首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A variety of serovars of the food-borne pathogen Vibrio parahaemolyticus normally cause infection. Since 1996, the O3:K6 strains of this pathogen have caused pandemics in many Asian countries, including Taiwan. For a better understanding of these pandemic strains, the recently isolated clinical O3:K6 strains from India, Japan, Korea, and Taiwan were examined in terms of pulsed-field gel electrophoresis (PFGE) typing and other biological characteristics. After PFGE and cluster analysis, all the O3:K6 strains were grouped into two unrelated groups. The recently isolated O3:K6 strains were all in one group, consisting of eight closely related patterns, with I1(81%) and I5(13%) being the most frequent patterns. Pattern I1 was the major one for strains from Japan, Korea, and Taiwan. All recently isolated O3:K6 strains carried the thermostable direct hemolysin (tdh) gene. No significant difference was observed between recently isolated O3:K6 strains and either non-O3:K6 reference strains or old O3:K6 strains isolated before 1996 with respect to antibiotic susceptibility, the level of thermostable direct hemolysin, and the susceptibility to environmental stresses. Results in this study confirmed that the recently isolated O3:K6 strains of V. parahaemolyticus are genetically close to each other, while the other biological traits examined were usually strain dependent, and no unique trait was found in the recently isolated O3:K6 strains.  相似文献   

2.
徐苗苗  刘静雯 《微生物学通报》2014,41(10):2112-2121
副溶血性弧菌(Vibrio Parahaemolyticus)是一种革兰氏阴性嗜盐性海洋细菌。1950年从日本一次暴发性食物中毒中首次分离发现。作为一种食源性人鱼共患致病菌,副溶血性弧菌在全球的河口、海洋和沿海广泛传播,由其引起的食物中毒已跃居其它病原菌之首。副溶血性弧菌在进化过程中通过基因重组和基因水平转移逐渐改善其对环境的适应性,因而与其它所有致病微生物相比,副溶血性弧菌的基因型和血清型都具有高度的多样性。本文就副溶血性弧菌,特别是1996年后在世界范围内出现的O3:K6新血清型流行株(形成所谓的O3:K6大流行克隆Pandemic clone)的发现及流行特征、变异分子流行病学特征、在我国的分布及研究进展进行综述,以期为O3:K6大流行克隆的溯源提供更多依据。  相似文献   

3.
Aims:  To examine the virulence factors and the genetic relationship isolates of the serogroup O3 of Vibrio parahaemolyticus in outbreaks of diarrhoea in the northeast region of Brazil.
Methods and Results:  Eighteen samples of the O3:K6 and O3:KUT serotypes of V. parahaemolyticus were analysed by multiplex polymerase chain reaction (m-PCR) for detection of the tl , tdh and trh genes, by random-amplified polymorphic DNA (RAPD) using two primers, and by amplification of the rDNA 16S–23S region. The gene tl was amplified in all the samples, tdh in 16 while trh in none; amplification of rDNA 16S–23S generated only one profile; each RAPD primer produced two amplification patterns allowing grouping two tdh Kanagawa-negative isolates.
Conclusions:  V. parahaemolyticus with characteristics of the pandemic clone appears to be widely disseminated in the studied region. Because of the genetic uniformity of the isolates, elucidation of outbreaks or tracking the source of contamination by the present molecular techniques seems useless.
Significance and Impact of the Study:  Detection of V. parahaemolyticus with virulence potential of pandemic clone from two outbreaks and from several isolated gastroenteritis cases points out the need for inclusion of this micro-organism in the Brazilian routine monitoring of the diarrhoeas for elucidation of their aetiology.  相似文献   

4.
A filamentous phage, ‘lvpf5’, of Vibrio parahaemolyticus O3:K6 strain LVP5 was isolated and characterized. The host range was not restricted to serotype O3:K6, but 7 of 99 V. parahaemolyticus strains with a variety of serotypes were susceptible to the phage. The phage was inactivated by heating at 80 C for 10 min and by treating with chloroform. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the phage exhibited a 3.8 kDa protein. The amino-terminal amino acid sequence of the coat protein was determined as AEGGAADPFEAIDLLGVATL. The phage genome consisted of a single-stranded DNA molecule. The activity of the phages was inhibited by anti-Na2 pili antibody.  相似文献   

5.
A filamentous phage, 'lvpf5,' of Vibrio parahaemolyticus O3:K6 strain LVP5 was isolated and characterized. The host range was not restricted to serotype O3:K6, but 7 of 99 V. parahaemolyticus strains with a variety of serotypes were susceptible to the phage. The phage was inactivated by heating at 80 C for 10 min and by treating with chloroform. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the phage exhibited a 3.8 kDa protein. The amino-terminal amino acid sequence of the coat protein was determined as AEGGAADPFEAIDLLGVATL. The phage genome consisted of a single-stranded DNA molecule. The activity of the phages was inhibited by anti-Na2 pili antibody.  相似文献   

6.
A specific serotype of Vibrio parahaemolyticus, O3:K6, has recently been linked to epidemics of gastroenteritis in Southeast Asia, Japan, and North America. These pandemic O3:K6 strains appear to have recently spread across continents from a single origin to reach global coverage, based on profiling of strains by several molecular typing methods. In this study, variable-number tandem repeats (VNTR)-based fingerprinting was applied to clinical and environmental V. parahaemolyticus O3:K6 strains in an attempt to develop a molecular method with increased sensitivity for discriminating strains; the relative discriminatory powers were compared with ribotyping and pulsed-field gel electrophoresis (PFGE). All clinical strains tested were independent human isolates obtained from different outbreaks or from sporadic cases in Tokyo during the period from 1996 to 2003. Multiple-locus VNTR analysis (MLVA) was shown to have high resolution and reproducibility for typing of V. parahaemolyticus clones. MLVA analysis of 28 pandemic V. parahaemolyticus O3:K6 strains isolated from human cases produced 28 distinct VNTR patterns. The VNTR loci displayed between 2 and 15 alleles at each of eight loci with Nei's diversity index ranging from 0.35 and 0.91. These data demonstrated that MLVA is useful for individual strain typing of new O3:K6 strains, which appear to be closely related by other molecular methods.  相似文献   

7.
A total of 1500 environmental strains of Vibrio parahaemolyticus, isolated from the aquatic environment of Bangladesh, were screened for the presence of a major V. parahaemolyticus virulence factor, the thermostable direct haemolysin (tdh) gene, by the colony blot hybridization method using a digoxigenin-labeled tdh gene probe. Of 1500 strains, 5 carried the tdh sequence, which was further confirmed by PCR using primers specific for the tdh gene. Examination by PCR confirmed that the 5 strains were V. parahaemolyticus and lacked the thermostable direct haemolysin-related haemolysin (trh) gene, the alternative major virulence gene known to be absent in pandemic strains. All 5 strains gave positive Kanagawa phenomenon reaction with characteristic beta-haemolysis on Wagatsuma agar medium. Southern blot analysis of the HindIII-digested chromosomal DNA demonstrated, in all 5 strains, the presence of 2 tdh genes common to strains positive for Kanagawa phenomenon. However, the 5 strains were found to belong to 3 different serotypes (O3:K29, O4:K37, and O3:K6). The 2 with pandemic serotype O3:K6 gave positive results in group-specific PCR and ORF8 PCR assays, characteristics unique to the pandemic clone. Clonal variations among the 5 isolates were analyzed by comparing RAPD and ribotyping patterns. Results showed different patterns for the 3 serotypes, but the pattern was identical among the O3:K6 strains. This is the first report on the isolation of pandemic O3:K6 strains of V. parahaemolyticus from the aquatic environment of Bangladesh.  相似文献   

8.
During 2003 and during late September of 2004, more than 1230 cases of gastroenteritis were reported in the south of Sinaloa State, north-western Mexico. All cases were attributed to the consumption of raw or undercooked shrimp collected at the Huizache-Caimanero lagunary system. Vibrio parahaemolyticus was identified by standard biochemical methods, and many strains were positive for PCR amplifications of the tlh and tdh genes and negative for the trh gene. A representative strain belonged to the O3:K6 serogroup. This is the first outbreak of gastroenteritis caused by the pandemic strains of O3:K6 V. parahaemolyticus in México.  相似文献   

9.
10.
Historically, Vibrio parahaemolyticus infections have been characterized by sporadic cases caused by multiple, diverse serotypes. However, since 1996, V. parahaemolyticus serotype O3:K6 strains have been associated with several large-scale outbreaks of illness, suggesting the emergence of a “new” group of organisms with enhanced virulence. We have applied three different molecular subtyping techniques to identify an appropriate method for differentiating O3:K6 isolates from other serotypes. Pulsed-field gel electrophoresis (PFGE) following NotI digestion differentiated seven closely related subtypes among O3:K6 and related strains, which were distinct from PFGE patterns for non-O3:K6 isolates. Ribotyping and tdh sequencing were less discriminatory than PFGE, but further confirmed close genetic relationships among recent O3:K6 isolates. In vitro adherence and cytotoxicity studies with human epithelial cells showed that O3:K6 isolates exhibited statistically higher levels of adherence and cytotoxicity to host cells than non-O3:K6 isolates. Epithelial cell cytotoxicity patterns were determined with a lactate dehydrogenase release assay. At 3 h postinfection, high relative cytotoxicities (>50% maximum lactate dehydrogenase activity) were found among a greater proportion of recently isolated O3:K6 and closely related strains (75%) than among the non-O3:K6 isolates (23%). A statistically significant relationship between adherence and cytotoxicity suggests that the pathogenic potential of some isolates may be associated with increased adherence to epithelial cells. Our findings suggest that enhanced adherence and cytotoxicity may contribute to the apparent unique pathogenic potential of V. parahaemolyticus O3:K6 strains.  相似文献   

11.
Historically, Vibrio parahaemolyticus infections have been characterized by sporadic cases caused by multiple, diverse serotypes. However, since 1996, V. parahaemolyticus serotype O3:K6 strains have been associated with several large-scale outbreaks of illness, suggesting the emergence of a "new" group of organisms with enhanced virulence. We have applied three different molecular subtyping techniques to identify an appropriate method for differentiating O3:K6 isolates from other serotypes. Pulsed-field gel electrophoresis (PFGE) following NotI digestion differentiated seven closely related subtypes among O3:K6 and related strains, which were distinct from PFGE patterns for non-O3:K6 isolates. Ribotyping and tdh sequencing were less discriminatory than PFGE, but further confirmed close genetic relationships among recent O3:K6 isolates. In vitro adherence and cytotoxicity studies with human epithelial cells showed that O3:K6 isolates exhibited statistically higher levels of adherence and cytotoxicity to host cells than non-O3:K6 isolates. Epithelial cell cytotoxicity patterns were determined with a lactate dehydrogenase release assay. At 3 h postinfection, high relative cytotoxicities (>50% maximum lactate dehydrogenase activity) were found among a greater proportion of recently isolated O3:K6 and closely related strains (75%) than among the non-O3:K6 isolates (23%). A statistically significant relationship between adherence and cytotoxicity suggests that the pathogenic potential of some isolates may be associated with increased adherence to epithelial cells. Our findings suggest that enhanced adherence and cytotoxicity may contribute to the apparent unique pathogenic potential of V. parahaemolyticus O3:K6 strains.  相似文献   

12.
Application of an immunomagnetic enrichment method selective for Vibrio parahaemolyticus serovar K6 allowed isolation of a strain belonging to the pandemic O3:K6 clone of V. parahaemolyticus from fresh shellfish not implicated in a clinical case in southern Thailand. Arbitrarily primed PCR profiles of this strain, clinical O3:K6 strains isolated from sporadic diarrhea cases in the same area, and a standard pandemic O3:K6 strain were indistinguishable.  相似文献   

13.
Application of an immunomagnetic enrichment method selective for Vibrio parahaemolyticus serovar K6 allowed isolation of a strain belonging to the pandemic O3:K6 clone of V. parahaemolyticus from fresh shellfish not implicated in a clinical case in southern Thailand. Arbitrarily primed PCR profiles of this strain, clinical O3:K6 strains isolated from sporadic diarrhea cases in the same area, and a standard pandemic O3:K6 strain were indistinguishable.  相似文献   

14.
Although thermostable direct hemolysin (TDH)-producing Vibrio parahaemolyticus has caused many infections in Asian countries, the United States, and other countries, it has been difficult to detect the same pathogen in seafoods and other environmental samples. In this study, we detected and enumerated tdh gene-positive V. parahaemolyticus in Japanese seafoods with a tdh-specific PCR method, a chromogenic agar medium, and a most-probable-number method. The tdh gene was detected in 33 of 329 seafood samples (10.0%). The number of tdh-positive V. parahaemolyticus ranged from <3 to 93/10 g. The incidence of tdh-positive V. parahaemolyticus tended to be high in samples contaminated with relatively high levels of total V. parahaemolyticus. TDH-producing strains of V. parahaemolyticus were isolated from 11 of 33 tdh-positive samples (short-necked clam, hen clam, and rock oyster). TDH-producing strains of V. parahaemolyticus were also isolated from the sediments of rivers near the coast in Japan. Representative strains of the seafood and sediment isolates were examined for the O:K serovar and by the PCR method specific to the pandemic clone and arbitrarily primed PCR and pulsed-field gel electrophoresis techniques. The results indicated that most O3:K6 tdh-positive strains belonged to the pandemic O3:K6 clone and suggested that serovariation took place in the Japanese environment.  相似文献   

15.
Although thermostable direct hemolysin (TDH)-producing Vibrio parahaemolyticus has caused many infections in Asian countries, the United States, and other countries, it has been difficult to detect the same pathogen in seafoods and other environmental samples. In this study, we detected and enumerated tdh gene-positive V. parahaemolyticus in Japanese seafoods with a tdh-specific PCR method, a chromogenic agar medium, and a most-probable-number method. The tdh gene was detected in 33 of 329 seafood samples (10.0%). The number of tdh-positive V. parahaemolyticus ranged from <3 to 93/10 g. The incidence of tdh-positive V. parahaemolyticus tended to be high in samples contaminated with relatively high levels of total V. parahaemolyticus. TDH-producing strains of V. parahaemolyticus were isolated from 11 of 33 tdh-positive samples (short-necked clam, hen clam, and rock oyster). TDH-producing strains of V. parahaemolyticus were also isolated from the sediments of rivers near the coast in Japan. Representative strains of the seafood and sediment isolates were examined for the O:K serovar and by the PCR method specific to the pandemic clone and arbitrarily primed PCR and pulsed-field gel electrophoresis techniques. The results indicated that most O3:K6 tdh-positive strains belonged to the pandemic O3:K6 clone and suggested that serovariation took place in the Japanese environment.  相似文献   

16.
Lysogeny has been first established in strains of parahemolytic vibrios of serovar O4:K12. Moderate phages belonged to morphological group IV by home A. S. Tikhonenko's classification and were presented by one serological type. No correlation has been revealed between sensitivity to moderate phages of parahemolytic vibrios and specificity of "O"- or "K"-serotypes.  相似文献   

17.
Vibrio parahaemolyticus inhabits marine, brackish, and estuarine waters worldwide, where fluctuations in salinity pose a constant challenge to the osmotic stress response of the organism. Vibrio parahaemolyticus is a moderate halophile, having an absolute requirement for salt for survival, and is capable of growth at 1 to 9% NaCl. It is the leading cause of seafood-related bacterial gastroenteritis in the United States and much of Asia. We determined whether growth in differing NaCl concentrations alters the susceptibility of V. parahaemolyticus O3:K6 to other environmental stresses. Vibrio parahaemolyticus was grown at a 1% or 3% NaCl concentration, and the growth and survival of the organism were examined under acid or temperature stress conditions. Growth of V. parahaemolyticus in 3% NaCl versus that in 1% NaCl increased survival under both inorganic (HCl) and organic (acetic acid) acid conditions. In addition, at 42°C and −20°C, 1% NaCl had a detrimental effect on growth. The expression of lysine decarboxylase (encoded by cadA), the organism''s main acid stress response system, was induced by both NaCl and acid conditions. To begin to address the mechanism of regulation of the stress response, we constructed a knockout mutation in rpoS, which encodes the alternative stress sigma factor, and in toxRS, a two-component regulator common to many Vibrio species. Both mutant strains had significantly reduced survival under acid stress conditions. The effect of V. parahaemolyticus growth in 1% or 3% NaCl was examined using a cytotoxicity assay, and we found that V. parahaemolyticus grown in 1% NaCl was significantly more toxic than that grown in 3% NaCl.Vibrio parahaemolyticus is a Gram-negative bacterium that inhabits coastal waters worldwide. Vibrio parahaemolyticus grows optimally in warmer waters and is most commonly isolated during the summer months, often in association with plankton, crustaceans, mollusks, and fish (16, 17). During the winter months, the organism is typically scarce and usually is isolated from sediment samples (16). While V. parahaemolyticus has been shown to be the etiological agent of disease in several kinds of crustaceans and shellfish, it is most notably a pathogen of humans (17). Vibrio parahaemolyticus was first discovered in Japan during an outbreak of gastroenteritis in 1950 (12). It is the leading cause of seafood-related bacterial gastroenteritis in the United States and much of Asia (6, 39). Infection is most frequently associated with the consumption of oysters harvested from warm waters, particularly along the U.S. Gulf Coast, where vibrios grow to high levels during the summer months (6, 7, 42). Newly released data from the CDC comparing the incidence rates of laboratory-confirmed infections by gastrointestinal pathogens in 1996 to 2008 revealed an increase of 47% for Vibrio infections, of which V. parahaemolyticus accounted for 55%, while rates for all other enteric pathogens decreased or remained the same (5). An outbreak of V. parahaemolyticus infections which caused rapid hospitalization of those infected occurred in India in 1995 (28). These infections were caused by a single serogroup, a new, highly virulent O3:K6 strain, which has now disseminated globally (1, 6, 20, 26, 34, 38). Recent studies report the recovery of O3:K6 isolates from the water in southern Chile, a region that previously was considered too cold to support the growth of this organism (4, 11, 13).All V. parahaemolyticus strains inhabit marine, brackish, and estuarine waters, where fluctuations in salinity pose a constant challenge to the adaptive response of the organism. Vibrio parahaemolyticus is moderately halophilic in nature and requires a minimum of 0.086 M (0.5%) NaCl for growth (29). It has also been demonstrated that this organism has the ability to grow in medium containing NaCl concentrations upwards of 1.5 M, making V. parahaemolyticus more osmotolerant than many other Vibrio species, such as V. cholerae, V. vulnificus, and V. fischeri, which occupy similar niches (27). In a recent study, we examined the genome of V. parahaemolyticus O3:K6 (designated RIMD2210633) and identified homologues of ectoine and betaine synthesis genes, as well as homologues of four single-component compatible solute transporters and two multicomponent compatible solute transporters (27). The large compendium of compatible solute systems in V. parahaemolyticus suggests that they might play an additional role(s) in survival.Within offshore waters, V. parahaemolyticus is generally faced with NaCl concentrations of 3.5% salinity (35 ppt), but in estuarine systems and within oysters (which are osmoconformers), it must adapt to changes in salinity. In addition, as a human pathogen, once inside the human host, like most enteric pathogens, V. parahaemolyticus must overcome the inorganic-pH challenge presented by gastric acid from the stomach and organic acids found within the intestine, as well as decreasing salinity (salinity in the intestine is approximately 300 mM NaCl). Organic acids have the ability to cross the cell membrane and enter the cytoplasm of the cell, whereas inorganic acids remain in the extracellular environment. Once in the cells, the organic acids can disassociate, decreasing the cytoplasmic pH and increasing the turgor pressure within the cell due to increases in anions from the acids (9). Thus, inorganic and organic acids can affect cells very differently.We suggest that the ability to grow at different NaCl concentrations, such as those vibrios would encounter in estuarine environments, allows V. parahaemolyticus to adapt more effectively to other environmental stresses (temperature fluctuations) and to the challenges that occur upon invasion of the human host (low pH). In this study, we show that V. parahaemolyticus RIMD2210633 cells grown at 3% NaCl are more resistant to acid and temperature stresses than cells grown at 1% NaCl. We demonstrate that V. parahaemolyticus grown in 3% NaCl is better able to survive sublethal and lethal acid shock conditions, as well as persistent high- and low-temperature conditions. We determined possible regulatory mechanisms involved in stress responses by examining the global regulator genes toxRS and rpoS. Last, we examined how changing environmental conditions, such as high and low NaCl and low pH, might affect the virulence of V. parahaemolyticus by determining its cytotoxicity toward human intestinal (Caco-2) cells.  相似文献   

18.
AIMS: We analysed the genetic divergence in the pandemic new O3:K6 and phylogenetically related (new O3:K6-like) strains and compare these two groups in terms of virulence and other biological traits. METHODS AND RESULTS: A total of 160 new O3:K6, new O3:K6-like and other strains of Vibrio parahaemolyticus isolated in Taiwan and other countries were collected and their clonal relationships analysed using SfiI-pulsed-field gel electrophoresis. All of the new O3:K6 and new O3:K6-like strains were grouped in cluster I with five new patterns identified. A O6:K18 strain was identified as a new member of the new O3:K6-like strains in addition to O4:K68, O1:KUT and O1:K25 strains. All of the lipopolysaccharide preparations of the selected strains exhibited closely spaced quadruplet banding patterns with similar mobility. The two groups of strains exhibited 100% sequence identity in the internal sequences of the toxR and laf genes, and also displayed similar virulence properties as determined with a suckling mouse model. CONCLUSIONS: The new O3:K6 and new O3:K6-like strains were highly similar in virulence and in several other phenotypical and genotypical traits. SIGNIFICANCE AND IMPACT OF THE STUDY: This work demonstrated the spread and divergence of the pandemic and related clone of V. parahaemolyticus with similar virulence.  相似文献   

19.
This study describes the optimization of PCR parameters and testing of a wide number of microbial species to establish a highly specific and sensitive PCR-based method of detection of a newly emerged pandemic Vibrio parahaemolyticus O3:K6 strain in pure cultures and seeded waters from the Gulf of Mexico (gulf water). The selected open reading frame 8 (ORF8) DNA-specific oligonucleotide primers tested were found to specifically amplify all 35 pathogenic V. parahaemolyticus O3:K6 pandemic isolates, whereas these primers were not found to detectably amplify two strains of V. parahaemolyticus O3:K6 that were isolated prior to the 1996 outbreaks, 122 non-O3:K6 strains of V. parahaemolyticus, 198 non-V. parahaemolyticus spp., or 16 non-Vibrio bacterial spp. The minimum level of detection by the PCR method was 1 pg of purified genomic DNA or 10(2) ORF8-positive V. parahaemolyticus O3:K6 cells in 100 ml of water. The effectiveness of this method for the detection of ORF8-positive isolates in environmental samples was tested in gulf water seeded with 10-fold serial dilutions of this pathogen. A detection level of 10(3) cells per 100 ml of gulf water was achieved. Also, the applicability of this methodology was tested by the detection of this pathogen in gulf water incubated at various temperatures for 28 days. This PCR approach can potentially be used to monitor with high specificity and well within the required range of sensitivity the occurrence and distribution of this newly emerged pathogenic V. parahaemolyticus O3:K6 strain in coastal, marine, and ship ballast waters. Early detection of V. parahaemolyticus O3:K6 will help increase seafood safety and decrease the risk of infectious outbreaks caused by this pathogen.  相似文献   

20.
This study describes the optimization of PCR parameters and testing of a wide number of microbial species to establish a highly specific and sensitive PCR-based method of detection of a newly emerged pandemic Vibrio parahaemolyticus O3:K6 strain in pure cultures and seeded waters from the Gulf of Mexico (gulf water). The selected open reading frame 8 (ORF8) DNA-specific oligonucleotide primers tested were found to specifically amplify all 35 pathogenic V. parahaemolyticus O3:K6 pandemic isolates, whereas these primers were not found to detectably amplify two strains of V. parahaemolyticus O3:K6 that were isolated prior to the 1996 outbreaks, 122 non-O3:K6 strains of V. parahaemolyticus, 198 non-V. parahaemolyticus spp., or 16 non-Vibrio bacterial spp. The minimum level of detection by the PCR method was 1 pg of purified genomic DNA or 102 ORF8-positive V. parahaemolyticus O3:K6 cells in 100 ml of water. The effectiveness of this method for the detection of ORF8-positive isolates in environmental samples was tested in gulf water seeded with 10-fold serial dilutions of this pathogen. A detection level of 103 cells per 100 ml of gulf water was achieved. Also, the applicability of this methodology was tested by the detection of this pathogen in gulf water incubated at various temperatures for 28 days. This PCR approach can potentially be used to monitor with high specificity and well within the required range of sensitivity the occurrence and distribution of this newly emerged pathogenic V. parahaemolyticus O3:K6 strain in coastal, marine, and ship ballast waters. Early detection of V. parahaemolyticus O3:K6 will help increase seafood safety and decrease the risk of infectious outbreaks caused by this pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号