首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mineralocorticoid receptor (MR) blockade has been shown to suppress cardiac hypertrophy and remodeling in animal models of pressure overload (POL). This study aims to determine whether MR deficiency in myeloid cells modulates aortic constriction-induced cardiovascular injuries. Myeloid MR knockout (MMRKO) mice and littermate control mice were subjected to abdominal aortic constriction (AAC) or sham operation. We found that AAC-induced cardiac hypertrophy and fibrosis were significantly attenuated in MMRKO mice. Expression of genes important in generating reactive oxygen species was decreased in MMRKO mice, while that of manganese superoxide dismutase increased. Furthermore, expression of genes important in cardiac metabolism was increased in MMRKO hearts. Macrophage infiltration in the heart was inhibited and expression of inflammatory genes was decreased in MMRKO mice. In addition, aortic fibrosis and inflammation were attenuated in MMRKO mice. Taken together, our data indicated that MR deficiency in myeloid cells effectively attenuated aortic constriction-induced cardiac hypertrophy and fibrosis, as well as aortic fibrosis and inflammation.  相似文献   

2.
Rac1-GTPase activation plays a key role in the development and progression of cardiac remodeling. Therefore, we engineered a transgenic mouse model by overexpressing cDNA of a constitutively active form of Zea maize Rac gene (ZmRacD) specifically in the hearts of FVB/N mice. Echocardiography and MRI analyses showed cardiac hypertrophy in old transgenic mice, as evidenced by increased left ventricular (LV) mass and LV mass-to-body weight ratio, which are associated with relative ventricular chamber dilation and systolic dysfunction. LV hypertrophy in the hearts of old transgenic mice was further confirmed by an increased heart weight-to-body weight ratio and histopathology analysis. The cardiac remodeling in old transgenic mice was coupled with increased myocardial Rac-GTPase activity (372%) and ROS production (462%). There were also increases in α(1)-integrin (224%) and β(1)-integrin (240%) expression. This led to the activation of hypertrophic signaling pathways, e.g., ERK1/2 (295%) and JNK (223%). Pravastatin treatment led to inhibition of Rac-GTPase activity and integrin signaling. Interestingly, activation of ZmRacD expression with thyroxin led to cardiac dilation and systolic dysfunction in adult transgenic mice within 2 wk. In conclusion, this is the first study to show the conservation of Rho/Rac proteins between plant and animal kingdoms in vivo. Additionally, ZmRacD is a novel transgenic model that gradually develops a cardiac phenotype with aging. Furthermore, the shift from cardiac hypertrophy to dilated hearts via thyroxin treatment will provide us with an excellent system to study the temporal changes in cardiac signaling from adaptive to maladaptive hypertrophy and heart failure.  相似文献   

3.
Cardiac fibrosis is a pathophysiological process characterized by excessive deposition of extracellular matrix. We developed a cardiac hypertrophy model using transverse aortic constriction (TAC) to uncover mechanisms relevant to excessive deposition of extracellular matrix in mouse myocardial cells. TAC caused upregulation of Tripartite motif protein 72 (TRIM72), a tripartite motif-containing protein that is critical for proliferation and migration. Importantly, in vivo silencing of TRIM72 reversed TAC-induced cardiac fibrosis, as indicated by markedly increased left ventricular systolic pressure and decreased left ventricular end-diastolic pressure. TRIM72 knockdown also attenuated deposition of fibrosis marker collagen type I and α-smooth muscle actin (α-SMA). In an in vitro study, TRIM72 was similarly upregulated in cardiac fibroblasts. Knockdown of TRIM72 markedly suppressed collagen type I and α-SMA expression and significantly decreased the proliferation and migration of cardiac fibroblasts. However, TRIM72 overexpression markedly increased collagen type I and α-SMA expression and increased the proliferation and migration of cardiac fibroblasts. Further study demonstrated that TRIM72 increased phosphorylated STAT3 in cardiac fibroblasts. TRIM72 knockdown in cardiac fibroblasts resulted in increased expression of Notch ligand Jagged-1 and its downstream gene and Notch-1 intracellular domain. Inhibition of Notch-1 abrogated sh-TRIM72-induced cardiac fibrosis. Together, our results support a novel role for TRIM72 in maintaining fibroblast-to-myofibroblast transition and suppressing fibroblast growth by regulating the STAT3/Notch-1 pathway.  相似文献   

4.
The receptors for IGF-I (IGF-IR) and insulin (IR) have been implicated in physiological cardiac growth, but it is unknown whether IGF-IR or IR signaling are critically required. We generated mice with cardiomyocyte-specific knockout of IGF-IR (CIGF1RKO) and compared them with cardiomyocyte-specific insulin receptor knockout (CIRKO) mice in response to 5 wk exercise swim training. Cardiac development was normal in CIGF1RKO mice, but the hypertrophic response to exercise was prevented. In contrast, despite reduced baseline heart size, the hypertrophic response of CIRKO hearts to exercise was preserved. Exercise increased IGF-IR content in control and CIRKO hearts. Akt phosphorylation increased in exercise-trained control and CIRKO hearts and, surprisingly, in CIGF1RKO hearts as well. In exercise-trained control and CIRKO mice, expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) and glycogen content were both increased but were unchanged in trained CIGF1RKO mice. Activation of AMP-activated protein kinase (AMPK) and its downstream target eukaryotic elongation factor-2 was increased in exercise-trained CIGF1RKO but not in CIRKO or control hearts. In cultured neonatal rat cardiomyocytes, activation of AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) prevented IGF-I/insulin-induced cardiomyocyte hypertrophy. These studies identify an essential role for IGF-IR in mediating physiological cardiomyocyte hypertrophy. IGF-IR deficiency promotes energetic stress in response to exercise, thereby activating AMPK, which leads to phosphorylation of eukaryotic elongation factor-2. These signaling events antagonize Akt signaling, which although necessary for mediating physiological cardiac hypertrophy, is insufficient to promote cardiac hypertrophy in the absence of myocardial IGF-I signaling.  相似文献   

5.
We developed a minimally invasive method for producing left ventricular (LV) pressure overload in mice. With the use of this technique, we quickly and reproducibly banded the transverse aorta with low surgical morbidity and mortality. Minimally invasive transverse aortic banding (MTAB) acutely and chronically increased LV systolic pressure, increased heart weight-to-body weight ratio, and induced myocardial fibrosis. We used this technique to determine whether reduced insulin signaling in the heart altered the cardiac response to pressure overload. Mice with cardiac myocyte-restricted knockout of the insulin receptor (CIRKO) have smaller hearts than wild-type (WT) controls. Four weeks after MTAB, WT and CIRKO mice had comparably increased LV systolic pressure, increased cardiac mass, and induction of mRNA for beta-myosin heavy chain and atrial natriuretic factor. However, CIRKO hearts were more dilated, had depressed LV systolic function by echocardiography, and had greater interstitial fibrosis than WT mice. Expression of connective tissue growth factor was increased in banded CIRKO hearts compared with WT hearts. Thus lack of insulin signaling in the heart accelerates the transition to a more decompensated state during cardiac pressure overload. The use of the MTAB approach should facilitate the study of the pathophysiology and treatment of pressure-overload hypertrophy.  相似文献   

6.
7.

Background

The intracellular second messenger cGMP protects the heart under pathological conditions. We examined expression of phosphodiesterase 5 (PDE5), an enzyme that hydrolyzes cGMP, in human and mouse hearts subjected to sustained left ventricular (LV) pressure overload. We also determined the role of cardiac myocyte-specific PDE5 expression in adverse LV remodeling in mice after transverse aortic constriction (TAC).

Methodology/Principal Findings

In patients with severe aortic stenosis (AS) undergoing valve replacement, we detected greater myocardial PDE5 expression than in control hearts. We observed robust expression in scattered cardiac myocytes of those AS patients with higher LV filling pressures and BNP serum levels. Following TAC, we detected similar, focal PDE5 expression in cardiac myocytes of C57BL/6NTac mice exhibiting the most pronounced LV remodeling. To examine the effect of cell-specific PDE5 expression, we subjected transgenic mice with cardiac myocyte-specific PDE5 overexpression (PDE5-TG) to TAC. LV hypertrophy and fibrosis were similar as in WT, but PDE5-TG had increased cardiac dimensions, and decreased dP/dtmax and dP/dtmin with prolonged tau (P<0.05 for all). Greater cardiac dysfunction in PDE5-TG was associated with reduced myocardial cGMP and SERCA2 levels, and higher passive force in cardiac myocytes in vitro.

Conclusions/Significance

Myocardial PDE5 expression is increased in the hearts of humans and mice with chronic pressure overload. Increased cardiac myocyte-specific PDE5 expression is a molecular hallmark in hypertrophic hearts with contractile failure, and represents an important therapeutic target.  相似文献   

8.
This study was designed to test whether reduced levels of cardiac fructose-2,6-bisphosphate (F-2,6-P2) exacerbates cardiac damage in response to pressure overload. F-2,6-P2 is a positive regulator of the glycolytic enzyme phosphofructokinase. Normal and Mb transgenic mice were subject to transverse aortic constriction (TAC) or sham surgery. Mb transgenic mice have reduced F-2,6-P2 levels, due to cardiac expression of a transgene for a mutant, kinase deficient form of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) which controls the level of F-2,6-P2. Thirteen weeks following TAC surgery, glycolysis was elevated in FVB, but not in Mb, hearts. Mb hearts were markedly more sensitive to TAC induced damage. Echocardiography revealed lower fractional shortening in Mb-TAC mice as well as larger left ventricular end diastolic and end systolic diameters. Cardiac hypertrophy and pulmonary congestion were more severe in Mb-TAC mice as indicated by the ratios of heart and lung weight to tibia length. Expression of α-MHC RNA was reduced more in Mb-TAC hearts than in FVB-TAC hearts. TAC produced a much greater increase in fibrosis of Mb hearts and this was accompanied by 5-fold more collagen 1 RNA expression in Mb-TAC versus FVB-TAC hearts. Mb-TAC hearts had the lowest phosphocreatine to ATP ratio and the most oxidative stress as indicated by higher cardiac content of 4-hydroxynonenal protein adducts. These results indicate that the heart’s capacity to increase F-2,6-P2 during pressure overload elevates glycolysis which is beneficial for reducing pressure overload induced cardiac hypertrophy, dysfunction and fibrosis.  相似文献   

9.
10.
Pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide. Liver kinase B1 interacting protein 1 (LKB1IP) was identified as the binding protein of tumour suppressor LKB1. However, the role of LKB1IP in the development of pathological cardiac hypertrophy has not been explored. The aim of this study was to investigate the function of LKB1IP in cardiac hypertrophy in response to hypertrophic stimuli. We investigated the cardiac level of LKB1IP in samples from patients with heart failure and mice with cardiac hypertrophy induced by isoproterenol (ISO) or transverse aortic constriction (TAC). LKB1IP knockout mice were generated and challenged with ISO injection or TAC surgery. Cardiac function, hypertrophy and fibrosis were then examined. LKB1IP expression was significantly up-regulated on hypertrophic stimuli in both human and mouse cardiac samples. LKB1IP knockout markedly protected mouse hearts against ISO- or TAC-induced cardiac hypertrophy and fibrosis. LKB1IP overexpression aggravated ISO-induced cardiomyocyte hypertrophy, and its inhibition attenuated hypertrophy in vitro. Mechanistically, LKB1IP activated Akt signalling by directly targeting PTEN and then inhibiting its phosphatase activity. In conclusion, LKB1IP may be a potential target for pathological cardiac hypertrophy.  相似文献   

11.
Diastolic heart failure (HF) accounts for up to 50% of all HF admissions, with hypertension being the major cause of diastolic HF. Hypertension is characterized by left ventricular (LV) hypertrophy (LVH). Proinflammatory cytokines are increased in LVH and hypertension, but it is unknown if they mediate the progression of hypertension-induced diastolic HF. We sought to determine if interferon-γ (IFNγ) plays a role in mediating the transition from hypertension-induced LVH to diastolic HF. Twelve-week old BALB/c (WT) and IFNγ-deficient (IFNγKO) mice underwent either saline (n = 12) or aldosterone (n = 16) infusion, uninephrectomy, and fed 1% salt water for 4 wk. Tail-cuff blood pressure, echocardiography, and gene/protein analyses were performed. Isolated adult rat ventricular myocytes were treated with IFNγ (250 U/ml) and/or aldosterone (1 μM). Hypertension was less marked in IFNγKO-aldosterone mice than in WT-aldosterone mice (127 ± 5 vs. 136 ± 4 mmHg; P < 0.01), despite more LVH (LV/body wt ratio: 4.9 ± 0.1 vs. 4.3 ± 0.1 mg/g) and worse diastolic dysfunction (peak early-to-late mitral inflow velocity ratio: 3.1 ± 0.1 vs. 2.8 ± 0.1). LV ejection fraction was no different between IFNγKO-aldosterone vs. WT-aldosterone mice. LV end systolic dimensions were decreased significantly in IFNγKO-aldosterone vs. WT-aldosterone hearts (1.12 ± 0.1 vs. 2.1 ± 0.3 mm). Myocardial fibrosis and collagen expression were increased in both IFNγKO-aldosterone and WT-aldosterone hearts. Myocardial autophagy was greater in IFNγKO-aldosterone than WT-aldosterone mice. Conversely, tumor necrosis factor-α and interleukin-10 expressions were increased only in WT-aldosterone hearts. Recombinant IFNγ attenuated cardiac hypertrophy in vivo and modulated aldosterone-induced hypertrophy and autophagy in cultured cardiomyocytes. Thus IFNγ is a regulator of cardiac hypertrophy in diastolic HF and modulates cardiomyocyte size possibly by regulating autophagy. These findings suggest that IFNγ may mediate adaptive downstream responses and challenge the concept that inflammatory cytokines mediate only adverse effects.  相似文献   

12.
Cardiac fibrosis is a hallmark of heart disease and plays a vital role in cardiac remodeling during heart diseases, including hypertensive heart disease. Hexarelin is one of a series of synthetic growth hormone secretagogues (GHSs) possessing a variety of cardiovascular effects via action on GHS receptors (GHS-Rs). However, the role of hexarelin in cardiac fibrosis in vivo has not yet been investigated. In the present study, spontaneously hypertensive rats (SHRs) were treated with hexarelin alone or in combination with a GHS-R antagonist for 5 wk from an age of 16 wk. Hexarelin treatment significantly reduced cardiac fibrosis in SHRs by decreasing interstitial and perivascular myocardial collagen deposition and myocardial hydroxyproline content and reducing mRNA and protein expression of collagen I and III in SHR hearts. Hexarelin treatment also increased matrix metalloproteinase (MMP)-2 and MMP-9 activities and decreased myocardial mRNA expression of tissue inhibitor of metalloproteinase (TIMP)-1 in SHRs. In addition, hexarelin treatment significantly attenuated left ventricular (LV) hypertrophy, LV diastolic dysfunction, and high blood pressure in SHRs. The effect of hexarelin on cardiac fibrosis, blood pressure, and cardiac function was mediated by its receptor, GHS-R, since a selective GHS-R antagonist abolished these effects and expression of GHS-Rs was upregulated by hexarelin treatment. In summary, our data demonstrate that hexarelin reduces cardiac fibrosis in SHRs, perhaps by decreasing collagen synthesis and accelerating collagen degradation via regulation of MMPs/TIMP. Hexarelin-reduced systolic blood pressure may also contribute to this reduced cardiac fibrosis in SHRs. The present findings provided novel insights and underscore the therapeutic potential of hexarelin as an antifibrotic agent for the treatment of cardiac fibrosis.  相似文献   

13.
Transgenic mice with cardiac-specific expression of a peptide inhibitor of G protein-coupled receptor kinase (GRK)3 [transgenic COOH-terminal GRK3 (GRK3ct) mice] display myocardial hypercontractility without hypertrophy and enhanced α(1)-adrenergic receptor signaling. A role for GRK3 in the pathogenesis of heart failure (HF) has not been investigated, but inhibition of its isozyme, GRK2, has been beneficial in several HF models. Here, we tested whether inhibition of GRK3 modulated evolving cardiac hypertrophy and dysfunction after pressure overload. Weight-matched male GRK3ct transgenic and nontransgenic littermate control (NLC) mice subjected to chronic pressure overload by abdominal aortic banding (AB) were compared with sham-operated (SH) mice. At 6 wk after AB, a significant increase of cardiac mass consistent with induction of hypertrophy was found, but no differences between GRK3ct-AB and NLC-AB mice were discerned. Simultaneous left ventricular (LV) pressure-volume analysis of electrically paced, ex vivo perfused working hearts revealed substantially reduced systolic and diastolic function in NLC-AB mice (n = 7), which was completely preserved in GRK3ct-AB mice (n = 7). An additional cohort was subjected to in vivo cardiac catheterization and LV pressure-volume analysis at 12 wk after AB. NLC-AB mice (n = 11) displayed elevated end-diastolic pressure (8.5 ± 3.1 vs. 2.9 ± 1.2 mmHg, P < 0.05), reduced cardiac output (3,448 ± 323 vs. 4,488 ± 342 μl/min, P < 0.05), and reduced dP/dt(max) and dP/dt(min) (both P < 0.05) compared with GRK3ct-AB mice (n = 16), corroborating the preserved cardiac structure and function observed in GRK3ct-AB hearts assessed ex vivo. Increased cardiac mass and myocardial mRNA expression of β-myosin heavy chain confirmed the similar induction of cardiac hypertrophy in both AB groups, but only NLC-AB hearts displayed significantly elevated mRNA levels of brain natriuretic peptide and myocardial collagen contents as well as reduced β(1)-adrenergic receptor responsiveness to isoproterenol, indicating increased LV wall stress and the transition to HF. Inhibition of cardiac GRK3 in mice does not alter the hypertrophic response but attenuates cardiac dysfunction and HF after chronic pressure overload.  相似文献   

14.
The cardiac troponin T (TnT) I79N mutation has been linked to familial hypertrophic cardiomyopathy and a high incidence of sudden death, despite causing little or no cardiac hypertrophy. In skinned fibers, I79N increased myofilamental calcium sensitivity (Miller, T., Szczesna, D., Housmans, P. R., Zhao, J., deFreitas, F., Gomes, A. V., Culbreath, L., McCue, J., Wang, Y., Xu, Y., Kerrick, W. G., and Potter, J. D. (2001) J. Biol. Chem. 276, 3743-3755). To further study the functional consequences of this mutation, we compared the cardiac performance of transgenic mice expressing either human TnT-I79N or human wild-type TnT. In isolated hearts, cardiac function was different depending on the Ca(2+) concentration of the perfusate; systolic function was significantly increased in Tg-I79N hearts at 0.5 and 1 mmol/liter. At higher Ca(2+) concentrations, systolic function was not different, but diastolic dysfunction became manifest as increased end-diastolic pressure and time to 90% relaxation. In vivo measurements by echocardiography and Doppler confirmed that base-line systolic function was significantly higher in Tg-I79N mice without evidence for diastolic dysfunction. Inotropic stimulation with isoproterenol resulted only in a modest contractile response but caused significant mortality in Tg-I79N mice. Doppler studies ruled out aortic outflow obstruction and were consistent with increased chamber stiffness. We conclude that in vivo, the increased myofilament Ca(2+) sensitivity due to the I79N mutation enhances base-line contractility but leads to cardiac dysfunction during inotropic stimulation.  相似文献   

15.
Cyclooxygenase (COX)-2 is expressed in the heart in animal models of ischemic injury. Recent studies have suggested that COX-2 products are involved in inflammatory cell infiltration and fibroblast proliferation in the heart. Using a mouse model, we questioned whether 1). myocardial infarction (MI) in vivo induces COX-2 expression chronically, and 2). COX-2 inhibition reduces collagen content and improves cardiac function in mice with MI. MI was produced by ligation of the left anterior descending coronary artery in mice. Two days later, mice were treated with 3 mg/kg NS-398, a selective COX-2 inhibitor, or vehicle in drinking water for 2 wk. After the treatment period, mice were subjected to two-dimensional M-mode echocardiography to determine cardiac function. Hearts were then analyzed for determination of infarct size, interstitial collagen content, brain natriuretic peptide (BNP) mRNA, myocyte cross-sectional area, and immunohistochemical staining for transforming growth factor (TGF)-beta and COX-2. COX-2 protein, detected by immunohistochemistry, was increased in MI versus sham hearts. MI resulted in increased left ventricular systolic and diastolic dimension and decreased ejection fraction, fractional shortening, and cardiac output. NS-398 treatment partly reversed these detrimental changes. Myocyte cross-sectional area, a measure of hypertrophy, was decreased by 30% in the NS-398 versus vehicle group, but there was no effect on BNP mRNA. The interstitial collagen fraction increased from 5.4 +/- 0.4% in sham hearts to 10.4 +/- 0.9% in MI hearts and was decreased to 7.9 +/- 0.6% in NS-398-treated hearts. A second COX-2 inhibitor, rofecoxib (MK-0966), also decreased myocyte cross-sectional area and interstitial collagen fraction. TGF-beta, a key regulator of collagen synthesis, was increased in MI hearts. NS-398 treatment reduced TGF-beta immunostaining by 40%. NS-398 treatment had no effect on infarct size. These results suggest that COX-2 products contribute to cardiac remodeling and functional deficits after MI. Thus selected inhibition of COX-2 may be a therapeutic target for reducing myocyte damage after MI.  相似文献   

16.
miRNAs play an important role in the pathogenesis of cardiac hypertrophy and dysfunction. However, little is known about how miR-30a regulates cardiomyocyte hypertrophy. In the study, Male C57BL/6 mice were subjected to thoracic aortic constriction, and hearts were harvested at 3 weeks. We assayed miR-30a expression level by real-time PCR and defined the molecular mechanisms of miR-30a-mediated cardiomyocyte hypertrophy. We found that myocardial expression of miR-30a was decreased in mouse models of hypertrophy and in H9c2 cells treated with phenylephrine. MiR-30a inhibition markedly increased mRNA expression of cardiac hypertrophy markers such as atrial natriuretic factor and brain natriuretic peptide in H9c2, and cell size was increased after miR-30a inhibitor treatment. Downregulated miR-30a activated autophagy by inhibiting beclin-1 expression in H9c2 cell. More important, autophagy inhibition suppressed miR-30a inhibitor-induced cardiomyocyte hypertrophy. Together, our data demonstrated that downregulated miR-30a aggravates pressure overload-induced cardiomyocyte hypertrophy by activating autophagy, thus offering a new target for the therapy of cardiomyocyte hypertrophy.  相似文献   

17.
18.
Transgenic overexpression of calcineurin (CN/Tg) in mouse cardiac myocytes results in hypertrophy followed by dilation, dysfunction, and sudden death. Nitric oxide (NO) produced via inducible NO synthase (iNOS) has been implicated in cardiac injury. Since calcineurin regulates iNOS expression, and since phenotypes of mice overexpressing iNOS are similar to CN/Tg, we hypothesized that iNOS is pathogenically involved in cardiac phenotypes of CN/Tg mice. CN/Tg mice had increased serum and cardiac iNOS levels. When CN/Tg-iNOS(-/-) and CN/Tg mice were compared, some phenotypes were similar: extent of hypertrophy and fibrosis. However, CN/Tg-iNOS(-/-) mice had improved systolic performance (P < 0.001) and less heart block (P < 0.0001); larger sodium current density and lower serum TNF-alpha levels (P < 0.03); and less apoptosis (P < 0.01) resulting in improved survival (P < 0.0003). To define tissue origins of iNOS production, chimeric lines were generated. Bone marrow (BM) from wild-type or iNOS(-/-) mice was transplanted into CN/Tg mice. iNOS deficiency restricted to BM-derived cells was not protective. Calcineurin activates the local production of NO by iNOS in cardiac myocytes, which significantly contributes to sudden death, heart block, left ventricular dilation, and impaired systolic performance in this murine model of cardiac hypertrophy induced by the overexpression of calcineurin.  相似文献   

19.
Poly(ADP-ribose) polymerase-1 (PARP-1) plays a pivotal role in regulating genome stability, cell cycle progression, and cell survival. However, overactivation of PARP has been shown to contribute to cell death and organ failure in various stress-related disease conditions. In this study, we examined the role of PARP in the development and progression of cardiac hypertrophy. We measured the expression of PARP in mouse hearts with physiological (swimming exercise) and pathological (aortic banding) cardiac hypertrophy as well as in human heart samples taken at the time of transplantation. PARP levels were elevated both in swimming and banded mice hearts and demonstrated a linear positive correlation with the degree of cardiac hypertrophy. A dramatic increase (4-fold) of PARP occurred in 6-wk banded mice, accompanied by apparent signs of ventricular dilation and myocyte cell death. PARP levels were also elevated (2- to 3-fold) in human hearts with end-stage heart failure compared with controls. However, we found no evidence of caspase-mediated PARP cleavage in either mouse or human failing hearts. Overexpression of PARP in primary cultures of cardiac myocytes led to suppression of gene expression and robust myocyte cell death. Furthermore, data obtained from the analysis of PARP knockout mice revealed that these hearts produce an attenuated hypertrophic response to aortic banding compared with controls. Together, these results demonstrate a role for PARP in the onset and progression of cardiac hypertrophy and suggest that some events related to cardiac hypertrophy growth and progression to heart failure are mediated by a PARP-dependent mechanism.  相似文献   

20.
Mice carrying a targeted disruption of the Npr1 gene (coding for guanylyl cyclase/natriuretic peptide receptor A (NPRA)) exhibit increased blood pressure, cardiac hypertrophy, and congestive heart failure, similar to untreated human hypertensive patients. The objective of this study was to determine whether permanent ablation of NPRA signaling in mice alters the expression of matrix metalloproteinase (MMP)-2 and MMP-9 and pro-inflammatory mediators such as tumor necrosis factor-alpha (TNF-alpha), leading to myocardial collagen remodeling. Here, we report that expression levels of the MMP-2 and MMP-9 genes were increased by 3-5-fold and that the expression of the TNF-alpha gene was enhanced by 8-fold in Npr1 homozygous null mutant (Npr1-/-) mouse hearts compared with wild-type (Npr1+/+) control mouse hearts. Myocardial fibrosis, total collagen, and the collagen type I/III ratio (p < 0.01) were dramatically increased in adult Npr1-/- mice compared with age-matched wild-type counterparts. Hypertrophic marker genes, including the beta-myosin heavy chain and transforming growth factor-beta1, were significantly up-regulated (3-5-fold) in both young and adult Npr1-/- mouse hearts. NF-kappa B binding activity in ventricular tissues was enhanced by 4-fold with increased translocation of the p65 subunit from the cytoplasmic to nuclear fraction in Npr1-/- mice. Our results show that reduced NPRA signaling activates MMP, transforming growth factor-beta1, and TNF-alpha expression in Npr1-/- mouse hearts. The findings of this study demonstrate that disruption of NPRA/cGMP signaling promotes hypertrophic growth and extracellular matrix remodeling, leading to the development of cardiac hypertrophy, myocardial fibrosis, and congestive heart failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号