首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
Bacillus subtilis 168GR10 was shown to contain a mutation, gra-10, which allowed normal temporal activation of alpha-amylase synthesis in the presence of a concentration of glucose that is inhibitory to activation of amylase synthesis in the parent strain, 168. The gra-10 mutation was mapped by phage PBS-1-mediated transduction and by transformation to a site between lin-2 and aroI906, very tightly linked to amyE, the alpha-amylase structural gene. The gra-10 mutation did not pleiotropically affect catabolite repression of sporulation or of the synthesis of extracellular proteases or RNase and was unable to confer glucose-resistance to the synthesis of chloramphenicol acetyltransferase encoded by the cat-86 gene driven by the amyE promoter region (amyR1) inserted into the promoter-probe plasmid pPL603B. It therefore appears that gra-10 defines a cis-regulatory site for catabolite repression, but not for temporal activation, of amyE expression. The evidence shows that temporal activation and glucose-mediated repression of alpha-amylase synthesis in B. subtilis 168 are distinct phenomena that can be separated by mutation.  相似文献   

2.
3.
4.
The amyR1 region controls the regulated expression of the Bacillus subtilis 168 amylase gene amyE. When cloned into the B. subtilis promoter-cloning plasmid pPL603, amyR1 has been shown to activate expression of the promoter-indicator gene cat-86. In this chimeric plasmid, p5' alpha B10, cat-86 expression was maximal in stationary phase B. subtilis cells and cat-86 expression was repressible by glucose. Both these properties are similar to the regulated expression of the B. subtilis amyE gene. In addition, cat-86 expression in p5' alpha B10 was inducible with chloramphenicol (Cm). The inducibility phenotype of cat-86 has been shown to be independent of the promoter that is used to activate the gene, and inducibility has been suggested to result from the presence of a pair of inverted-repeat sequences that span the ribosome-binding site (RBS) for cat-86. A spontaneous deletion mutant of p5' alpha B10 was isolated, p5' alpha B10 delta 1, in which cat-86 expression was constitutive with respect to Cm, but the basic pattern of amyR1-directed regulation of cat-86 was intact. The rightward deletion endpoint was within the upstream member of the pair of inverted repeats that immediately precede cat-86. This result is therefore consistent with the role proposed for the inverted repeats in Cm inducibility. The leftward endpoint of the deletion is within the amyR1 region and thus allows a more precise determination of the functional domain of amyR1.  相似文献   

5.
Three cis-acting alleles (gra-10, gra-5, and amyR2) of the Bacillus subtilis amyR promoter locus each cause catabolite repression-resistance of amyE-encoded alpha-amylase synthesis. The gra-10, gra-5, and amyR2 alleles were transferred from the chromosomes of their respective hosts to a plasmid carrying the amyR1-amyE+ gene by the process of gene conversion which is carried out during transformation of competent B. subtilis by plasmid clones carrying homologous DNA. The cloned amyR promoter regions containing the gra-10 and gra-5 mutations were shown to confer catabolite repression-resistance in cis to the synthesis of chloramphenicol acetyltransferase encoded by the cat-86 indicator gene when subcloned into the promoter-probe plasmid pPL603B. Implications concerning both the regulation of amyR utilization and the process of gene conversion in B. subtilis are discussed.  相似文献   

6.
An alpha-amylase gene from Bacillus coagulans has previously been cloned in Escherichia coli and shown to direct the synthesis of an enzymically active protein of 60,000 Dal (Cornelis et al., 1982). In one particular E. coli host, strain HB101, amylase was found to accumulate in the periplasmic space. To study the processing and the location of the amylase, plasmid pAMY2 was introduced into E. coli 188 which is a strain constitutive for alkaline phosphatase, a periplasmic marker, and for beta-galactosidase, a cytoplasmic marker. Abnormally large amounts of both alpha-amylase and beta-galactosidase were found in the culture fluid of cells grown in rich medium. Furthermore a severe growth defect was found when cells containing pAMY2 were grown in maltose and glycerol media, while the ability to grow on glucose remained normal. This defect could be reversed by two types of spontaneous mutations. Mutations in the first class are located on the plasmid and correspond to the insertional inactivation of the amylase gene by IS1. Mutations in the second class are located on the host chromosome. These results suggest that the synthesis and export of B. coagulans alpha-amylase is deleterious to E. coli, especially in media containing maltose or glycerol as sole carbon source.  相似文献   

7.
8.
9.
10.
The effect of different carbon sources on the expression in Saccharomyces cerevisiae of the SWA2 alpha-amylase gene from Schwanniomyces occidentalis was studied from constructs containing its 5' region (-223 to +15), which were fused in-frame to the lacZ gene coding sequence. Maximal expression was achieved with the non-fermentable substrates ethanol and/or glycerol, whereas lower levels were found with maltose or galactose. In contrast, glucose repressed it, even in the presence of any of these other carbon sources. Deletion analyses of the -233 to -85 SWA2 promoter region permitted the identification of two fragments involved in both glucose repression and ethanol activation. A possible region required for cAMP regulation was localised. The SWA2 promoter contains a MIG1-binding GC box whose deletion caused a five-fold increase in the glucose-repressed reporter expression. Despite this, expression of the SWA2 promoter was not MIG1-dependent.  相似文献   

11.
The level of extracellular alpha-amylase (EC 3.2.1.1) of Bacillus subtilis Marburg was increased about fivefold by introducing the amyR marker from B. natto 1212 through transformation. amyR2 of B. natto 1212 has been assumed to determine a high level of alpha-amylase of the organism. The gene acts specifically on alpha-amylase synthesis but not on the production of other extracellular enzymes. alpha-Amylase of an amyR2-carrying strain was found to be quite similar to that of an isogenic amyR1-carrying strain in the thermostability and electrophoretic behavior of whichever amylase the strain produces. Marburg-type alpha-amylase (amyEm) or B. natto-alpha-amylase (amyEn). Anti-amylase serum titration indicates that a high level of the enzyme activity in the amyR2-carrying strain is caused by the existence of more enzyme rather than the presence of an enzyme having higher efficiency. This is supported further by the fact that amyR controls the synthesis of the amyE gene product in mutant M9, which synthesizes a temperature-sensitive-alpha-amylase, and in mutant M07, which secretes cross-reacting material. The results indicate that amyR regulates the rate of alpha-amylase synthesis.  相似文献   

12.
13.
14.
15.
Significance of HPr in catabolite repression of alpha-amylase.   总被引:3,自引:1,他引:2       下载免费PDF全文
CcpA and HPr are presently the only two proteins implicated in Bacillus subtilis global carbon source catabolite repression, and the ptsH1 mutation in the gene for the HPr protein was reported to relieve catabolite repression of several genes. However, alpha-amylase synthesis by B. subtilis SA003 containing the ptsH1 mutation was repressed by glucose. Our results suggest HPr(Ser-P) may be involved in but is not required for catabolite repression of alpha-amylase, indicating that HPr(Ser-P) is not the sole signaling molecule for CcpA-mediated catabolite repression in B. subtilis.  相似文献   

16.
Y Miwa  Y Fujita 《Nucleic acids research》1990,18(23):7049-7053
The mechanism underlying catabolite repression in Bacillus species remains unsolved. The gluconate (gnt) operon of Bacillus subtilis is one of the catabolic operons which is under catabolite repression. To identify the cis sequence involved in catabolite repression of the gnt operon, we performed deletion analysis of a DNA fragment carrying the gnt promoter and the gntR gene, which had been cloned into the promoter probe vector, pWP19. Deletion of the region upstream of the gnt promoter did not affect catabolite repression. Further deletion analysis of the gnt promoter and gntR coding region was carried out after restoration of promoter activity through the insertion of internal constitutive promoters of the gnt operon before the gntR gene (P2 and P3). These deletions revealed that the cis sequence involved in catabolite repression of the gnt operon is located between nucleotide positions +137 and +148. This DNA segment contains a sequence, ATTGAAAG, which may be implicated as a consensus sequence involved in catabolite repression in the genus Bacillus.  相似文献   

17.
Possible factors regulating alpha-mylase synthesis in wild-type Bacillus licheniformis and in mutants producing elevated levels of the enzyme were studied in terms of catabolite repression, apparent temperature-sensitive repression, induction, and culture age. The synthesis of alpha-amylase in the parent strain occurred long after the culture reached the stationary phase of growth as a result of de novo protein synthesis, occurred only at high temperature around 50 C and not below 45 C, appeared to be induced in the presence of oligosaccharides with some linkage of alpha-1,4-, beta-1,4, beta-1,6-glucosyl glucose, or alpha-1,6-galactosyl glucose, and was repressed by the addition of exogenous glucose or low-molecular-weight metabolites. The addition of cyclic adenosine 3',5'-monophosphate stimulated alpha-amylase accumulation in growing cultures of the parent strain, but neither shortened the long lap period prior to the start of alpha-amylase synthesis nor mitigated the repressive effect of glucose. Mutant strains derived from the parent strain showed variation in the pattern of alpha-amylase synthesis, and some of them such as F-12s and F-14 produced alpha-amylase constitutively and without sensitivity to catabolite repression or transient repression from the moment of cell growth. These results are discussed in relation to possible regulatory mechanisms that might account for the observed characteristics of alpha-amylase synthesis in this facultative thermophilic microorganism.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号