共查询到20条相似文献,搜索用时 15 毫秒
1.
Reclassification of marine Agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev
2.
Three Gram-negative bacterial strains were isolated from the biofilter of a recirculating marine aquaculture. They were non-pigmented rods, mesophiles, moderately halophilic, and showed chemo-organoheterotrophic growth on various sugars, fatty acids, and amino acids, with oxygen as electron acceptor; strains D9-3 T and D11-58 were in addition able to denitrify. Phototrophic or fermentative growth could not be demonstrated. Phylogenetic analysis of the 16S rRNA gene sequences placed D9-3 T and D11-58, and D1-19 T on two distinct branches within the alpha-3 proteobacterial Rhodobacteraceae, affiliated with, but clearly separate from, the genera Rhodobacter, Rhodovulum, and Rhodobaca. Based on morphological, physiological, and 16S rRNA-based phylogenetic characteristics, the isolated strains are proposed as new species of two novel genera, Defluviimonas denitrificans gen. nov., sp. nov. (type strain D9-3 T = DSM 18921 T = ATCC BAA-1447 T; additional strain D11-58 = DSM19039 = ATCC BAA-1448) and Pararhodobacter aggregans gen. nov., sp. nov (type strain D1-19 T = DSM 18938 T = ATCC BAA-1446 T). 相似文献
4.
We present polyphasic taxonomic data to demonstrate that strain 125703-2019T, a human blood isolate, represents a novel species within the genus Pseudoclavibacter, and to reclassify the illegitimate Zimmermannella alba Lin et al., 2004 as Pseudoclavibacter albus comb. nov. Upon primary isolation, strain 125703-2019T could not be identified reliably using MALDI-TOF mass spectrometry during routine diagnostic work, but partial 16S rRNA gene sequence analysis revealed that it belonged to the genus Pseudoclavibacter. Average nucleotide identity and digital DNA-DNA hybridisation analyses confirmed that it represented a novel species within this genus. A detailed physiological characterisation yielded differential tests between the novel species and its nearest neighbor taxa, which could also be differentiated using MALDI-TOF mass spectrometry. We propose to formally classify this strain into the novel species Pseudoclavibacter triregionum sp. nov., with strain 125703-2019T (=?R-76471T, LMG 31777T, CCUG 74796T) as the type strain. The whole-genome assembly of strain 125703-2019T has a size of 2.4 Mb and a G?+?C content of 72.74%. A Pseudoclavibacter pangenome analysis revealed that 667 gene clusters were exclusively present in strain 125703-2019T. While these gene clusters were enriched in several COG functional categories, this analysis did not reveal functions that explained the occurrence of this species in human infection. Finally, several phylogenetic and phylogenomic analyses demonstrated that the genus Pseudoclavibacter is polyphyletic with Pseudoclavibacter soli and Pseudoclavibacter caeni representing a unique and deeply branching line of descent within the family Microbacteriaceae. We therefore also propose to reclassify both species into the novel genus Caespitibacter gen. nov. as Caespitibacter soli comb. nov. and Caespitibacter caeni comb. nov., respectively, and with C. soli comb. nov. as the type species. 相似文献
6.
Three new non-ascosporic, ascomycetous yeast genera are proposed based on their isolation from currently described species and genera. Phylogenetic placement of the genera was determined from analysis of nuclear gene sequences for D1/D2 large subunit rRNA, small subunit rRNA, translation elongation factor-1α and RNA polymerase II, subunits B1 and B2. The new taxa are: Deakozyma gen. nov., type species Deakozyma indianensis sp. nov. (type strain NRRL YB-1937, CBS 12903); Danielozyma gen. nov., type species Danielozyma ontarioensis comb. nov. (type strain NRRL YB-1246, CBS 8502); D. litseae comb. nov. (type strain NRRL YB-3246, CBS 8799); Middelhovenomyces gen. nov., type species Middelhovenomyces tepae comb. nov. (type strain NRRL Y-17670, CBS 5115) and M. petrohuensis comb. nov. (type strain NRRL Y-17663, CBS 8173). 相似文献
7.
Two Gram-positive bacteria, designated strains Aji5-31(T) and Ngc37-23(T), were isolated from the intestinal tracts of fishes. 16S rRNA gene sequence analysis indicated that both strains were related to the members of the family Dermatophilaceae, with 95.6-96.9% 16S rRNA gene sequence similarities. The family Dermatophilaceae contains 2 genera and 3 species: Dermatophilus congolensis, Dermatophilus chelonae and Kineosphaera limosa. However, it has been suggested that the taxonomic position of D. chelonae should be reinvestigated using a polyphasic approach, because the chemotaxonomic characteristics are not known (Stackebrandt, 2006; Stackebrandt and Schumann, 2000). Our present study revealed that strains Aji5-31(T), Ngc37-23(T) and D. chelonae NBRC 105200(T) should be separated from the other members of the family Dermatophilaceae on the basis of the following characteristics: the predominant menaquinone of strain Aji5-31(T) is MK-8(H(2)), strain Ngc37-23(T) possesses iso- branched fatty acids as major components, and the menaquinone composition of D. chelonae is MK-8(H(4)), MK-8 and MK-8(H(2)) (5 : 3 : 2, respectively). On the basis of these distinctive phenotypic characteristics and phylogenetic analysis results, it is proposed that strains Aji5-31(T) and Ngc37-23(T) be classified as two novel genera and species of the family Dermatophilaceae. The names are Mobilicoccus pelagius gen. nov., sp. nov. and Piscicoccus intestinalis gen. nov., sp. nov., and the type strains are Aji5-31(T) (=NBRC 104925(T) =DSM 22762(T)) and Ngc37-23(T) (=NBRC 104926(T) =DSM 22761(T)), respectively. In addition, D. chelonae should be reassigned to a new genus of the family Dermatophilaceae with the name Austwickia chelonae gen. nov., comb. nov. 相似文献
8.
Two isolates, belonging to a new species of a novel genus of the Phylum “ Deinococcus/Thermus ”, were recovered from hot spring runoffs on the Island of São Miguel in the Azores. Strains RQ-24 T and TU-8 are the first cultured representatives of a distinct phylogenetic lineage within this phylum. These strains form orange/red colonies, spherical-shaped cells, have an optimum growth temperature of about 50 °C, an optimum pH for growth between about 7.5 and 9.5, and do not grow at pH below 6.5 or above pH 11.2. These organisms grow in complex media without added NaCl, but have a maximum growth rate in media with 1.0% NaCl and grow in media containing up to 6.0% NaCl. The organisms are extremely ionizing radiation resistant; 60% of the cells survive 5.0 kGy. These strains are chemoorganotrophic and aerobic; do not grow in Thermus medium under anaerobic conditions with or without nitrate as electron acceptor and glucose as a source of carbon and energy, but ferment glucose to d-lactate without formation of gas. The organisms assimilate a large variety of sugars, organic acids and amino acids. Fatty acids are predominantly iso- and anteiso-branched; long chain 1,2 diols were also found in low relative proportions; menaquinone 8 (MK-8) is the primary respiratory quinone. Peptidoglycan was not detected. Based on 16S rRNA gene sequence analysis, physiological, biochemical and chemical analysis we describe a new species of one novel genus represented by strain RQ-24 T (CIP 108686 T = LMG 22925 T = DSM 17093 T) for which we propose the name Truepera radiovictrix. We also propose the family Trueperaceae fam. nov. to accommodate this new genus. 相似文献
9.
On the basis of phenotypic properties and G+C content of DNA, as well as competitive DNA-DNA hybridization and extracellular
polymeric substance analysis it was shown that this strain was completely different from all other alkaliphilic bacteria.
We hereby propose that this strain be designated Alkalobacter lublini gen. nov., sp. nov. 相似文献
10.
Ohne Zusammenfassung 相似文献
11.
Two bacterial isolates (170/96T and 173/96T) were recovered from the indoor building materials of a children's day care center. Phylogenetic analyses using the 16S rRNA gene sequences of both isolates indicated they both represent new lineages in the alpha-1-subclass of the Proteobacteria, with the highest sequence similarities of 93.7% and 93.6%, respectively to the type strain of Paracraurococcus ruber. When directly compared both isolates showed a 93.4% sequence similarity of their 16S rRNAs. The major respiratory quinone in both strains was a ubiquinone with 10 isoprenoid units and the major whole cell fatty acid of both strains was 18:1 omega7c. Both isolates also contained 18:1 2-OH and other fatty acids typical for members of the alpha-1 subclass of the Proteobacteria. Both strains were heterotrophic and strictly aerobic and formed slightly red-colored colonies on tryptone soy agar. Bacteriochlorophyll a could not be detected by direct spectrophotometric analyses of aerobically grown cells. On the basis of the phylogenetic analyses, physiological and biochemical characteristics, we propose that strains 170/96T and 173/96T represent two new genera and new species of the alpha-1 subclass of the Proteobacteria for which we propose the names Teichococcus ludipueritiae gen. nov. sp. nov., and Muricoccus roseus gen. nov. sp. nov., respectively. 相似文献
12.
A neutrophilic Fe(II)-oxidizing bacterium was isolated from the redox zone of a low-salinity spring in Krasnodar krai (Russia), at the FeS-Fe(OH)(3) interface deposited at the sediment surface. The cells of strain Sp-1 were short, thin motile vibrioids with one polar flagellum dividing by binary fission. The optimal values and ranges for pH and temperature were pH 6.2 (5.5-8) and 35?°C (5-45?°C), respectively. The organism was a facultative anaerobe. Strain Sp-1 was capable of organotrophic, lithoheterotrophic and mixotrophic growth with Fe(II) as an electron donor. The denitrification chain was 'disrupted'. Oxidation of Fe(II) was coupled to reduction of NO3 - to NO2 - or of N(2) O to N(2) , as well as under microaerobic conditions, with O(2) as an electron acceptor. The DNA G+C content was 64.2?mol%. According to the results of phylogenetic analysis, the strain was 10.6-12% remote from the closest relatives, members of the genera Sneathiella, Inquilinus, Oceanibaculum and Phaeospirillum within the Alphaproteobacteria. Based on its morphological, physiological and taxonomic characteristics, together with the results of phylogenetic analysis, strain Sp-1 is described as a member of a new genus Ferrovibrio gen. nov., with the type species Ferrovibrio denitrificans sp. nov. and the type strain Sp-1(T) (=?LMG 25817(T) =?VKM B-2673(T) ). 相似文献
13.
Two novel genera of restricted facultative methylotrophs are described; both Methylosulfonomonas and Marinosulfonomonas are unique in being able to grow on methanesulfonic acid as their sole source of carbon and energy. Five identical strains
of Methylosulfonomonas were isolated from diverse soil samples in England and were shown to differ in their morphology, physiology, DNA base composition,
molecular genetics, and 16S rDNA sequences from the two marine strains of Marinosulfonomonas, which were isolated from British coastal waters. The marine strains were almost indistinguishable from each other and are
considered to be strains of one species. Type species of each genus have been identified and named Methylosulfonomonas methylovora (strain M2) and Marinosulfonomonas methylotropha (strain PSCH4). Phylogenetic analysis using 16S rDNA sequencing places both genera in the α-Proteobacteria. Methylosulfonomonas is a discrete lineage within the α-2 subgroup and is not related closely to any other known bacterial genus. The Marinosulfonomonas strains form a monophyletic cluster in the α-3 subgroup of the Proteobacteria with Roseobacter spp. and some other partially characterized marine bacteria, but they are distinct from these at the genus level. This work
shows that the isolation of bacteria with a unique biochemical character, the ability to grow on methanesulfonic acid as energy
and carbon substrate, has resulted in the identification of two novel genera of methylotrophs that are unrelated to any other
extant methylotroph genera.
Received: 19 July 1996 / Accepted: 7 October 1996 相似文献
14.
Relationships among species assigned to the yeast genera Pichia, Issatchenkia and Williopsis , which are characterized by the ubiquinone CoQ-7 and inability to utilize methanol, were phylogenetically analyzed from nucleotide sequence divergence in the genes coding for large and small subunit rRNAs and for translation elongation factor-1α. From this analysis, the species separated into five clades. Species of Issatchenkia are members of the Pichia membranifaciens clade and are proposed for transfer to Pichia . Pichia dryadoides and Pichia quercuum are basal members of the genus Starmera . Williopsis species are dispersed among hat-spored taxa in each of the remaining three clades, which are proposed as the new genera Barnettozyma, Lindnera and Wickerhamomyces . Lineages previously classified as varieties of Pichia kluyveri , ' Issatchenkia ' scutulata, Starmera amethionina and ' Williopsis ' saturnus are elevated to species rank based on sequence comparisons. 相似文献
15.
Two bacterial strains, KIS66-7 T and 5GH26-15 T, were isolated from soil samples collected in the South Korean cities of Tongyong and Gongju, respectively. Both strains were aerobic, Gram-stain-positive, mesophilic, flagellated, and rodshaped. A phylogenetic analysis revealed that both strains belonged to the family Microbacteriaceae of the phylum Actinobacteria. The 16S rRNA gene sequence of strain KIS66-7 T had the highest similarities with those of Labedella gwakjiensis KSW2-17 T (97.3%), Cryobacterium psychrophilum DSM 4854T (97.2%), Leifsonia lichenia 2Sb T (97.2%), Leifsonia naganoensis JCM 10592 T (97.0%), and Cryobacterium mesophilum MSL-15 T (97.0%). Strain 5GH26-15 T showed the highest sequence similarities with Leifsonia psychrotolerans LI1T (97.4%) and Schumannella luteola KHIAT (97.1%). The 16S rRNA gene sequence from KIS66-7 T exhibited 96.4% similarity with that from 5GH26-15 T. Strain KIS66-7 T contained a B2γ type peptidoglycan structure with D-DAB as the diamino acid; MK-13, MK-12, and MK-14 as the respiratory quinones; ai-C 15:0, ai-C 17:0, and i-C 16:0 as the major cellular fatty acids; and diphosphatidylglycerol, phatidylglycerol, and glycolipids as the predominant polar lipids. Strain 5GH26-15T had a B2β type peptidoglycan structure with D-DAB as the diamino acid; MK-14 and MK-13 as the respiratory quinones; ai-C 15:0, i-C 16:0, and ai-C{vn17:0} as the major cellular fatty acids; and diphosphatidylglycerol, phatidylglycerol, and glycolipids as the predominant polar lipids. Both strains had low DNA-DNA hybridization values (<40%) with closely related taxa. Based on our polyphasic taxonomic characterization, we propose that strains KIS66-7 T and 5GH26-15 T represent novel genera and species, for which we propose the names Diaminobutyricibacter tongyongensis gen. nov., sp. nov. (type strain KIS66-7 T=KACC 15515 T=NBRC 108724 T) and Homoserinibacter gongjuensis gen. nov., sp. nov. (type strain 5GH26-15 T=KACC 15524 T=NBRC 108755 T) within the family Microbacteriaceae. 相似文献
16.
A bright yellow pigmented bacterium was isolated from the leaf surface of Trifolium repens in Germany. Comparative analysis of 16S rRNA gene sequences showed that this bacterium is most closely related to Duganella zoogloeoides IAM 12670(T), with a similarity of 99.3%, but revealed only a moderate similarity (96.8%) to the second Duganella species, Duganella violaceinigra YIM 31327(T). Strain T54(T) is clearly different from D. zoogloeoides IAM 12670(T) in that DNA-DNA hybridization revealed a similarity value of 46% (reciprocal 42%). Ubiquinone (Q-8) was the respiratory quinone and the predominant polar lipids consisted of phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids and one aminolipid. Strain T54(T) can be distinguished from D. zoogloeoides by the carbon substrate utilization tests of d-trehalose, cis-aconitate, trans-aconitate, glutarate and dl-3-hydroxybutyrate, and 4-hydroxybenzoate in addition to a different polar lipid profile. The name Duganella phyllosphaerae sp. nov. is proposed for this novel species, with the type strain T54(T) (=LMG 25994 = CCM 7824(T)) [corrected]. In addition, it is proposed to reclassify D. violaceinigra into a novel genus Pseudoduganella gen. nov. as the novel species Pseudoduganella violaceinigra comb. nov. because of the low 16S rRNA gene sequence similarities to the other Duganella species (<97%) and striking differences in chemotaxonomic (lipid profiles and fatty acid patterns) and other phenotypic features, including the colony pigmentation. 相似文献
18.
A taxonomic study was carried out on Chj404T, a bacterial strain isolated from a soil sample collected in an industrial stream near the Chung-Ju industrial complex in Korea. The strain was a gram-negative, aerobic, short rod to coccus-shaped bacterium. It grew well on nutrient agar medium and utilized a broad spectrum of carbon sources. The G+C content of the DNA was 67.4 mol% and the major composition of ubiquinone was Q-10. The major fatty acid was C18:1. Comparative 16S rDNA studies showed a clear affiliation of this bacterium to alpha-Proteobacteria. Comparison of phylogenetic data indicated that it was most closely related to Prosthecomicrobium pneumaticum (92.7% similarity in 16S rDNA sequence). Since strain Chj404 is clearly distinct from closely related species, we propose the name Kaistia adipata gen. nov., sp. nov. for this strain Chj404T (=IAM 15023T=KCTC 12095T). 相似文献
19.
Phenotypic and phylogenetic studies were performed on an unidentified Gram-positive, strictly anaerobic, non-spore-forming, rod-shaped bacterium isolated from human feces. The organism was catalase-negative, resistant to 20% bile, produced acetic and butyric acids as end products of glucose metabolism, and possessed a G+C content of approximately 70 mol%. Comparative 16S rRNA gene sequencing demonstrated that the unidentified bacterium was a member of the Clostridium sub-phylum of the Gram-positive bacteria, and formed a loose association with rRNA cluster XV. Sequence divergence values of 12% or greater were observed between the unidentified bacterium and all other recognized species within this and related rRNA clusters. Treeing analysis showed the unknown anaerobe formed a deep line branching near to the base of rRNA cluster XV and phylogenetically represents a hitherto unknown taxon, distinct from Acetobacterium, Eubacterium sensu stricto, Pseudoramibacter and other related organisms. Based on both phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium from feces be classified in a new genus Anaerofustis, as Anaerofustis stercorihominis sp. nov. The type strain of Anaerofustis stercorihominis is ATCC BAA-858(T)=CCUG 47767(T). 相似文献
20.
Two strains of sulfate-reducing bacteria (J.5.4.2-L4.2.8 T and J.3.6.1-H7) were isolated from a pyrite-forming enrichment culture and were compared phylogenetically and physiologically to the closest related type strain Desulfovibrio sulfodismutans DSM 3696 T. The isolated strains were vibrio-shaped, motile rods that stained Gram-negative. Growth occurred from 15 to 37 °C and within a pH range of 6.5–8.5. Both strains used sulfate, thiosulfate, sulfite, and dimethyl sulfoxide (DMSO) as electron acceptor when grown with lactate. Lactate was incompletely oxidized to acetate. Formate and H 2 were used as electron donor in the presence of acetate. Dismutation of thiosulfate and pyrosulfite was observed. The two new isolates differed from D. sulfodismutans by the utilization of DMSO as electron acceptor, 82% genome-wide average nucleotide identity (ANI) and 32% digital DNA-DNA hybridization (dDDH), thus representing a novel species. The type strain of the type species Desulfovibrio desulfuricans Essex6 T revealed merely 88% 16S rRNA gene identity and 49% genome-wide average amino acid identity (AAI) to the new isolates as well as to D. sulfodismutans. Furthermore, the dominance of menaquinone MK-7 over MK-6 and the dominance of ai-C 15:0 fatty acids were observed not only in the two new isolated strains but also in D. sulfodismutans. Therefore, the definition of a new genus is indicated for which the name Desulfolutivibrio is proposed. We propose for strains J.5.4.2-L4.2.8 T and J.3.6.1-H7 the name Desulfolutivibrio sulfoxidireducens gen. nov. sp. nov. with strain J.5.4.2-L4.2.8 T defined as type strain. In addition, we propose the reclassification of Desulfovibrio sulfodismutans as Desulfolutivibrio sulfodismutans comb. nov. 相似文献
|