the 3rd and 8th day after planting in barley shoots treated with the chlorosis-inducing herbicide Sandoz 6706 and grown in the dark or under high or low intensity light. The herbicide had no effect on fresh weight or soluble protein (per shoot) in plants grown in the dark or under low intensity light, but slightly decreased these parameters in plants grown for more than 5 days under high intensity light. In dark-grown seedlings the herbicide had no detectable effects on plastid ultrastructure or on the activity of malate dehydrogenase, cytochrome c oxidase, NADP-cytochrome c reductase, triose phosphate isomerase, peroxidase, catalase, shikimate dehydrogenase, phenylalanine ammonia-lyase, or chalcone-flavanone isomerase. Under low intensity light, Sandoz 6706-treated plants developed plastids with single thylakoids extending across the organelle, and the activity of all enzymes examined was increased to varying degrees. When the herbicide-treated plants were grown under high intensity light, plastid lamellar organization was severely disrupted. Activities of shikimate dehydrogenase and chalcone-flavanone isomerase were markedly enhanced, phenylalanine ammonia-lyase activity slightly promoted, and catalase activity severely inhibited. The other enzymes were not appreciably affected by Sandoz 6706 under high intensity light. It is concluded that the changes in plastid ultrastructure and enzyme activities of the herbicide-treated plants are largely secondary photomorphogenetic or photooxidative responses in the carotenoid-free plants in which chlorophylls accumulate in reduced amounts (low intensity light) or are completely absent (high intensity light).  相似文献   

3.
低温弱光对黄瓜幼苗生长及抗氧化酶活性的影响   总被引:45,自引:10,他引:45  
以设施栽培黄瓜为材料。研究了常温弱光和低温弱光胁迫期间以及随后的恢复过程中植株生长和抗氧化酶的变化.结果表明,常温弱光和低温弱光胁迫分别导致黄瓜植株生长减缓和停滞。根系活力下降.低温弱光处理过程中。SOD和GPOD活性上升,并以7℃处理尤为明显。但在恢复过程中这些酶的活性均恢复至对照水平.常温弱光对SOD活性影响不大,但在恢复过程中SOD活性则上升到一个比对照更高的水平,GPOD活性在弱光处理5d后迅速上升,恢复期间呈下降趋势.此外,常温弱光和低温弱光胁迫均造成MDA累积。  相似文献   

4.
光质对水稻幼苗初级氮同化的影响   总被引:12,自引:0,他引:12  
用滤光膜过滤蓝色或红色荧光灯,得到纯的蓝光和红光,以白光为对照,研究不同光质对水稻(Oryza sativa L.)幼苗初级氮同化的影响。结果表明:蓝光促进水稻黄化幼苗吸收NO^-3含量,并促进NR(硝酸还原酶)的诱导。在蓝光下生长5 ̄7d的幼苗的NR、NIR(亚硝酸还原酶)、GS(谷氨酰胺合成酶)和GOGAT(谷氨酸合酶)活性均高于白光下生长的,但第10天以后,白光下生长的幼苗酶活性最高。与白光  相似文献   

5.
光质对水稻幼苗初级氮同化的影响   总被引:2,自引:0,他引:2  
Pure blue(BL) or red light (RL) were obtained by filtering blue or red fluorescent lamp light through plastic filters. With the same intensity of white light(WL) as control, the effects of light quality on the primary nitrogen assimilation of rice seedlings were studied. Irradiation for 2-6 h with BL promoted the uptake of NO-3, the induction of nitrate reductase (NR), and the increase of the NO-3 content in the etiolated seedlings.Seedlings grown under BL for 5-7 d had higher activities of NR, NIR (nitrite reductase) GOGAT (glutamate synthase) as well as GS (glutamine synthetase) than those under WL. However, for more than 10 days under BL, the levels of these enzymes became lower than those of the seedlings under WL. Compared with BL or WL, RL was less effective on the primary nitrogen assimilation.  相似文献   

6.
Changes in activities of the enzymes involved in the metabolism of active oxygen species were followed in homogenates prepared from wheat leaves (Triticum aestivum L.) exposed to strong visible light (600 W m-2). The activities of superoxide dismutase (SOD), ascorbate peroxidase, and monodehydroascorbate reductase increased significantly on prolonged illumination of the leaves, indicating an increase in the rate of generation of active oxygen species. This increase was further exacerbated when high light stress was combined with low temperature (8[deg]C). Our results indicate that the increase in activities of SOD and ascorbate peroxidase involved de novo protein synthesis that was sensitive to the nuclear-directed protein synthesis inhibitor cycloheximide. The activity of catalase, on the other hand, decreased on exposure to strong light, which could be due to its photolability, particularly at lower temperatures. Ascorbate and total carotenoid contents also increased on light treatment of the leaves. The induction of the enzymes except for catalase and increase in the levels of ascorbate and total carotenoids in response to the stress conditions indicate that they play an important role in the protection of higher plants from the damaging effects of toxic active species.  相似文献   

7.
《Plant science》1987,50(2):105-109
Levels of chloroplast antioxidants and enzymes that scavenge oxygen racidals were followed in the leaves of pea plants (Pisum sativum L. cv. Meteor) grown under glasshouse conditions between April 1984 and May 1985. While little variation in pigment levels or superoxide dismutase activity was detected during this period, plants grown in early summer (May–June) contained appreciably higher levels of ascorbate, ascorbate peroxidase and glutathione reductase than plants grown in winter (Dec–Jan.). The role of light intensity in regulating levels of chloroplast antioxidants was examined further using pea plants grown in a constant environment chamber under 100 or 400 μmol m−2 s −1 photon flux density. Chloroplasts isolated from plants grown at the higher light intensity contained significantly higher levels of ascorbate, ascorbate peroxidase, glutathione reductase and dehydroascorbate reductase. These data suggest that light intensity may have an important influence on the level and activity of chloroplast antioxidants and oxygen radical scavenger enzymes.  相似文献   

8.
9.
When rice seedlings grown for 10 and 20 days were subjected to in vitro drought stress of −0.5 and −2.0 MPa for 24 h, an increase in the concentration of superoxide anion (O2.−), increased level of lipid peroxidation and a decrease in the concentration of total soluble protein and thiols was observed in stressed seedlings compared to controls. The concentration of H2O2 as well as ascorbic acid declined with imposition of drought stress, however glutathione (GSH) concentration declined only under severe drought stress. The activities of total superoxide dismutases (SODs) as well as ascorbate peroxidase (APX) showed consistent increases with increasing levels of drought stress, however catalase activity declined. Mild drought stressed plants had higher guaiacol peroxidase (GPX) and chloroplastic ascorbate peroxidase (c-APX) activity than control grown plants but the activity declined at the higher level of drought stress. The activities of enzymes involved in regeneration of ascorbate i.e. monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were higher in drought stressed plants compared to controls. Results suggest that drought stress induces oxidative stress in rice plants and that besides SOD, the enzymes of ascorbate-glutathione cycle, which have not been studied in detail earlier under stressful conditions, appear to function as important component of antioxidative defense system under drought stress.  相似文献   

10.
Mycorrhizae may help plants to thrive in Mediterranean semi-arid ecosystems by altering antioxidant enzyme activities. Our objective was to determine the influence of mycorrhizal inoculation with an allochthonous arbuscular mycorrhizal (AM) fungus, Glomus claroideum , Schenck & Smith, or with a mixture of native AM fungi, on the activity of antioxidant enzymes from shoots of Olea europaea L. ssp. sylvestris , Retama sphaerocarpa (L.) Boissier and Rhamnus lycioides L. seedlings afforested in a degraded Mediterranean semi-arid soil. One year after planting, shoot biomass of inoculated O. europaea seedlings was about 630%, of non-inoculated plants. Shoot biomass of G. claroideum -colonized R. sphaerocarpa was greater than that of seedlings inoculated with the mixed native AM fungi after 12 months. Inoculation with a mix of native AM fungi was the most effective treatment for increasing shoot biomass and N, P and K contents in shoot tissues of R. lycioides . Both mycorrhizal inoculation treatments increased the nutrient contents in shoots of O. europaea and R. lycioides . In O. europaea plants, the inoculation treatments increased catalase, ascorbate peroxidase and dehydroascorbate reductase activities, but not monodehydroascorbate reductase and glutathione reductase activities. Inoculation with G. claroideum increased the activities of all antioxidant enzymes in R. sphaerocarpa . Monodehydroascorbate reductase, glutathione reductase and superoxide dismutase activities in R. lycioides leaves were preferentially increased by inoculation with the mixture of native AM fungi. This work support the view that increased antioxidant enzyme activities could be involved, at least in part, in the beneficial effects of mycorrhizal colonization on the performance of shrub species grown under semi-arid Mediterranean conditions.  相似文献   

11.
 研究了生长于不同光照条件下(100%、25%和8%光强)热带雨林冠层树种绒毛番龙眼(Pometia tomentosa)和中层树种滇南风吹楠(Horsfieldia tetratepala)幼苗的光合能力、热耗散、活性氧和保护性酶的活性。结果表明,绒毛番龙眼的最大光合速率随着生长光强的增加而提高,而滇南风吹楠在全光条件下的最大光合速率反比25%光照条件下的低。全光条件下两个树种光系统II的最大光化学效率(Fv/Fm)都显著降低,表明发生了长期光抑制。当把生长于遮荫条件下的幼苗移到全光下,从凌晨到中午随着光强的增加光抑制加剧,日落时生长于8%光照条件下的绒毛番龙眼及生长于8%和25%光照条件下的滇南风吹楠的光抑制不能完全恢复。非光化学猝灭对光强的响应曲线表明,随着生长光强的增加滇南风吹楠的热耗散能力增强,而生长在全光和25%光照条件下的绒毛番龙眼的热耗散能力都比滇南风吹楠的弱。两个树种叶片中O-[]·2、H2O2含量、SOD和CAT活性均随着生长光强的增加而提高;在同一光照条件下,绒毛番龙眼叶片中O-[]·2、H2O2含量、SOD和CAT活性显著高于滇南风吹楠。上述结果表明,在光抑制条件下,冠层树种绒毛番龙眼较大程度通过提高保护性酶的活性来保护光合机构免受损伤,而中层树种滇南风吹楠却较大程度通过增强非光化学猝灭来耗散过量光能;滇南风吹楠对强光的适应性差。  相似文献   

12.
Anatomical and physiological leaf characteristics and biomass production of Fatsia japonica plants were studied. Plants were grown in a growth chamber at 300 μmol m-2 s-1 (high light) and 50 μmol m-2 s-1 (low light) photosynthetic photon flux density. Plants grown under high light showed a net maximum photosynthetic rate 44% higher than plants grown under low light; the light compensation point and the light saturation point were also higher in high-light plants. Photosynthetic oxygen evolution in isolated chloroplasts was about 40% higher in high-light plants. However, chlorophyll content on a dry weight basis, on a leaf area basis, and per chloroplast was greater in plants grown under low light. Leaf thickness in high-light plants was 13% higher than in low-light plants. The number of chloroplasts was 30% higher in high-light leaves, while chloroplast size was only slightly higher. Chloroplast ultrastructure was also affected by light. Leaf dry weight, leaf area, and biomass production per plant were drastically reduced under low light. Thus, F. japonica is a plant that is able to acclimate to different photosynthetic photon flux density by altering its anatomical and physiological characteristics. However, low-light acclimation of this plant has a considerable limiting effect on biomass production.  相似文献   

13.
FAIR  P.; TEW  J.; CRESSWELL  C. F. 《Annals of botany》1973,37(5):1035-1039
Plants grown in a high carbon dioxide environment (< 1 percent) were found to have increased levels of RuDP carboxylase,and suppressed activities of catalase, glycollate oxidase, andnitrate reductase, enzymes all associated with the peroxisome.Similarly, plants grown in low oxygen concentrations showedsuppressed activities of the peroxisomal enzymes. However, underthese conditions RuDP carboxylase activity was also suppressed.These results further suggest that nitrate reductase activityis associated with photorespiration.  相似文献   

14.
The effect of pretreatment with 0.05 mM salicylic acid (SA) on the activity of superoxide dismutase (SOD) and peroxidase in the roots of four-day-old seedlings of wheat (Triticum aestivum L.) was studied under conditions of salination. The level of the stress-induced accumulation of active oxygen species and, therefore, activities of SOD and peroxidase in seedlings pretreated with SA were significantly lower than in untreated seedlings, which indicates that these enzymes contribute to the protective effect of SA on plants under conditions of salination.  相似文献   

15.
Leaves of 7- and 18-day-old plants of two maize strains, one resistant (LIZA) and one sensitive (LG11) to water stress, were floated in 1 m M paraquat and 1 m M H2O2 for 12 h in light and in darkness. The aim of this work was to analyse the effects of these substances on the activities of enzymes involved in the scavenging of active oxygen species during senescence. Three senescence parameters; chlorophyll loss, lipid peroxidation and conductivity; showed a general cell damage caused by both oxidative treatments and revealed a higher tolerance of LIZA than LG11 to paraquat and H2O2 both in light and in darkness. Activities of antioxidative enzymes increased by the effect of oxidative treatments in young and senescent leaves of the drought-resistant maize strain LIZA. These increases were about 3-to 6-fold in glutathione reductase. 3-to 4-fold in superoxide dismutase and 2-fold in ascorbate peroxidase activities. The possible correlation between water stress resistance. senescence and the potential of antioxidant enzymes was analysed.  相似文献   

16.
Two chickpea cultivars PBG-1 and PDG-3 along with a wild species Cicer judaicum were investigated to compare the activities of their antioxidant enzymes in mature seeds and roots, as well as shoots and cotyledons of seedlings germinated under dark and continuous illumination of 40 μmol m−2 s−1 photosynthetically active radiation (PAR). Seedling biomass of C. judaicum was lower as compared to cultivars of PBG-1 and PDG-3 both under dark and light conditions. Light reduced the biomass of seedlings. Activities of glutathione reductase (GR) and ascorbate peroxidase (APX) were higher in shoots and roots of C. judaicum compared to the cultivars PBG-1 and PDG-3. In mature seeds, the activities of GR and APX were higher in the cultivated genotypes whereas catalase (CAT) and peroxidase were higher in C. judaicum. Under illumination, a general upregulation of CAT in both shoots and cotyledons and of GR in shoots was observed in all the three genotypes. However, superoxide dismutase (SOD) increased in C. judaicum and APX in PBG-1 and PDG-3. The differences in antioxidant enzyme system between wild and cultivated genotypes possibly contribute to better tolerance of wild Cicer species against abiotic and biotic stresses.  相似文献   

17.
Kreslavski  V.D.  Balakhnina  T.I.  Khristin  M.S.  Bukhov  N.G. 《Photosynthetica》2001,39(3):363-368
Bean (Phaseolus vulgaris L. cv. Berbukskaya) seedlings were pre-treated with choline compounds, 19 mM 2-ethyltrimethylammonium chloride (Ch) or 1.6 mM 2-chloroethyltrimethylammonium chloride (CCh), during 24 h, then after 6 d the excised primary leaves were exposed to UV-B and high temperature stress. Chlorophyll (Chl) fluorescence, delayed light emission, accumulation of photosynthetic pigments, contents of thiobarbituric acid reactive substances, and activities of the active oxygen detoxifying enzymes (superoxide dismutase, ascorbate peroxidase, and glutathione reductase) were examined. Pre-treatment of plants with Ch or CCh enhanced the resistance of photosystem 2 (PS2) photochemistry to UV-B and heat injuries. The higher stress resistance can be explained by the increased activity of the detoxifying enzymes. The increased content of UV-B-absorbing pigments may also contribute to the enhanced resistance of choline-treated plants to UV-B radiation.  相似文献   

18.
The effect of pretreatment with 0.05 mM salicylic acid (SA) on the activity of superoxide dismutase (SOD) and peroxidase in the roots of four-day-old seedlings of wheat (Triticum aestivum L.) was studied under conditions of salination. The level of the stress-induced accumulation of active oxygen species and, therefore, activities of SOD and peroxidase in seedlings pretreated with SA were significantly lower than in untreated seedlings, which indicates that these enzymes contribute to the protective effect of SA on plants under conditions of salination.  相似文献   

19.
20.
Manganese (Mn) is an essential element for plant growth but in excess, specially in acidic soils, it can become phytotoxic. In order to investigate whether oxidative stress is associated with the expression of Mn toxicity during early seedling establishment of rice plants, we examined the changes in the level of reactive oxygen species (ROS), oxidative stress induced an alteration in the level of non-enzymic antioxidants and activities of antioxidative enzymes in rice seedlings grown in sand cultures containing 3 and 6 mM MnCl2. Mn treatment inhibited growth of rice seedlings, the metal increasingly accumulated in roots and shoots and caused damage to membranes. Mn treated plants showed increased generation of superoxide anion (O2 .−), elevated levels of H2O2 and thiobarbituric acid reactive substances (TBARS) and decline in protein thiol. The level of nonprotein thiol, however, increased due to Mn treatment. A decline in contents of reduced ascorbate (AsA) and glutathione (GSH) as well as decline in ratios of their reduced to oxidize forms was observed in Mn-treated seedlings. The activities of antioxidative enzymes superoxide dismutase (SOD) and its isoforms Mn SOD, Cu/Zn SOD, Fe SOD as well as guaiacol peroxidase (GPX) increased in the seedlings due to Mn treatment however, catalase (CAT) activity increased in 10 days old seedlings but it declined by 20 days under Mn treatment. The enzymes of Halliwell-Asada cycle, ascorbate peroxidase (APX) monodehydoascorbate reductase (MDHAR), dehyroascorbate reductase (DHAR) and glutathione reductase (GR) increased significantly in Mn treated seedlings over controls. Results suggest that in rice seedlings excess Mn induces oxidative stress, imbalances the levels of antioxidants and the antioxidative enzymes SOD, GPX, APX and GR appear to play an important role in scavenging ROS and withstanding oxidative stress induced by Mn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号