首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The previously uncharacterized determinants of the specificity of tRNAPro for aminoacylation (tRNAPro identity) were defined by a computer comparison of all Escherichia coli tRNA sequences and tested by a functional analysis of amber suppressor tRNAs in vivo. We determined the amino acid specificity of tRNA by sequencing a suppressed protein and the aminoacylation efficiency of tRNA by examining the steady-state level of aminoacyl-tRNA. On substituting nucleotides derived from the acceptor end and variable pocket of tRNAPro for the corresponding nucleotides in a tRNAPhe gene, the identity of the resulting tRNA changed substantially but incompletely to that of tRNAPro. The redesigned tRNAPhe was weakly active and aminoacyl-tRNA was not detected. Ethyl methanesulfonate mutagenesis of the redesigned tRNAPhe gene produced a mutant with a wobble pair in place of a base pair in the end of the acceptor-stem helix of the transcribed tRNA. This mutant exhibited both a tRNAPro identity and substantial aminoacyl-tRNA. The results speak for the importance of a distinctive conformation in the acceptor-stem helix of tRNAPro for aminoacylation by the prolyl-tRNA synthetase. The anticodon also contributes to tRNAPro identity but is not necessary in vivo.  相似文献   

3.
The mode of recognition of tRNAs by aminoacyl-tRNA synthetases and translation factors is largely unknown in archaebacteria. To study this process, we have cloned the wild type initiator tRNA gene from the moderate halophilic archaebacterium Haloferax volcanii and mutants derived from it into a plasmid capable of expressing the tRNA in these cells. Analysis of tRNAs in vivo show that the initiator tRNA is aminoacylated but is not formylated in H. volcanii. This result provides direct support for the notion that protein synthesis in archaebacteria is initiated with methionine and not with formylmethionine. We have analyzed the effect of two different mutations (CAU-->CUA and CAU-->GAC) in the anticodon sequence of the initiator tRNA on its recognition by the aminoacyl-tRNA synthetases in vivo. The CAU-->CUA mutant was not aminoacylated to any significant extent in vivo, suggesting the importance of the anticodon in aminoacylation of tRNA by methionyl-tRNA synthetase. This mutant initiator tRNA can, however, be aminoacylated in vitro by the Escherichia coli glutaminyl-tRNA synthetase, suggesting that the lack of aminoacylation is due to the absence in H. volcanii of a synthetase, which recognizes the mutant tRNA. Archaebacteria lack glutaminyl-tRNA synthetase and utilize a two-step pathway involving glutamyl-tRNA synthetase and glutamine amidotransferase to generate glutaminyl-tRNA. The lack of aminoacylation of the mutant tRNA indicates that this mutant tRNA is not a substrate for the H. volcanii glutamyl-tRNA synthetase. The CAU-->GAC anticodon mutant is most likely aminoacylated with valine in vivo. Thus, the anticodon plays an important role in the recognition of tRNA by at least two of the halobacterial aminoacyl-tRNA synthetases.  相似文献   

4.
In previous work we identified several specific sites in Escherichia coli tRNAfMet that are essential for recognition of this tRNA by E. coli methionyl-tRNA synthetase (MetRS) (EC 6.1.1.10). Particularly strong evidence indicated a role for the nucleotide base at the wobble position of the anticodon in the discrimination process. We have now investigated the aminoacylation activity of a series of tRNAfMet derivatives containing single base changes in each position of the anticodon. In addition, derivatives containing permuted sequences and larger and smaller anticodon loops have been prepared. The variant tRNAs have been enzymatically synthesized in vitro by using T4 RNA ligase (EC 6.5.1.3). Base substitutions in the wobble position have been found to reduce aminoacylation rates by at least five orders of magnitude. Derivatives having base substitutions in the other two positions of the anticodon are aminoacylated 55-18,500 times slower than normal. Nucleotides that have specific functional groups in common with the normal anticodon bases are better tolerated at each of these positions than those that do not. A tRNAfMet variant having a six-membered loop containing only the CA sequence of the anticodon is aminoacylated still more slowly, and a derivative containing a five-membered loop is not measurably active. The normal loop size can be increased by one nucleotide with a relatively small effect on the rate of aminoacylation, which indicates that the spatial arrangement of the nucleotides is less critical than their chemical nature. We conclude from these data that recognition of tRNAfMet requires highly specific interactions of MetRS with functional groups on the nucleotide bases of the anticodon sequence. Several other aminoacyl-tRNA synthetases are known to require one or more anticodon bases for efficient aminoacylation of their tRNA substrates, and data from other laboratories suggest that anticodon sequences may be important for accurate discrimination between cognate and noncoagnate tRNAs by these enzymes.  相似文献   

5.
6.
7.
The selection of tRNAs by their cognate aminoacyl-tRNA synthetases is critical for ensuring the fidelity of protein synthesis. While nucleotides that comprise tRNA identity sets have been readily identified, their specific role in the elementary steps of aminoacylation is poorly understood. By use of a rapid kinetics analysis employing mutants in tRNA(His) and its cognate aminoacyl-tRNA synthetase, the role of tRNA identity in aminoacylation was investigated. While mutations in the tRNA anticodon preferentially affected the thermodynamics of initial complex formation, mutations in the acceptor stem or the conserved motif 2 loop of the tRNA synthetase imposed a specific kinetic block on aminoacyl transfer and decreased tRNA-mediated kinetic control of amino acid activation. The mechanistic basis of tRNA identity is analogous to fidelity control by DNA polymerases and the ribosome, whose reactions also demand high accuracy.  相似文献   

8.
The underlying basis of the genetic code is specific aminoacylation of tRNAs by aminoacyl-tRNA synthetases. Although the code is conserved, bases in tRNA that establish aminoacylation are not necessarily conserved. Even when the bases are conserved, positions of backbone groups that contribute to aminoacylation may vary. We show here that, although the Escherichia coli and human cysteinyl-tRNA synthetases both recognize the same bases (U73 and the GCA anticodon) of tRNA for aminoacylation, they have different emphasis on the tRNA backbone. The E. coli enzyme recognizes two clusters of phosphate groups. One is at A36 in the anticodon and the other is in the core of the tRNA structure and includes phosphate groups at positions 9, 12, 14, and 60. Metal-ion rescue experiments show that those at positions 9, 12, and 60 are involved with binding divalent metal ions that are important for aminoacylation. The E. coli enzyme also recognizes 2'-hydroxyl groups within the same two clusters: at positions 33, 35, and 36 in the anticodon loop, and at positions 49, 55, and 61 in the core. The human enzyme, by contrast, recognizes few phosphate or 2'-hydroxy groups for aminoacylation. The evolution from the backbone-dependent recognition by the E. coli enzyme to the backbone-independent recognition by the human enzyme demonstrates a previously unrecognized shift that nonetheless has preserved the specificity for aminoacylation with cysteine.  相似文献   

9.
Derivatives of E. coli tRNAfMet containing single base substitutions at the wobble position of the anticodon have been enzymatically synthesized in vitro. The procedure involves excision of the normal anticodon, CAU, by limited digestion of intact tRNAfMet with RNase A. RNA ligase is then used to join each of four trinucleotides, NAU, to the 5' half molecule and to subsequently link the 3' and modified 5' fragments to regenerate the anticodon loop. Synthesis of intact tRNAfMet containing the anticodon CAU by this procedure yields a product which is indistinguishable from native tRNAfMet with respect to its ability to be aminoacylated by E. coli methionyl-tRNA synthetase. Substitution of any other nucleotide at the wobble position of tRNAfMet drastically impairs the ability of the synthetase to recognize the tRNA. Measurement of methionine acceptance in the presence of high concentrations of pure enzyme has established that the rate of aminoacylation of the AAU, GAU and UAU anticodon derivatives of tRNAfMet is four to five orders of magnitude slower than that of the native or synthesized tRNA containing C as the wobble base. In addition, the inactive tRNA derivatives fail to inhibit aminoacylation of normal tRNAfMet, indicating that they bind poorly to the enzyme. These results support a model involving direct interaction between Met-tRNA synthetase and the C in the wobble position during aminoacylation of tRNAfMet.  相似文献   

10.
Rodin SN  Rodin AS 《Heredity》2008,100(4):341-355
If the table of the genetic code is rearranged to put complementary codons face-to-face, it becomes apparent that the code displays latent mirror symmetry with respect to two sterically different modes of tRNA recognition. These modes involve distinct classes of aminoacyl-tRNA synthetases (aaRSs I and II) with recognition from the minor or major groove sides of the acceptor stem, respectively. We analyze the anticodon pairs complementary to the face-to-face codon couplets. Taking into account the invariant nucleotides on either side (5' and 3'), we consider the risk of anticodon confusion and subsequent erroneous aminoacylation in the ancestral coding system. This logic leads to the conclusion that ribozymic precursors of tRNA synthetases had the same two complementary modes of tRNA aminoacylation. This surprising case of molecular mimicry (1) shows a key potential selective advantage arising from the partitioning of aaRSs into two classes, (2) is consistent with the hypothesis that the two aaRS classes were originally encoded by the complementary strands of the same primordial gene and (3) provides a 'missing link' between the classic genetic code, embodied in the anticodon, and the second, or RNA operational, code that is embodied mostly in the acceptor stem and is directly responsible for proper tRNA aminoacylation.  相似文献   

11.
Mutants of the Escherichia coli initiator tRNA (tRNA(fMet)) have been used to examine the role of the anticodon and discriminator base in in vivo aminoacylation of tRNAs by cysteinyl-tRNA synthetase. Substitution of the methionine anticodon CAU with the cysteine anticodon GCA was found to allow initiation of protein synthesis by the mutant tRNA from a complementary initiation codon in a reporter protein. Sequencing of the protein revealed that cysteine comprised about half of the amino acid at the N terminus. An additional mutation, converting the discriminator base of tRNA(GCAfMet) from A73 to the base present in tRNA(Cys) (U73), resulted in a 6-fold increase in the amount of protein produced and insertion of greater than or equal to 90% cysteine in response to the complementary initiation codon. Substitution of C73 or G73 at the discriminator position led to insertion of little or no cysteine, indicating the importance of U73 for recognition of the tRNA by cysteinyl-tRNA synthetase. Single base changes in the anticodon of tRNA(GCAfMet) containing U73 from GCA to UCA, GUA, GCC, and GCG (changes underlined) eliminated or dramatically reduced cysteine insertion by the mutant initiator tRNA indicating that all three cysteine anticodon bases are essential for specific aminoacylation of the tRNA with cysteine in vivo.  相似文献   

12.
The accuracy of protein biosynthesis rests on the high fidelity with which aminoacyl-tRNA synthetases discriminate between tRNAs. Correct aminoacylation depends not only on identity elements (nucleotides in certain positions) in tRNA (1), but also on competition between different synthetases for a given tRNA (2). Here we describe in vivo and in vitro experiments which demonstrate how variations in the levels of synthetases and tRNA affect the accuracy of aminoacylation. We show in vivo that concurrent overexpression of Escherichia coli tyrosyl-tRNA synthetase abolishes misacylation of supF tRNA(Tyr) with glutamine in vivo by overproduced glutaminyl-tRNA synthetase. In an in vitro competition assay, we have confirmed that the overproduction mischarging phenomenon observed in vivo is due to competition between the synthetases at the level of aminoacylation. Likewise, we have been able to examine the role competition plays in the identity of a non-suppressor tRNA of ambiguous identity, tRNA(Glu). Finally, with this assay, we show that the identity of a tRNA and the accuracy with which it is recognized depend on the relative affinities of the synthetases for the tRNA. The in vitro competition assay represents a general method of obtaining qualitative information on tRNA identity in a competitive environment (usually only found in vivo) during a defined step in protein biosynthesis, aminoacylation. In addition, we show that the discriminator base (position 73) and the first base of the anticodon are important for recognition by E. coli tyrosyl-tRNA synthetase.  相似文献   

13.
14.
Expression of the genetic code depends on precise tRNA aminoacylation by cognate aminoacyl-tRNA synthetase enzymes. The G.U wobble base-pair in the acceptor helix of Escherichia coli alanine tRNA is the primary aminoacylation determinant of this molecule. Previous work on the process of synthetase recognition of the G.U pair showed that replacing G.U by a G.C Watson-Crick base-pair inactivates alanine acceptance by the tRNA, but that C.A and G.A wobble pair replacements preserve acceptance. Work by another group reported that the effects of a G.C replacement were reversed by a distal wobble base-pair in the anticodon helix. This result is potentially interesting because it suggests that distant regions in alanine tRNA are functionally coupled during synthetase recognition and more generally because recognition determinants of many other tRNAs lie in both the acceptor helix and anticodon helix region. Here, we have conducted an extensive in vivo analysis of the distal wobble pair in alanine tRNA and report that it does not behave like a compensating mutation. Restoration of alanine acceptance was not detected even when the synthetase enzyme was overproduced. We discuss the previous experimental evidence and suggest how the distal wobble pair was incorrectly analyzed. The available data indicate that all principal recognition determinants of alanine tRNA lie in the molecule's acceptor helix.  相似文献   

15.
The updated structural and phylogenetic analyses of tRNA pairs with complementary anticodons provide independent support for our earlier finding, namely that these tRNA pairs concertedly show complementary second bases in the acceptor stem. Two implications immediately follow: first, that a tRNA molecule gained its present, complete, cloverleaf shape via duplication(s) of a shorter precursor. Second, that common ancestry is shared by two major components of the genetic code within the tRNA molecule--the classic code per se embodied in anticodon triplets, and the operational code of aminoacylation embodied primarily in the first three base pairs of the acceptor stems. In this communication we show that it might have been a double, sense-antisense, in-frame translation of the very first protein-encoding genes that directed the code's earliest expansion, thus preserving this fundamental dual-complementary link between acceptors and anticodons. Furthermore, the dual complementarity appears to be consistent with two mirror-symmetrical modes by which class I and II aminoacyl-tRNA synthetases recognize the cognate tRNAs--from the minor and major groove side of the acceptor stem, respectively.  相似文献   

16.
The class I glutamine (Gln) tRNA synthetase interacts with the anticodon and acceptor stem of glutamine tRNA. RNA hairpin helices were designed to probe acceptor stem and anticodon stem-loop contacts. A seven-base pair RNA microhelix derived from the acceptor stem of tRNAGln was aminoacylated by Gln tRNA synthetase. Variants of the glutamine acceptor stem microhelix implicated the discriminator base as a major identity element for glutaminylation of the RNA helix. A second RNA microhelix representing the anticodon stem-loop competitively inhibited tRNAGln charging. However, the anticodon stem-loop microhelix did not enhance aminoacylation of the acceptor stem microhelix. Thus, transduction of the anticodon identity signal may require covalent continuity of the tRNA chain to trigger efficient aminoacylation.  相似文献   

17.
We have constructed eight anticodon-modified Escherichia coli initiator methionine (fMet) tRNAs by insertion of synthetic ribotrinucleotides between two fragments ('half molecules') derived from the initiator tRNA. The trinucleotides, namely CAU (the normal anticodon), CAA, CAC, CAG, GAA, GAC, GAG and GAU, were joined to the 5' and 3' tRNA fragments with T4 RNA ligase. The strategy of reconstruction permitted the insertion of radioactive 32P label between nucleotides 36 and 37. tRNAs were microinjected into the cytoplasm of Xenopus laevis oocytes, and the following properties were evaluated: the stability of these eubacterial tRNA variants in the eukaryotic oocytes; the enzymatic modification of the adenosine at position 37 (3' adjacent to the anticodon) and aminoacylation of the chimeric tRNAs by endogenous oocyte aminoacyl-tRNA synthetases. In contrast to other variants, the two RNAs having CAU and GAU anticodons were stable and underwent quantitative modification at A-37. These results show that the enzyme responsible for the modification of A-37 to N-[N-(9-beta-D-ribofuranosylpurine-6-yl)carbamoyl]threonine (t6A) is present in the cytoplasm of oocytes and is very sensitive to the anticodon environment of the tRNA. Also, these same GAU and CAU anticodon-containing tRNAs are fully aminoacylated with the heterologous oocyte aminoacyl-tRNA synthetases in vivo. During the course of this work we developed a generally applicable assay for the aminoacylation of femtomole amounts of labelled tRNAs.  相似文献   

18.
M Pak  L Pallanck  L H Schulman 《Biochemistry》1992,31(13):3303-3309
The role of the anticodon and discriminator base in aminoacylation of tRNAs with tryptophan has been explored using a recently developed in vivo assay based on initiation of protein synthesis by mischarged mutants of the Escherichia coli initiator tRNA. Substitution of the methionine anticodon CAU with the tryptophan anticodon CCA caused tRNA(fMet) to be aminoacylated with both methionine and tryptophan in vivo, as determined by analysis of the amino acids inserted by the mutant tRNA at the translational start site of a reporter protein containing a tryptophan initiation codon. Conversion of the discriminator base of tRNA(CCA)fMet from A73 to G73, the base present in tRNA(Trp), eliminated the in vivo methionine acceptor activity of the tRNA and resulted in complete charging with tryptophan. Single base changes in the anticodon of tRNA(CCA)fMet containing G73 from CCA to UCA, GCA, CAA, and CCG (changes underlined) essentially abolished tryptophan insertion, showing that all three anticodon bases specify the tryptophan identity of the tRNA. The important role of G73 in tryptophan identity was confirmed using mutants of an opal suppressor derivative of tRNA(Trp). Substitution of G73 with A73, C73, or U73 resulted in a large loss of the ability of the tRNA to suppress an opal stop codon in a reporter protein. Base pair substitutions at the first three positions of the acceptor stem of the suppressor tRNA caused 2-12-fold reductions in the efficiency of suppression without loss of specificity for aminoacylation of the tRNA with tryptophan.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号