首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of serovars of the food-borne pathogen Vibrio parahaemolyticus normally cause infection. Since 1996, the O3:K6 strains of this pathogen have caused pandemics in many Asian countries, including Taiwan. For a better understanding of these pandemic strains, the recently isolated clinical O3:K6 strains from India, Japan, Korea, and Taiwan were examined in terms of pulsed-field gel electrophoresis (PFGE) typing and other biological characteristics. After PFGE and cluster analysis, all the O3:K6 strains were grouped into two unrelated groups. The recently isolated O3:K6 strains were all in one group, consisting of eight closely related patterns, with I1(81%) and I5(13%) being the most frequent patterns. Pattern I1 was the major one for strains from Japan, Korea, and Taiwan. All recently isolated O3:K6 strains carried the thermostable direct hemolysin (tdh) gene. No significant difference was observed between recently isolated O3:K6 strains and either non-O3:K6 reference strains or old O3:K6 strains isolated before 1996 with respect to antibiotic susceptibility, the level of thermostable direct hemolysin, and the susceptibility to environmental stresses. Results in this study confirmed that the recently isolated O3:K6 strains of V. parahaemolyticus are genetically close to each other, while the other biological traits examined were usually strain dependent, and no unique trait was found in the recently isolated O3:K6 strains.  相似文献   

2.
Although thermostable direct hemolysin (TDH)-producing Vibrio parahaemolyticus has caused many infections in Asian countries, the United States, and other countries, it has been difficult to detect the same pathogen in seafoods and other environmental samples. In this study, we detected and enumerated tdh gene-positive V. parahaemolyticus in Japanese seafoods with a tdh-specific PCR method, a chromogenic agar medium, and a most-probable-number method. The tdh gene was detected in 33 of 329 seafood samples (10.0%). The number of tdh-positive V. parahaemolyticus ranged from <3 to 93/10 g. The incidence of tdh-positive V. parahaemolyticus tended to be high in samples contaminated with relatively high levels of total V. parahaemolyticus. TDH-producing strains of V. parahaemolyticus were isolated from 11 of 33 tdh-positive samples (short-necked clam, hen clam, and rock oyster). TDH-producing strains of V. parahaemolyticus were also isolated from the sediments of rivers near the coast in Japan. Representative strains of the seafood and sediment isolates were examined for the O:K serovar and by the PCR method specific to the pandemic clone and arbitrarily primed PCR and pulsed-field gel electrophoresis techniques. The results indicated that most O3:K6 tdh-positive strains belonged to the pandemic O3:K6 clone and suggested that serovariation took place in the Japanese environment.  相似文献   

3.
Historically, Vibrio parahaemolyticus infections have been characterized by sporadic cases caused by multiple, diverse serotypes. However, since 1996, V. parahaemolyticus serotype O3:K6 strains have been associated with several large-scale outbreaks of illness, suggesting the emergence of a “new” group of organisms with enhanced virulence. We have applied three different molecular subtyping techniques to identify an appropriate method for differentiating O3:K6 isolates from other serotypes. Pulsed-field gel electrophoresis (PFGE) following NotI digestion differentiated seven closely related subtypes among O3:K6 and related strains, which were distinct from PFGE patterns for non-O3:K6 isolates. Ribotyping and tdh sequencing were less discriminatory than PFGE, but further confirmed close genetic relationships among recent O3:K6 isolates. In vitro adherence and cytotoxicity studies with human epithelial cells showed that O3:K6 isolates exhibited statistically higher levels of adherence and cytotoxicity to host cells than non-O3:K6 isolates. Epithelial cell cytotoxicity patterns were determined with a lactate dehydrogenase release assay. At 3 h postinfection, high relative cytotoxicities (>50% maximum lactate dehydrogenase activity) were found among a greater proportion of recently isolated O3:K6 and closely related strains (75%) than among the non-O3:K6 isolates (23%). A statistically significant relationship between adherence and cytotoxicity suggests that the pathogenic potential of some isolates may be associated with increased adherence to epithelial cells. Our findings suggest that enhanced adherence and cytotoxicity may contribute to the apparent unique pathogenic potential of V. parahaemolyticus O3:K6 strains.  相似文献   

4.
Vibrio parahaemolyticus is a seafood-borne halophilic pathogen that causes acute gastroenteritis in humans. During the course of an investigation on the incidence of V. parahaemolyticus in sewage water samples of Calcutta, India, we isolated eight (26.7%) strains of V. parahaemolyticus from 30 samples. Among these strains, five (62.5%) carried the thermostable direct hemolysin (tdh) gene, a major virulence marker of V. parahaemolyticus. Two strains belonged to serovar O5:K3 and the remaining three to O5:KUT, which is common among clinical strains of V. parahaemolyticus isolated from hospitalized patients of Calcutta with acute diarrhoea. The tdh positive sewage strains of V. parahaemolyticus were compared by randomly amplified polymorphic DNA (RAPD)-PCR and pulsed-field gel electrophoresis (PFGE) with strains of similar serovars selected from our culture collection to determine the genetic relatedness. Our results showed that except for sharing the similar serovar, sewage and clinical strains of V. parahaemolyticus were genetically different. In addition, toxRS-targeted group-specific (GS) PCR and open reading frame 8 (ORF-8) PCR showed that the sewage strains did not belong to the pandemic genotype. Since the sewage in Calcutta is directly used for cultivation of vegetables and for pisciculture, the presence of tdh positive V. parahaemolyticus in the sewage highlights the need for constant monitoring of the environment.  相似文献   

5.
Forty-two strains of Vibrio parahaemolyticus were isolated from Bay of Bengal estuaries and, with two clinical strains, analyzed for virulence, phenotypic, and molecular traits. Serological analysis indicated O8, O3, O1, and K21 to be the major O and K serogroups, respectively, and O8:K21, O1:KUT, and O3:KUT to be predominant. The K antigen(s) was untypeable, and pandemic serogroup O3:K6 was not detected. The presence of genes toxR and tlh were confirmed by PCR in all but two strains, which also lacked toxR. A total of 18 (41%) strains possessed the virulence gene encoding thermostable direct hemolysin (TDH), and one had the TDH-related hemolysin (trh) gene, but not tdh. Ten (23%) strains exhibited Kanagawa phenomenon that surrogates virulence, of which six, including the two clinical strains, possessed tdh. Of the 18 tdh-positive strains, 17 (94%), including the two clinical strains, had the seromarker O8:K21, one was O9:KUT, and the single trh-positive strain was O1:KUT. None had the group-specific or ORF8 pandemic marker gene. DNA fingerprinting employing pulsed-field gel electrophoresis (PFGE) of SfiI-digested DNA and cluster analysis showed divergence among the strains. Dendrograms constructed using PFGE (SfiI) images from a soft database, including those of pandemic and nonpandemic strains of diverse geographic origin, however, showed that local strains formed a cluster, i.e., “clonal cluster,” as did pandemic strains of diverse origin. The demonstrated prevalence of tdh-positive and diarrheagenic serogroup O8:K21 strains in coastal villages of Bangladesh indicates a significant human health risk for inhabitants.Vibrio parahaemolyticus, a halophilic bacterium, is a causative agent of seafood-related gastroenteritis worldwide (5, 13, 41) and one of the major causes of seafood-associated gastroenteritis in the United States, Asia, Europe, and countries where sporadic cases and outbreaks occur regularly (12, 13). The bacterium is prevalent in brackish and marine waters (43). Historically first identified as the causative agent of a gastroenteritis outbreak in Japan in 1950 (14), V. parahaemolyticus is now recognized as one of the most important food-borne pathogens in Asia, causing approximately half of food poisoning outbreaks in Taiwan, Japan, Vietnam, and Southeast Asian countries.The gene encoding the thermostable direct hemolysin (TDH)—manifested as beta-hemolysis when V. parahaemolyticus is plated onto Wagatsuma blood agar (43), i.e., the Kanagawa phenomenon (KP)—has been shown to be present in more than 90% of clinical strains and less than 1% of environmental strains (31, 39). Some strains also possess the gene trh, encoding the TDH-related hemolysin (TRH), or both tdh and trh (18, 43). Another gene, the thermolabile hemolysin gene (tlh), was reported to be present in V. parahaemolyticus (36) and subsequently in all V. parahaemolyticus strains tested (38).V. parahaemolyticus gastroenteritis is a multiserogroup affliction, with at least 13 O serogroups and 71 K serotypes detected (19, 42). In 1996, serogroup O3:K6 was first reported from diarrhea patients in Kolkata, India (32), and subsequently worldwide, as an increasing incidence of gastroenteritis caused by the serogroup O3:K6 was reported in many countries (41). Rapid spreading of serogroup O3:K6 infections in Asia (27, 32), and subsequently in the United States (12), Africa (3), Europe (25), and Latin America (15), indicated its potential as a pandemic pathogen (34, 43). In addition, V. parahaemolyticus serogroup O3:K6 possesses the group-specific (GS) gene sequence in the toxRS operon and ORF8, of the 10 known open reading frames (ORFs) of the O3:K6-specific filamentous phage f237. The GS gene and ORF8 provide genetic markers distinguishing O3:K6 from other serogroups (27, 29). Recent studies have shown O4:K68, O1:K25, O1:K26, O1:K untypeable (O1:KUT), and O3:K46 serogroups to share genetic markers specific for the pandemic serogroup O3:K6 (7, 10, 27, 34, 41). The non-O3:K6 serogroups with pandemic traits are increasingly found worldwide, and therefore, their pandemic potential cannot be ruled out.In Bangladesh, strains of different serogroups having genetic markers for the serogroup O3:K6 of V. parahaemolyticus were reported to have been isolated from hospitalized gastroenteritis patients in Dhaka (7). A systematic surveillance of the coastal areas bordering the Bay of Bengal where diarrheal disease is endemic (1) has not been done. This study, the first of its kind, was undertaken to investigate virulence potential, as well as phenotypic and genotypic traits of V. parahaemolyticus strains occurring in the estuarine ecosystem of Bangladesh.  相似文献   

6.
The thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are the main virulence factors of Vibrio parahaemolyticus. We isolated V. parahaemolyticus from seawater, fish, and oysters obtained from the Pueblo Viejo Lagoon in Veracruz, determined the serogroups, phenotypically and genotypically characterized TDH and TRH, and investigated the presence of the toxR gene. A total of 46 V. parahaemolyticus strains were isolated, and all of them amplified the 368-bp toxR gene fragment. The trh gene was not identified in any of the strains; 4 of the 46 strains were Kanagawa phenomenon (KP) positive and amplified the 251-bp tdh gene fragment. The most frequent serogroup was serogroup O3. This is the first report of the presence of KP-positive tdh-positive environmental V. parahaemolyticus strains in Mexico.  相似文献   

7.
This study describes the optimization of PCR parameters and testing of a wide number of microbial species to establish a highly specific and sensitive PCR-based method of detection of a newly emerged pandemic Vibrio parahaemolyticus O3:K6 strain in pure cultures and seeded waters from the Gulf of Mexico (gulf water). The selected open reading frame 8 (ORF8) DNA-specific oligonucleotide primers tested were found to specifically amplify all 35 pathogenic V. parahaemolyticus O3:K6 pandemic isolates, whereas these primers were not found to detectably amplify two strains of V. parahaemolyticus O3:K6 that were isolated prior to the 1996 outbreaks, 122 non-O3:K6 strains of V. parahaemolyticus, 198 non-V. parahaemolyticus spp., or 16 non-Vibrio bacterial spp. The minimum level of detection by the PCR method was 1 pg of purified genomic DNA or 102 ORF8-positive V. parahaemolyticus O3:K6 cells in 100 ml of water. The effectiveness of this method for the detection of ORF8-positive isolates in environmental samples was tested in gulf water seeded with 10-fold serial dilutions of this pathogen. A detection level of 103 cells per 100 ml of gulf water was achieved. Also, the applicability of this methodology was tested by the detection of this pathogen in gulf water incubated at various temperatures for 28 days. This PCR approach can potentially be used to monitor with high specificity and well within the required range of sensitivity the occurrence and distribution of this newly emerged pathogenic V. parahaemolyticus O3:K6 strain in coastal, marine, and ship ballast waters. Early detection of V. parahaemolyticus O3:K6 will help increase seafood safety and decrease the risk of infectious outbreaks caused by this pathogen.  相似文献   

8.
Recent Vibrio parahaemolyticus outbreaks associated with consumption of raw shellfish in the United States focused attention on the occurrence of this organism in shellfish. From March 1999 through September 2000, paired oyster samples were collected biweekly from two shellfish-growing areas in Mobile Bay, Ala. The presence and densities of V. parahaemolyticus were determined by using DNA probes targeting the thermolabile hemolysin (tlh) and thermostable direct hemolysin (tdh) genes for confirmation of total and pathogenic V. parahaemolyticus, respectively. V. parahaemolyticus was detected in all samples with densities ranging from <10 to 12,000 g−1. Higher V. parahaemolyticus densities were associated with higher water temperatures. Pathogenic strains were detected in 34 (21.8%) of 156 samples by direct plating or enrichment. Forty-six of 6,018 and 31 of 6,992 V. parahaemolyticus isolates from enrichments and direct plates, respectively, hybridized with the tdh probe. There was an apparent inverse relationship between water temperature and the prevalence of pathogenic strains. Pathogenic strains were of diverse serotypes, and 97% produced urease and possessed a tdh-related hemolysin (trh) gene. The O3:K6 serotype associated with pandemic spread and recent outbreaks in the United States was not detected. The efficient screening of numerous isolates by colony lift and DNA probe procedures may account for the higher prevalence of samples with tdh+ V. parahaemolyticus than previously reported.  相似文献   

9.
Twenty-three V. parahaemolyticus strains, including 12 pandemic O3:K6 strains, were examined for their growth and production of thermostable direct hemolysin (TDH) under an anaerobic culture condition with or without presence of a bile acid, taurocholic acid (TCA). Both bacterial growth and TDH production were markedly enhanced by TCA for a majority of the strains, but the scale of the TDH production was disproportionately greater than that of the corresponding growth for 14 strains. Such enhancement was, however, not specific to the pandemic strains. Received: 27 August 2001 / Accepted: 15 October 2001  相似文献   

10.
Although thermostable direct hemolysin (TDH)-producing Vibrio parahaemolyticus has caused many infections in Asian countries, the United States, and other countries, it has been difficult to detect the same pathogen in seafoods and other environmental samples. In this study, we detected and enumerated tdh gene-positive V. parahaemolyticus in Japanese seafoods with a tdh-specific PCR method, a chromogenic agar medium, and a most-probable-number method. The tdh gene was detected in 33 of 329 seafood samples (10.0%). The number of tdh-positive V. parahaemolyticus ranged from <3 to 93/10 g. The incidence of tdh-positive V. parahaemolyticus tended to be high in samples contaminated with relatively high levels of total V. parahaemolyticus. TDH-producing strains of V. parahaemolyticus were isolated from 11 of 33 tdh-positive samples (short-necked clam, hen clam, and rock oyster). TDH-producing strains of V. parahaemolyticus were also isolated from the sediments of rivers near the coast in Japan. Representative strains of the seafood and sediment isolates were examined for the O:K serovar and by the PCR method specific to the pandemic clone and arbitrarily primed PCR and pulsed-field gel electrophoresis techniques. The results indicated that most O3:K6 tdh-positive strains belonged to the pandemic O3:K6 clone and suggested that serovariation took place in the Japanese environment.  相似文献   

11.
Vibrio parahaemolyticus is an estuarine bacterium that is the leading cause of shellfish-associated cases of bacterial gastroenteritis in the United States. Our laboratory developed a real-time multiplex PCR assay for the simultaneous detection of the thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and thermostable-related hemolysin (trh) genes of V. parahaemolyticus. The tlh gene is a species-specific marker, while the tdh and trh genes are pathogenicity markers. An internal amplification control (IAC) was incorporated to ensure PCR integrity and eliminate false-negative reporting. The assay was tested for specificity against >150 strains representing eight bacterial species. Only V. parahaemolyticus strains possessing the appropriate target genes generated a fluorescent signal, except for a late tdh signal generated by three strains of V. hollisae. The multiplex assay detected <10 CFU/reaction of pathogenic V. parahaemolyticus in the presence of >104 CFU/reaction of total V. parahaemolyticus bacteria. The real-time PCR assay was utilized with a most-probable-number format, and its results were compared to standard V. parahaemolyticus isolation methodology during an environmental survey of Alaskan oysters. The IAC was occasionally inhibited by the oyster matrix, and this usually corresponded to negative results for V. parahaemolyticus targets. V. parahaemolyticus tlh, tdh, and trh were detected in 44, 44, and 52% of the oyster samples, respectively. V. parahaemolyticus was isolated from 33% of the samples, and tdh+ and trh+ strains were isolated from 19 and 26%, respectively. These results demonstrate the utility of the real-time PCR assay in environmental surveys and its possible application to outbreak investigations for the detection of total and pathogenic V. parahaemolyticus.  相似文献   

12.
Application of an immunomagnetic enrichment method selective for Vibrio parahaemolyticus serovar K6 allowed isolation of a strain belonging to the pandemic O3:K6 clone of V. parahaemolyticus from fresh shellfish not implicated in a clinical case in southern Thailand. Arbitrarily primed PCR profiles of this strain, clinical O3:K6 strains isolated from sporadic diarrhea cases in the same area, and a standard pandemic O3:K6 strain were indistinguishable.  相似文献   

13.
We developed a multiplexed real-time PCR assay using four sets of gene-specific oligonucleotide primers and four TaqMan probes labeled with four different fluorophores in a single reaction for detection of total and pathogenic Vibrio parahaemolyticus, including the pandemic O3:K6 serotype in oysters. V. parahaemolyticus has been associated with outbreaks of food-borne gastroenteritis caused by the consumption of raw or undercooked seafood and therefore is a concern to the seafood industry and consumers. We selected specific primers and probes targeting the thermostable direct hemolysin gene (tdh) and tdh-related hemolysin gene (trh) that have been reported to be associated with pathogenesis in this organism. In addition, we targeted open reading frame 8 of phage f237 (ORF8), which is associated with a newly emerged virulent pandemic serotype of V. parahameolyticus O3:K6. Total V. parahaemolyticus was targeted using the thermolabile hemolysin gene (tlh). The sensitivity of the combined four-locus multiplexed TaqMan PCR was found to be 200 pg of purified genomic DNA and 104 CFU per ml for pure cultures. Detection of an initial inoculum of 1 CFU V. parahaemolyticus per g of oyster tissue homogenate was possible after overnight enrichment, which resulted in a concentration of 3.3 × 109 CFU per ml. Use of this method with natural oysters resulted in 17/33 samples that were positive for tlh and 4/33 samples that were positive for tdh. This assay specifically and sensitively detected total and pathogenic V. parahaemolyticus and is expected to provide a rapid and reliable alternative to conventional detection methods by reducing the analysis time and obviating the need for multiple assays.  相似文献   

14.
Vibrio parahaemolyticus is a Gram-negative, halophilic bacterium found commonly in temperate and warm estuarine waters worldwide. V. parahaemolyticus is considered an emerging bacterial pathogen in Europe and has been responsible for several recent seafood-associated outbreaks. During ad hoc testing of raw shellfish produce in May 2012, pandemic group (O3:K6) V. parahaemolyticus was isolated from Pacific oysters (Crassostrea gigas), harvested in Southern England. Follow-on testing of water and shellfish, encompassing a small number geographically diverse sites, also retrieved pandemic group isolates. These strains are amongst the most northerly pandemic strains described to date and represent the first instance of pandemic V. parahaemolyticus isolated in the UK, highlighting the expanding geographical distribution of these foodborne pathogens in the environment.  相似文献   

15.
16.
A total of 178 strains of V. parahaemolyticus isolated from 13,607 acute diarrheal patients admitted in the Infectious Diseases Hospital, Kolkata has been examined for serovar prevalence, antimicrobial susceptibility and genetic traits with reference to virulence, and clonal lineages. Clinical symptoms and stool characteristics of V. parahaemolyticus infected patients were analyzed for their specific traits. The frequency of pandemic strains was 68%, as confirmed by group-specific PCR (GS-PCR). However, the prevalence of non-pandemic strains was comparatively low (32%). Serovars O3:K6 (19.7%), O1:K25 (18.5%), O1:KUT (11.2%) were more commonly found and other serovars such as O3:KUT (6.7%), O4:K8 (6.7%), and O2:K3 (4.5%) were newly detected in this region. The virulence gene tdh was most frequently detected in GS-PCR positive strains. There was no association between strain features and stool characteristics or clinical outcomes with reference to serovar, pandemic/non-pandemic or virulence profiles. Ampicillin and streptomycin resistance was constant throughout the study period and the MIC of ampicillin among selected strains ranged from 24 to >256 µg/ml. Susceptibility of these strains to ampicillin increased several fold in the presence of carbonyl cyanide-m-chlorophenyldrazone. The newly reported ESBL encoding gene from VPA0477 was found in all the strains, including the susceptible ones for ampicillin. However, none of the strains exhibited the β-lactamase as a phenotypic marker. In the analysis of pulsed-field gel electrophoresis (PFGE), the pandemic strains formed two different clades, with one containing the newly emerged pandemic strains in this region.  相似文献   

17.
Since 1997, cases of Vibrio parahaemolyticus-related gastroenteritis from the consumption of raw oysters harvested in Washington State have been higher than historical levels. These cases have shown little or no correlation with concentrations of potentially pathogenic V. parahaemolyticus (positive for the thermostable direct hemolysin gene, tdh) in oysters, although significant concentrations of tdh+ V. parahaemolyticus strains were isolated from shellfish-growing areas in the Pacific Northwest (PNW). We compared clinical and environmental strains isolated from the PNW to those from other geographic regions within the United States and Asia for the presence of virulence-associated genes, including the thermostable direct hemolysin (tdh), the thermostable-related hemolysin (trh), urease (ureR), the pandemic group specific markers orf8 and toxRS, and genes encoding both type 3 secretion systems (T3SS1 and T3SS2). The majority of clinical strains from the PNW were positive for tdh, trh, and ureR genes, while a significant proportion of environmental isolates were tdh+ but trh negative. Hierarchical clustering grouped the majority of these clinical isolates into a cluster distinct from that including the pandemic strain RIMD2210633, clinical isolates from other geographical regions, and tdh+, trh-negative environmental isolates from the PNW. We detected T3SS2-related genes (T3SS2β) in environmental strains that were tdh and trh negative. The presence of significant concentrations of tdh+, trh-negative environmental strains in the PNW that have not been responsible for illness and T3SS2β in tdh- and trh-negative strains emphasizes the diversity in this species and the need to identify additional virulence markers for this bacterium to improve risk assessment tools for the detection of this pathogen.  相似文献   

18.
Potential virulence attributes, serotypes, and ribotypes were determined for 178 pathogenic Vibrio parahaemolyticus isolates from clinical, environmental, and food sources on the Pacific, Atlantic, and Gulf Coasts of the United States and from clinical sources in Asia. The food and environmental isolates were generally from oysters, and they were defined as being pathogenic by using DNA probes to detect the presence of the thermostable direct hemolysin (tdh) gene. The clinical isolates from the United States were generally associated with oyster consumption, and most were obtained from outbreaks in Washington, Texas, and New York. Multiplex PCR was used to confirm the species identification and the presence of tdh and to test for the tdh-related hemolysin trh. Most of the environmental, food, and clinical isolates from the United States were positive for tdh, trh, and urease production. Outbreak-associated isolates from Texas, New York, and Asia were predominantly serotype O3:K6 and possessed only tdh. A total of 27 serotypes and 28 ribogroups were identified among the isolates, but the patterns of strain distribution differed between the serotypes and ribogroups. All but one of the O3:K6 isolates from Texas were in a different ribogroup from the O3:K6 isolates from New York or Asia. The O3:K6 serotype was not detected in any of the environmental and food isolates from the United States, and none of the food or environmental isolates belonged to any of the three ribogroups that contained all of the O3:K6 and related clinical isolates. The combination of serotyping and ribotyping showed that the Pacific Coast V. parahaemolyticus population appeared to be distinct from that of either the Atlantic Coast or Gulf Coast. The fact that certain serotypes and ribotypes contained both clinical and environmental isolates while many others contained only environmental isolates implies that certain serotypes or ribotypes are more relevant for human disease.  相似文献   

19.
The seasonal abundance of Vibrio parahaemolyticus in oysters from two estuaries along the southwest coast of India was studied by colony hybridization using nonradioactive labeled oligonucleotide probes. The density of total V. parahaemolyticus bacteria was determined using a probe binding to the tlh (thermolabile hemolysin) gene, and the density of pathogenic V. parahaemolyticus bacteria was determined by using a probe binding to the tdh (thermostable direct hemolysin) gene. Furthermore, the prevalence of V. parahaemolyticus was studied by PCR amplification of the toxR, tdh, and trh genes. PCR was performed directly with oyster homogenates and also following enrichment in alkaline peptone water for 6 and 18 h. V. parahaemolyticus was detected in 93.87% of the samples, and the densities ranged from <10 to 104 organisms per g. Pathogenic V. parahaemolyticus could be detected in 5 of 49 samples (10.2%) by colony hybridization using the tdh probe and in 3 of 49 samples (6.1%) by PCR. Isolates from one of the samples belonged to the pandemic serotype O3:K6. Twenty-nine of the 49 samples analyzed (59.3%) were positive as determined by PCR for the presence of the trh gene in the enrichment broth media. trh-positive V. parahaemolyticus was frequently found in oysters from India.  相似文献   

20.
A specific serotype of Vibrio parahaemolyticus, O3:K6, has recently been linked to epidemics of gastroenteritis in Southeast Asia, Japan, and North America. These pandemic O3:K6 strains appear to have recently spread across continents from a single origin to reach global coverage, based on profiling of strains by several molecular typing methods. In this study, variable-number tandem repeats (VNTR)-based fingerprinting was applied to clinical and environmental V. parahaemolyticus O3:K6 strains in an attempt to develop a molecular method with increased sensitivity for discriminating strains; the relative discriminatory powers were compared with ribotyping and pulsed-field gel electrophoresis (PFGE). All clinical strains tested were independent human isolates obtained from different outbreaks or from sporadic cases in Tokyo during the period from 1996 to 2003. Multiple-locus VNTR analysis (MLVA) was shown to have high resolution and reproducibility for typing of V. parahaemolyticus clones. MLVA analysis of 28 pandemic V. parahaemolyticus O3:K6 strains isolated from human cases produced 28 distinct VNTR patterns. The VNTR loci displayed between 2 and 15 alleles at each of eight loci with Nei's diversity index ranging from 0.35 and 0.91. These data demonstrated that MLVA is useful for individual strain typing of new O3:K6 strains, which appear to be closely related by other molecular methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号