首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Cellular populations involved in resistance against T. cruzi infection were characterized from mice chronically infected with the parasite. Mice transfused with spleen cells (SC), nylon-wool-non-adherent spleen cells (NWNA) or sera from mice chronically infected with T. cruzi, showed an enhanced resistance against challenge with the parasite. The protective activity of NWNA but not of SC was completely abrogated by treatment with anti-Thy1.2 monoclonal antibodies (mAb) and complement (C). Pretreatment of NWNA cells from chronically infected mice with either anti-L3T4 or anti-Lyt 2.2 mAb partially reduced the transfer of resistance. When both L3T4+ and Lyt2.2+ cells were depleted from NWNA populations, transfer of resistance was abolished. These results appear to indicate that L3T4+, Lyt2.2+ T cell subsets and non-T cells are involved in the immunity to T. cruzi.  相似文献   

2.
Effector mechanisms of resistance exerted by T cells from BALB/c mice chronically infected with Trypanosoma cruzi, Tulahuén strain, were studied. Spleen cells from chronically infected mice (Chro-SC) prestimulated with heat-killed trypomastigotes (HKT) and/or IL-2 destroyed PHA-labeled p-815 mastocytoma cells, HKT-pulsed macrophages, and normal peritoneal macrophages. However, HKT-stimulated Chro-SC did not affect the infectivity of free bloodstream forms of the parasite. Upon HKT stimulation, Chro-SC or their culture supernatant activated peritoneal macrophages for the destruction of intracellular amastigotes. The effect was abolished after Thy 1.2+ cell depletion. The addition of Cyclosporin A (CyA), which blocks T-cell activation, during HKT-stimulation of Chro-SC, diminished their ability to activate the trypanocidal activity of macrophages. CyA also inhibited the production of both macrophage-activating factors and interferon-gamma by HKT-stimulated Chro-SC. CyA administration to recipients of nylon-wool nonadherent spleen cells from chronically infected mice inhibited their adoptively acquired resistance against T. cruzi, suggesting that the conferred resistance depended on the effect of specifically activated cells. When administered during the chronic stage of the infection, CyA abrogated the antigen-specific delayed type hypersensitivity response but increased the levels of anti-T. cruzi IgG antibodies. Neither parasitemia, tissular parasitism in myocardium or skeletal muscle, nor mortality were detected after CyA treatment, suggesting the presence of a CyA nonsensitive mechanism(s) in the control of T. cruzi during the chronic phase of the infection.  相似文献   

3.
Spleen cells from mice with chronic Trypanosoma cruzi infection generate a minimal plaque-forming response to SRBC in vitro. Addition of granulocyte-macrophage (GM)-CSF to cultures of spleen cells from chronically infected mice restored the plaque-forming cells (PFC) response to normal levels. Splenic adherent cells from chronically infected mice were deficient in their ability to reconstitute the PFC response of accessory cell-depleted normal spleen cells. Preincubation of splenic adherent cells from infected mice with GM-CSF restored their ability to reconstitute the PFC response of adherent cell depleted cultures. Ia Ag expression by splenic adherent cells from chronically infected mice was significantly lower compared to Ia Ag expression of cells from normal mice. Incubation of splenic adherent cells from chronically infected mice for 48 h with GM-CSF increased levels of Ia Ag expression to approximately those of uninfected mice. Peritoneal macrophages from infected mice produced IL-1 after incubation with GM-CSF at levels equivalent to those produced by similarly treated control macrophages. Spleen cells from chronically infected mice showed significant induction of IL-2 mRNA after GM-CSF treatment, and the addition of the anti-IL-2 mAb to GM-CSF supplemented cultures of spleen cells from infected mice blocked the restoration of the anti-SRBC PFC response. Thus, the ability of GM-CSF to restore the anti-PFC response to SRBC appears to involve the up-regulation of accessory cell function that includes increased Ia Ag expression and the induction of IL-1 production. These events also involve increased IL-2 production with resultant up-regulation of the response to SRBC by spleen cells from infected mice. Finally, it was shown that treatment of infected mice with rGM-CSF completely restored their depressed PFC production in vivo.  相似文献   

4.
Chagas disease, caused by Trypanosoma cruzi (Tc), is an important cause of heart disease. Resistance to Tc infection is multifactorial and associated with Th1 response. IL-18 plays an important role in regulation of IFN-γ production/development of Th1 response. However, the role of IL-18 in the setting of Tc infection remains unclear. Therefore, we investigated the role of IL-18 in the modulation of immune response and myocarditis in Tc infection. C57BL/6 and IL-18 KO mice were infected with Tc (Y or Colombian strain) and parasitemia, immune response and pathology were evaluated. Y strain infection of IL-18 KO did not alter any parameters when compared with C57BL/6 mice. However, during the acute phase (20 and 40 days post infection-dpi), Colombian strain infected-IL-18 KO mice displayed higher serum levels of IL-12 and IFN-γ, respectively, and at the chronic phase (100 dpi) an increase in splenic IFN-γ-producing CD4+ and CD8+ T memory cells. There was an IL-10, FOXP3 and CD4+CD25+ cells reduction during acute infection in spleen. Additionally, there was a significant reduction in leukocyte infiltration and parasite load in myocardium of chronically infected IL-18 KO mice. Collectively, these data indicate that IL-18 contributes to the pathogenesis of Tc-induced myocarditis when infected with Colombian but not Y strain. These observations also underscore that parasite and host strain differences are important in evaluation of experimental Tc infection pathogenesis.  相似文献   

5.
Although Th1-type responses tend to be associated with resistance to Trypanosoma cruzi infection, mixed Th1 and Th2 cytokine responses are generally observed in both resistant and susceptible mice. To help clarify the role of type 1 and type 2 cytokine responses in immunity to T. cruzi, mice with induced deficiencies in the Stat4 or Stat6 genes were infected with T. cruzi. As expected, Stat4-/- mice deficient in type 1 cytokine responses were highly susceptible to infection, exhibiting increased parasitemia levels relative to wild-type mice and 100% mortality. In contrast, parasitemia levels and survival in Stat6-deficient mice were not different from wild type. The type 1 and type 2 cytokine bias of Stat6- and Stat4-deficient mice, respectively, was confirmed by in situ immunocytochemical analysis of cytokine-producing cells in the tissues of infected mice and by subclass analysis of anti-T. cruzi serum Abs. Notably, both Stat4- and Stat6-deficient mice produced substantial amounts of anti-T. cruzi Abs. Tissues from chronically infected Stat6-deficient mice had little to no evidence of inflammation in the heart and skeletal muscle in contrast to wild-type mice, which exhibited substantial inflammation. In situ PCR analysis of these tissues provided evidence of the persistence of T. cruzi in wild-type mice, but no evidence of parasite persistence in Stat6-deficient mice. These data suggest that type 1 T cells are required for the development of immune control to T. cruzi, but that type 2 T cells contribute to parasite persistence and increased severity of disease.  相似文献   

6.
In murine infection with Trypanosoma cruzi, immune responsiveness to parasite and non-parasite Ag becomes suppressed during the acute phase of infection, and this suppression is known to extend to the production of IL-2. To determine whether suppression of lymphokine production was specific for IL-2, or was a generalized phenomenon involving suppressed production of other lymphokines, we have begun an investigation of the ability of mice to produce of a number of lymphokines during infection, initially addressing this question by studying IFN-gamma production. Supernatants from Con A-stimulated spleen cells from infected resistant (C57B1/6) and susceptible (C3H) mice were assayed for IFN-gamma. Supernatants known to be suppressed with respect to IL-2 production from both mouse strains contained IFN-gamma at or above that of supernatants from normal spleen cells. Samples were assayed in an IFN bioassay to ensure that the IFN-gamma detected by ELISA was biologically active. Thus, suppression during T. cruzi infection does not extend to the production of all lymphokines. The stimulation of IFN-gamma production was confirmed by detection of IFN-gamma mRNA in unstimulated spleen cells from infected animals, and in Con A, Con A + PMA, and in some cases, parasite Ag-stimulated spleen cells from infected animals. IFN-gamma mRNA levels in mitogen-stimulated spleen cells equalled or exceeded those found in similarly stimulated normal cells. In contrast, stimulated spleen cells from infected animals had reduced levels of IL-2 mRNA relative to normal spleen cells. Thus at both the protein and mRNA level, IFN-gamma production is stimulated by T. cruzi infection, whereas IL-2 production is suppressed. Serum IFN-gamma in infected C57B1/6 and C3H mice was detected 8 days after infection, peaked on day 20 of infection, and subsequently fell, but remained detectable at low levels throughout the life of infected mice. Infected animals were depleted of cell populations known to be capable of producing IFN-gamma, and Thy-1+, CD4-, CD8-, NK- cells, and to a lesser degree, CD4+ and CD8+ cells were found to be responsible for the production of IFN-gamma during infection. We also report that IL-2 can induce IFN-gamma production in vitro and in vivo by spleen cells from infected animals, and that IL-2 can synergize with epimastigote or trypomastigote antigen to produce high levels of IFN-gamma comparable to those found in supernatants from mitogen-stimulated cells.  相似文献   

7.
In the present work we analyze the antigenicity of Leishmania major ribosomal proteins (LRP) in infected BALB/c mice. We show that BALB/c mice vaccinated with LRP in the presence of CpG oligodeoxynucleotides (CpG-ODN) were protected against the development of dermal pathology and showed a reduction in the parasite load after challenge with L. major. This protection was associated with the induction of an IL-12 dependent specific-IFN-gamma response mediated mainly by CD4(+) T cell, albeit a minor contribution of CD8(+) T cells cannot be ruled out. Induction of Th1 responses against LRP also resulted in a reversion of the Th2 responses associated with susceptibility. A marked reduction of IgG1 antibody titer against parasite antigens besides an impaired IL-4 and IL-10 cytokine production by parasite specific T cells was observed. In addition, we show that the administration of the LRP plus CpG-ODN preparation also conferred protection in the naturally resistant C57BL/6 mice. In this strain protection was associated with a LRP specific IFN-gamma production in lymph nodes draining the challenge site. We believe that these evolutionary conserved proteins, combined with adjuvants that favor Th1 responses, may be relevant components of a pan-Leishmania vaccine.  相似文献   

8.
The main goal of the present study was to characterise the course of infection and immunological responses developed by Leishmania infantum infected BALB/c mice. Parasite load was determined by Real-time TaqMan PCR while cytokine and Immunoglobulin G (IgG) production were assessed by ELISA. Leishmania DNA was detected in spleen and liver as soon as day 1 post-inoculation (pi) and the parasitism was sustained until the end of the experiment. The cytokine kinetics in spleen and liver was generally associated with the oscillations of parasite load. Overall, it was not observed a distinct Th1 or Th2 pattern of cytokine production during the time of experiment. The infected mice developed a mixed immune response, with concomitant production of IFN-gamma, IL-4 and IL-10, both in spleen and liver, and both IgG isotypes. However, our results suggest that, compared to liver, the spleen is more susceptible to L. infantum infection.  相似文献   

9.
IL-33, a potent inducer of adaptive immunity to intestinal nematodes   总被引:2,自引:0,他引:2  
IL-33 (IL-1F11) binds ST2 (IL-1R4), both of which are associated with optimal CD4(+) Th2 polarization. Exogenous IL-33 drives induction of Th2-associated cytokines and associated pathological changes within the gut mucosa. Th2 polarization is also a prerequisite to expulsion of the intestinal-dwelling nematode Trichuris muris. In this study, we demonstrate that IL-33 mRNA is expressed early during parasite infection and susceptible mice can be induced to expel the parasite by a regime of exogenous IL-33 administration. IL-33 prevents an inappropriate parasite-specific Th1-polarized response and induces IL-4, IL-9, and IL-13. This redirection requires the presence of T cells and must occur at the initiation of the response to the pathogen. Interestingly, exogenous IL-33 also induced thymic stromal lymphopoietin mRNA within the infected caecum, an epithelial cell-restricted cytokine essential for the generation of Th2-driven parasite immunity. IL-33 also acts independently of T cells, altering intestinal pathology in chronically infected SCID mice, leading to an increased crypt length and intestinal epithelial cell proliferation, but reducing goblet cell hyperplasia. Thus, the ability of IL-33 to induce Th2 responses has functional relevance in the context of intestinal helminth infection, particularly during the initiation of the response.  相似文献   

10.
Mice with chronic Trypanosoma cruzi infections are unable to mount primary responses to T-dependent Ag, such as SRBC. Responses to SRBC were restored in vitro and in vivo with rIL-1. The cellular basis of the immunodeficiency and the mechanism of IL-1 action were investigated. B cells from infected mice were capable of normal levels of PFC production when provided with the appropriate signals, IL-2 plus IL-1. T cells from infected mice were unable to provide Th function to normal B cells. However, Th activity was provided by these cells if IL-1 was added to the cultures. Furthermore, T-depleted spleen cells from infected mice did not make antibody in the presence of normal T cells unless IL-1 was added to the cultures. Neutralizing antibody against IL-2 greatly reduced the augmentation by IL-1 of the antibody response of cells from infected mice. Together these results indicate that splenic B cells from infected mice are capable of antibody production, but that Th function is lacking in the spleens of infected mice. These results suggest that the inability of mice with T. cruzi infection to mount primary antibody responses to T-dependent Ag may be due to a macrophage defect lending to impairment of Th function. These results document the potential of IL-1 in restoring immune competence in an infectious disease model.  相似文献   

11.
Trypanosoma cruzi, the causative agent of Chagas' disease, is an important cause of heart disease in Latin America. The parasite is transmitted mucosally, with both intra- and extracellular life stages in the human host. Cruzipain, the major cysteinyl proteinase of T. cruzi, has been shown to be antigenic in both humans and mice during infection with the parasite. We extend these observations, showing here that multiple murine immune subsets of potential importance for vaccine-induced protection can be induced by cruzipain. Cruzipain-specific serum IgG responses were induced during chronic infection with T. cruzi. In addition, T. cruzi mucosal infection stimulated the development of cruzipain-specific secretory IgA detectable in fecal extracts from infected mice. Cruzipain-specific type 1 cytokine responses characterized by the production of IFN-gamma but not IL-4 were also detectable during murine infection. Furthermore, immunization of mice with a DNA vaccine encoding cruzipain was shown to stimulate cytotoxic T lymphocyte (CTL) responses capable of recognizing and lysing T. cruzi-infected cells. The induction of serum antibody, mucosal IgA, Th1 cytokine and CTL responses by cruzipain in mice supports the use of this parasite protein for further efforts in T. cruzi vaccine development.  相似文献   

12.
Parasite egg-induced granulomas are the primary pathogenic lesions in murine schistosomiasis mansoni. This cell-mediated granulomatous response is specific for soluble egg Ag and appears to be mediated predominantly by CD4+ Th2 cells. As infection progresses from the acute to the chronic phase, the cell-mediated anti-soluble egg Ag responses attenuate in a process termed modulation. In this study the hypothesis that modulation is effected by a chronic phase increase in Th2-inhibiting Th1 cell activity was investigated. Northern blot quantification of mRNA specific for the Th2 lymphokine, IL-4, and the Th1 lymphokines, IFN-gamma and IL-2, in the spleens, mesenteric lymph nodes, and granulomatous livers of mice infected for various lengths of time over the course of modulation was performed. Also, the capacity of mitogen- and Ag-stimulated spleen cells to produce message for these lymphokines was compared. Peak tissue levels of both IL-4 mRNA and IFN-gamma mRNA were seen in acutely infected mice, and levels of both messages declined as infection became chronic. Stimulated spleen cells from acutely infected mice also produced higher levels of IL-4 and IFN-gamma mRNA than cells from chronically infected mice. IL-2 mRNA was never detected in any tissue sample but was detected in the stimulated spleen cells, again with acute phase levels higher than chronic phase levels. Hence, this study shows no evidence for increased Th1 cell activity during chronic infection and suggests that modulation may be effected by a generalized suppression of lymphokine synthesis.  相似文献   

13.
Active human visceral leishmaniasis (VL) is characterized by a progressive increase in visceral parasite burden, cachexia, massive splenomegaly, and hypergammaglobulinemia. In contrast, mice infected with Leishmania donovani, the most commonly studied model of VL, do not develop overt, progressive disease. Furthermore, mice control Leishmania infection through the generation of NO, an effector mechanism that does not have a clear role in human macrophage antimicrobial function. Remarkably, infection of the Syrian hamster (Mesocricetus auratus) with L. donovani reproduced the clinicopathological features of human VL, and investigation into the mechanisms of disease in the hamster revealed striking differences from the murine model. Uncontrolled parasite replication in the hamster liver, spleen, and bone marrow occurred despite a strong Th1-like cytokine (IL-2, IFN-gamma, and TNF/lymphotoxin) response in these organs, suggesting impairment of macrophage effector function. Indeed, throughout the course of infection, inducible NO synthase (iNOS, NOS2) mRNA or enzyme activity in liver or spleen tissue was not detected. In contrast, NOS2 mRNA and enzyme activity was readily detected in the spleens of infected mice. The impaired hamster NOS2 expression could not be explained by an absence of the NOS2 gene, overproduction of IL-4, defective TNF/lymphotoxin production (a potent second signal for NOS2 induction), or early dominant production of the deactivating cytokines IL-10 and TGF-beta. Thus, although a Th1-like cytokine response was prominent, the major antileishmanial effector mechanism that is responsible for control of infection in mice was absent throughout the course of progressive VL in the hamster.  相似文献   

14.
Although the concept that dendritic cells (DCs) recognize pathogens through the engagement of Toll-like receptors is widely accepted, we recently suggested that immature DCs might sense kinin-releasing strains of Trypanosoma cruzi through the triggering of G-protein-coupled bradykinin B2 receptors (B2R). Here we report that C57BL/6.B2R-/- mice infected intraperitoneally with T. cruzi display higher parasitemia and mortality rates as compared to B2R+/+ mice. qRT-PCR revealed a 5-fold increase in T. cruzi DNA (14 d post-infection [p.i.]) in B2R-/- heart, while spleen parasitism was negligible in both mice strains. Analysis of recall responses (14 d p.i.) showed high and comparable frequencies of IFN-gamma-producing CD4+ and CD8+ T cells in the spleen of B2R-/- and wild-type mice. However, production of IFN-gamma by effector T cells isolated from B2R-/- heart was significantly reduced as compared with wild-type mice. As the infection continued, wild-type mice presented IFN-gamma-producing (CD4+CD44+ and CD8+CD44+) T cells both in the spleen and heart while B2R-/- mice showed negligible frequencies of such activated T cells. Furthermore, the collapse of type-1 immune responses in B2R-/- mice was linked to upregulated secretion of IL-17 and TNF-alpha by antigen-responsive CD4+ T cells. In vitro analysis of tissue culture trypomastigote interaction with splenic CD11c+ DCs indicated that DC maturation (IL-12, CD40, and CD86) is controlled by the kinin/B2R pathway. Further, systemic injection of trypomastigotes induced IL-12 production by CD11c+ DCs isolated from B2R+/+ spleen, but not by DCs from B2R-/- mice. Notably, adoptive transfer of B2R+/+ CD11c+ DCs (intravenously) into B2R-/- mice rendered them resistant to acute challenge, rescued development of type-1 immunity, and repressed TH17 responses. Collectively, our results demonstrate that activation of B2R, a DC sensor of endogenous maturation signals, is critically required for development of acquired resistance to T. cruzi infection.  相似文献   

15.
Th2 lymphocytes have been postulated to play a major role in the immunopathology induced by Schistosoma mansoni infection. Nevertheless, infected IL-4 knockout (KO) and wild-type (wt) mice develop egg granulomas comparable in size. To further investigate the function of the Th2 response in egg pathology we studied IL-4Ralpha-deficient mice, which are nonresponsive to both IL-4 and IL-13. In striking contrast to IL-4 KO animals, infected IL-4Ralpha KO mice developed only minimal hepatic granulomas and fibrosis despite the presence of CD3+ T cells in the residual egg lesions. Moreover, liver lymphokine mRNA levels in these animals and IL-4 KO mice were equivalent. In addition, infected IL-4Ralpha-deficient, IL-4-deficient, and wt animals developed similar egg Ag-specific IgG Ab titers, arguing that CD4-dependent Th activity is intact in KO mice. As expected, IFN-gamma secretion was strongly up-regulated in mesenteric lymph node cultures from both groups of deficient animals, a change reflected in increased serum IgG2a and IgG2b Ab levels. Surprisingly, Th2 cytokine production in infected IL-4Ralpha KO mice was not abolished but was only reduced and resembled that previously documented in IL-4 KO animals. This residual Th2 response is likely to explain the ability of IL-4 KO mice to generate egg granulomas, which cannot be formed in IL-4Ralpha-deficient animals because of their lack of responsiveness to the same cytokine ligands. Taken together, these findings argue that tissue pathology in schistosomiasis requires, in addition to egg-specific CD4+ lymphocytes, a previously unrecognized IL-4Ralpha+ non-T cell effector population.  相似文献   

16.
After the onset of parasite egg deposition, mice infected with the helminth Schistosoma mansoni mount strong Th2 cytokine responses in the absence of significant Th1 cytokine synthesis. To examine the basis of this immunoregulatory state, spleen or lymph node cells from schistosome-infected mice were stimulated with parasite-specific Ag and the supernatants tested for their capacity to suppress IFN-gamma synthesis by a Th1 cell line. Strong inhibition was observed that was neutralized by a mAb against IL-10, a cytokine previously shown to down-regulate Th1 cytokine synthesis. By means of ELISA measurements the production of IL-10 in schistosome infection was confirmed and shown to depend on CD4+ T cells. IL-10 synthesis stimulated by either mitogen or Ag was observed only at those stages of infection when Th2 response induction and Th1 cytokine down-regulation also occurred and was not detected in mice vaccinated with attenuated parasites. Moreover, the addition of the neutralizing anti-IL-10 mAb to Ag-stimulated spleen cell cultures from infected mice caused a dramatic augmentation in IFN-gamma synthesis. These findings suggest that IL-10 is responsible for the down-regulation of Th1 responses observed in schistosome infections, a phenomenon that may enable the parasite to escape potentially harmful cell-mediated responses.  相似文献   

17.
Schistosoma mansoni infection in the mouse has been shown to be accompanied by a down-regulation in parasite-Ag- and mitogen-induced Th1 cytokine secretion (IL-2 and IFN-gamma) with a simultaneous increase in the production of Th2 cytokines (IL-4, IL-5, and IL-10), suggesting a generalized imbalance in lymphocyte function. In the present study, we examined whether infection with S. mansoni would also influence the character of immune responses to a non-parasite Ag, sperm whale myoglobin (SwMb). When spleen cells (SC) from schistosome-infected SwMb-immunized animals were stimulated with SwMb, their production of IL-2 and IFN-gamma per CD4+ cell was found to be significantly reduced (by 45% and 59%, respectively) compared with the responses observed in immunized uninfected animals. Moreover, SwMb-induced secretion of IL-4 per CD4+ cell was increased threefold in SC cultures from infected mice. No myoglobin-induced IL-5 was detected in the same cultures. Addition to SC cultures of a neutralizing mAb specific for IL-10 partly restored the suppressed IFN-gamma response to SwMb seen in infected mice, suggesting a role for IL-10 in the observed down-regulation. S. mansoni-infected mice also showed an impaired antibody response to SwMb, with levels ranging from 10% to 27% of those observed in uninfected mice, although no differences in IgG isotype were evident. Taken together, these results suggest that infection with S. mansoni induces a down-regulation of Th1 responses and elevation of Th2 responses to unrelated foreign immunogens as well as to parasite Ag themselves. One implication of these findings is that helminth-infected individuals may have altered cell-mediated immune function to other microbial agents.  相似文献   

18.
To verify the influence of some predominant components from indigenous microbiota on systemic immunological responses during experimental Chagas disease, germ-free NIH Swiss mice were mono-associated with Escherichia coli, Enterococcus faecalis, Bacteroides vulgatus or Peptostreptococcus sp. and then infected with the Y strain of Trypanosoma cruzi. All the mono-associations predominantly induced a Th1 type of specific immune response to the infection by T. cruzi. A direct correlation was observed between a higher survival rate and increased IFN-gamma and TNF-alpha production (P<0.05) in E. faecalis-, B. vulgatus-, and Peptostreptococcus-associated mice. Moreover, higher levels of anti-T. cruzi IgG1 and anti-T. cruzi IgG2a were also found in mono-associated animals after infection. On the other hand, with the exception of E. faecalis-associated mice, mono-association induced a lower IL-10 production after infection (P<0.05) when compared with germ-free animals. Interestingly, spleen cell cultures from non-infected germ-free and mono-associated mice spontaneously produced higher levels (P<0.05) of IL-10 than cultures from infected mono-associated mice, except again for E. faecalis-associated animals. In conclusion, the presence of the components of the indigenous microbiota skews the immune response towards production of inflammatory cytokines during experimental infection with T. cruzi in gnotobiotic mice. However, the degree of increase in production of cytokines depends on each bacterial component.  相似文献   

19.
Infection with Trypanosoma cruzi results in the development of both type 1 and type 2 patterns of cytokine responses during acute and chronic stages of infection. To investigate the role of Th1 and Th2 subsets of CD4(+) T cells in determining the outcome of T. cruzi infection in mice, we have developed T. cruzi clones that express OVA and have used OVA-specific TCR-transgenic T cells to generate OVA-specific Th1 and Th2 cells. BALB/c mice receiving 10(7) OVA-specific Th1 cells and then challenged with OVA-expressing T. cruzi G-OVA.GPI showed significantly lower parasitemia and increased survival in comparison to mice that received no cells. In contrast, recipients of OVA-specific Th2 cells developed higher parasitemias, exhibited higher tissue parasitism and inflammation, and had higher mortality than recipients of Th1 cells after infection with T. cruzi G-OVA.GPI. Mice receiving a mixture of both Th1 and Th2 OVA-specific cells also were not protected from lethal challenge. The protective effect of the OVA-specific Th1 cells was OVA dependent as shown by the fact that transfer of OVA-specific Th1 or Th2 cells failed to alter the course of infection or disease in mice challenged with wild-type T. cruzi. Immunohistochemical analysis of OVA-specific Th1 and Th2 cells at 4, 15, and 30 days postinfection revealed the persistence and expansion of these cells in mice challenged with T. cruzi G-OVA.GPI but not in mice infected with wild-type T. cruzi. We conclude that transfer of Ag-specific Th1 cells but not Th2 cells protect mice from a lethal infection with T. cruzi.  相似文献   

20.
Neodiplostomum seoulense is highly pathogenic and lethal to experimental mice; most worms are expelled within 2 mo of acquisition. In this study, T-helper (Th) cell immune responses were studied in N. seoulense-infected BALB/c mice. Spleen and mesenteric lymph node (MLN) cells of infected mice proliferated in response to parasite antigens; CD4+ T cells proliferated more than CD8+ T cells. Antigen-induced interferon (IFN)-gamma (a Th1 cytokine) secretion began to increase at day 7 postinfection (PI) in spleen and MLN cells, and this was maintained at day 28 PI, whereas interleukin (IL)-4 (a Th2 cytokine) secretion was somewhat lower. Similar results were observed for mRNA signals of IFN-gamma and IL-4. Antigen-specific serum total immunoglobulin (Ig)G, IgG1, IgM, and IgA levels (Th2-induced) were elevated from days 7 to 14 to day 28 PI, and IgG2a (Th1-induced) was elevated at days 21 to 28 PI. Interestingly, the numbers of macrophages (Th1- or Th2-induced), which were found to kill N. seoulense worms in vitro, increased remarkably during days 14-28 PI in spleens and small intestines of infected mice. This study shows that mixed Th1 and Th2 responses occur during the course of N. seoulense infection in BALB/c mice. Heavy infiltrations of macrophages in the small intestine may participate in host damage and worm expulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号