首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cuticle of Gordius panigettensis (Sciacchitano, 1955) was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The cuticle is composed of 30-50 compact layers. The number of the layers is higher in the central part of the animal's body and decreases at the extremities. Each layer is composed of parallel tightly packed fibres approximately 640 nm in diameter and of indefinite length. The fibres run strictly parallel within each layer, while in adjoining layers they run at a variable angle from 45 degrees in the central body to 90 degrees in the extremities. Each fibre shows a barely detectable filamentous inner structure and is enveloped in a thin highly regular net formed by hexagonal meshes. Our results suggested that these fibres should be proteinaceous although non-collagenous. Thinner radial fibres run among the large fibres and across all the layers and span the whole thickness of the cuticle from the epithelial layer located deep underneath the large fibres up to the epicuticle on the external surface of the animal.  相似文献   

2.
Caenorhabditis elegans adult animals exhibit an inherent chirality of fiber orientation in the basal layer of the cuticle, as well as a naturally invariant but experimentally reversible handedness in the left-right (L-R) asymmetry of the body plan. We have examined the relationship between cuticle chirality and body handedness in normal and L-R reversed animals, using Roller (Rol) mutants and transmission electron microscopy to monitor cuticle properties. Rol phenotypes, several of which have been shown to result from mutations in cuticle collagen genes, are characterized by an invariant, allele-specific handedness in their direction of rolling. We show for several alleles that this direction is not affected by L-R reversal of the body plan. We further show, by electron microscopy, that the chiral orientation of cuticle fibers in animals with normal cuticle is not reversed by L-R body-plan reversal. We conclude that cuticle chirality must be established independently of body-plan handedness. The cues that establish cuticle chirality are still unknown, as are the causes for different rolling directions in different Roller mutants. We discuss the question of how cuticle chirality maintains its independence, and how the orientations of the fiber layers may be determined. Dev. Genet. 23:164–174, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
K. Peters  J. McDowall    A. M. Rose 《Genetics》1991,129(1):95-102
The bli-4 (I) gene of Caenorhabditis elegans had been previously defined by a single recessive mutation, e937, which disrupts the structure of adult-stage cuticle causing the formation of fluid-filled separations of the cuticle layers, or blisters. We report the identification of 11 new alleles of bli-4, all early larval lethals, including an allele induced by transposon mutagenesis. Nine of the lethal alleles failed to complement the blistered phenotype of e937; two alleles, s90 and h754, complement e937. The complementing alleles arrested development somewhat later than the noncomplementing alleles, which blocked just prior to hatching. We conclude that bli-4 is a complex locus with an essential function late in embryogenesis. We investigated the blistered phenotype of e937 through interactions with other mutations that alter worm morphology or cuticle structure. Recessive and dominant epistasis of several dumpy mutations over the blistered phenotype was observed. Using two heterochronic mutations that alter the developmental stage at which adult cuticle is expressed, we observed that adult worms that lack an adult-stage cuticle could not express blisters. However, late larval worms that expressed the adult cuticle did not express blisters either. It seems likely that the presence of the adult cuticle is necessary, but not sufficient, for blister expression. Blistering resulting from e937 is more severe in trans to null alleles, indicating that e937 is hypomorphic. We postulate that the adult-specific blistering is due to an altered or reduced function of bli-4 gene product in the adult cuticle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Abstract. Large knots (>100 individuals) of adult horsehair worms ( Gordius difficilis ) were collected in several spring-fed habitats in Wisconsin and Minnesota. These aggregations were dominated numerically by males. Although distributions of length and diameter of males and females overlapped, females tended to be significantly longer and wider than males. Moreover, at any given length, females were wider than males. These findings confirm and add statistical support to previously published reports.  相似文献   

5.
An important adaptation to land habitats in terrestrial isopod crustaceans is development of embryos in a fluid-filled female brood pouch, marsupium. The study brings insight into the structure and protective role of egg envelopes and cuticle renewal during ontogenetic development of Porcellio embryos and marsupial mancas. Egg envelopes cover embryos, the outer chorion until late-stage embryo and the inner vitelline membrane throughout the whole embryonic development. Egg envelopes of Porcellio have relatively simple ultrastuctural architecture compared to Drosophila egg envelopes. Exoskeletal cuticle is produced in late embryonic development by hypodermal cells of the embryo and is renewed in further development in relation to growth of developing embryos and mancas. Cuticle structure and renewal in prehatching late-stage embryos and marsupial mancas exhibit main features of cuticle in adults. Epicuticle is thin and homogenous. The characteristic arrangement of chitin-protein fibers and the dense distal layer in exocuticle are hardly discernible in prehatching embryo and distinct in marsupial mancas. Endocuticle consists of alternating electron dense and electron lucent sublayers and is perforated by pore canals in both stages. Differences from adult cuticle are evident in cuticle thickness, ultrastructure and mineralization. Signs of cuticle renewal in prehatching embryo and marsupial mancas such as detachment of cuticle from hypodermis, partial disintegration of endocuticle and assembly of new cuticle are described.  相似文献   

6.
Cuticles isolated from second-stage juveniles and adult females of Meloidogyne incognita were purified by treatment with 1% sodium dodecyl sulfate (SDS). The juvenile cuticle was composed of three zones differing in their solubility in β-mercaptoethanol (BME). Proteins in the cortical and median zones were partially soluble in BME, whereas the basal zone was the least soluble. The BME-soluble proteins from the juvenile cuticle were separated into 12 bands by SDS-polyacrylamide gel electrophoresis and characterized as collagenous proteins based on their sensitivity to collagenase and amino acid composition. The adult cuticle consisted of two zones which were dissolved extensively by BME. The basal zone was completely solubilized, leaving behind a network of fibers corresponding to the cortical zone. The BME-soluble proteins from the adult cuticle were separated by electrophoresis into nine bands one of which constituted > 55% of the total BME-soluble proteins. All bands were characterized as collagenous proteins. Collagenous proteins from juvenile cuticles also contained glycoproteins which were absent from the adult cuticles.  相似文献   

7.
The ultrastructure of the adult abdominal cuticle of Tenebrio is described and special attention is given to the intersegmental zone in which the cuticle presents several architectural types, i.e. helicoidal, preferred and 'plywood' cuticle (Neville's terminology). This architectural polymorphism of the adult cuticle contrasts with the uniformity of larval and pupal cuticle architecture, which is entirely helicoidal.  相似文献   

8.
A total of 584 adult nematomorphs, Gordius difficilis, was collected from 2 man-made ponds and their overflow stream in southeastern Wisconsin. Ponds were surveyed throughout the year, but all free-living worms were found during July-August of 1996, July-September of 1997, and June-August of 1998. Overall sex ratio was male biased; however, sex ratio was variable during different months. Observations during 1998-2000 indicated that worms mated within 24-48 hr of emergence from their hosts and began laying eggs by mid-August, continuing until mid-October. Eggs with well-developed larvae were recovered during October and November. Encysted larval nematomorphs were recovered from aquatic and semiaquatic invertebrates (gastropods, earthworms, and insects), whereas developing hairworms were found in terrestrial European ground beetles Pterostichus melanarius. It is hypothesized that semiaquatic invertebrates may serve as intermediate/paratenic hosts in this system and are preyed upon by terrestrial carabid beetles, thus completing the life cycle. In addition, scanning electron microscopy observations of G. difficilis add previously unreported observations on intraspecific variation in body length, cuticle morphology, and gametes of this species. This is the first report of G. difficilis from Wisconsin as well as the first report of this species from P. melanarius and aquatic and semiaquatic invertebrates.  相似文献   

9.
The fine structure of a spider myo-apodeme junction is described, and discussed in terms of other arthropod muscle attachments. This is contrasted with the situation in the venom gland, equipped with muscle fibers that control expulsion of the secreted material. The latter involves a cell-free collagenous matrix, lying between the muscle cells and the sheath of the gland. As in other arthropods, skeletal fibers are attached to the apodeme cuticle via specialized epidermal cells, containing oriented microtubules. Interdigitations between these cells and muscle, basally, and cuticle, apically, are described. Extracellular tonofibrillae described elsewhere are inconspicuous in the apodeme cuticle.  相似文献   

10.
The cuticle of the free-living nematode Caenorhabditis elegans is a proteinaceous extracellular structure that is replaced at each of four postembryonic molts by the underlying hypodermis. The cuticles of the adult and three juvenile stages (L1, Dauer larva, L4) have been compared ultrastructurally and biochemically. Each cuticle has an annulated surface and comprises two main layers, an inner basal layer and an outer cortical layer. The adult cuticle has an additional clear layer which separates the basal and cortical layers and is traversed by regularly arranged columns of electron-dense material. The fine structure of the cortical layer is similar in cuticles from different stages while that of the basal layer is stage specific. Purified cuticles were obtained by sonication and treatment with sodium dodecyl sulfate (SDS) and their component proteins solubilized with a sulfhydryl reducing agent. The degree of cuticle solubility is stage specific and the insoluble structures for each cuticle were localized by electron microscopy. Analysis of 35S-labeled soluble cuticle proteins by SDS-polyacrylamide gel electrophoresis yields unique banding patterns for each stage. Most proteins are of high molecular weight (100–200 K) and are restricted to particular stages. Sixteen of the nineteen major proteins characterized are specifically degraded by bacterial collagenase. The results indicate that the different molts are not reiterative, but require the integration of both unique and shared gene functions. The potential use of stage-specific cuticle differences to identify and characterize regulatory genes controlling cuticle-type switching during development is discussed.  相似文献   

11.
The ultrastructure of the cuticle in four species of the marine Heterodrilus (H. paucifascis, H. pentcheffi, H. flexuosus, H. minisetosus) is investigated with transmission electron microscopy. The noncellular cuticle consists of several parts; closest to the epidermis is a thick zone of collagen fibers embedded in a matrix. The matrix continues outside the fiber zone, forming a layered epicuticle. The external surface of the epicuticle is covered by evenly distributed, membrane-bound bodies, termed epicuticular projections. The epicuticular projections have their longitudinal axis perpendicular to the surface of the cuticle and are attached to the surface by either the surrounding membrane itself or by short pedestals. Microvilli, extensions from the epidermal cells, penetrate and sometimes pass completely through the cuticle. There is interspecific variation in the morphology of the cuticle. The four studied species differ in the arrangement of the collagen fibers, from irregularly distributed fibril bundles to orthogonally arranged fiber layers, as well as in the number and density of layers in the epicuticle. One of the studied species, H. paucifascis, shows intraspecific variation, which is associated with sample locality. The Bahamian specimens of H. paucifascis have four layers in the epicuticle, club-shaped epicuticular projections, and collagen fibers forming a less defined orthogonal grid, while the Belizean specimens have three layers in the epicuticle, epicuticular projections with a bulging part at midlevel, and a distinct orthogonal grid. Based on these findings the variation in the morphology of the cuticle appears to be dependent on both phylogenetic constraints, and functional and environmental factors.  相似文献   

12.
Wool fibers are comprised of proteins known as α-keratins and have a complex morphological structure. The major components of this structure, the cuticle and cortical cells, differ in the conformations of their peptide chains as well as their amino acid compositions. High quality Fourier transform Raman spectra of cortical and cuticle cells isolated from fine Merino wool fibers have been obtained. Raman spectroscopy has been shown to be sensitive to the differences in both secondary structure and amino acid composition. The cortical cells were found to be higher in α-helical content as compared to the cuticle cells, which had an increased disordered content. Specific information, consistent with amino acid analysis results, regarding cystine, tyrosine, tryptophan, and phenylalanine residues, were obtained for both the cortical and cuticle cells. In addition, the Raman spectra provided information about free thiol groups, amino acids residues with amide group side chains, and residues with protonated carboxyl group side chains. Middle ir transmission spectra of these isolated cells were also obtained. In comparison to the Raman data, the middle ir spectra were found to be not as rich in information. © 1997 John Wiley & Sons, Inc. Biopoly 42: 7–17, 1997  相似文献   

13.
The sclerotization of cuticle in two species of beetles, Pachynoda epphipiata and Tenebrio molitor, has been investigated and compared with the sclerotization in the locust, Schistocerca gregaria. Two types of sclerotization, β-sclerotization and quinone tanning, occur in all three species. The main type is β-sclerotization, i.e. cross-linking of proteins by means of N-acetyldopamine which is connected to the proteins through the β-position of its side chain. β-Sclerotization is completed in P. epphipiata when it leaves its cocoon, whereas in adult locusts and in adult Tenebrio β-sclerotization continues for several weeks. The cuticle of all three species contains an insoluble enzyme which activates the β-position of N-acetyldopamine and is presumably responsible for the formation of the cross-links. Locust cuticle contains also small amounts of another enzyme which activates the aromatic ring of N-acetyldopamine, resulting in the formation of an o-quinone, which may be involved in quinone tanning of the cuticle. At emergence adult Tenebrio cuticle is rich in both enzymes, but the quinone-forming enzyme is inactivated after a few days, whereas the β-enzyme first decreases and later increases in activity, so that the β-enzyme is the dominating activity in the cuticle of mature adult Tenebrio. The quinone-forming enzyme is presumably responsible for the formation of the brown colour of Tenebrio exocuticle.The exocuticle of adult beetles contains 3,4-dihydroxyphenylacetic acid, which, although it is not easily extracted from the cuticle, is not covalently bound to cuticular components. In Tenebrio it appears in the cuticle a few days after the final ecdysis.The amino acid compositions of both larval, pupal, and adult cuticle from P. epphipiata have been determined, and they are compared with the composition of the cuticle of the corresponding stages of Tenebrio.  相似文献   

14.
The morphogenetic action of several structurally unrelated bioanalogues of juvenile hormone resulted in two different types of effects: (1) Topical application of these compounds on worker bee larvae prior to the cessation of feeding induced development of imaginal structures characteristic for queen individuals and (2) administration of the compounds at later stages caused inhibition of differentiation of imaginal characters at various phases of adult development. The moment of application appeared to be crucial for the extent and quality of these effects. Effects on pupal morphogenesis were not proved unequivocally, since the formation of a second pupal cuticle was not observed. The juvenile hormone activities of 33 chemicals representing several types of hormonally active agents have been compared and some principal structure-activity relationships have been outlined.  相似文献   

15.
Abstract. The ultrastructure of the thin, non-cellular cuticle is described for 6 marine oligochaetes, representing 3 of the subfamilies (Phallodrilinae, Limnodriloidinae, and Rhyacodrilinae) of the Tubificidae. The main components of the cuticle in these 6 species, as in most other oligochaetes examined, are: (1) a fiber zone closest to the epidermis, consisting of collagen fibers embedded in a matrix, (2) an epicuticle, which is a continuation of the matrix outside the fiber zone, and (3) epicuticular projections, which are membrane-bound bodies covering the outer surface of the epicuticle. The projections are probably formed by the microvilli that penetrate the cuticle from the epidermal cells below, but this was confirmed only in the studied limnodriloidines. Three of the species examined, Duridrilus turdus, Olavius vacuus , and Heterodrilus paucifascis , lack microvilli. The morphology of the components in the cuticle differs between the studied species. The collagen fibers may form an "orthogonal grid" (i.e., layers of parallel fibers perpendicular to the layers immediately above and below), or they may form parallel layers, or be irregularly scattered. The number of dense layers in the epicuticle, as well as the shape and internal structure of the epicuticular projections, also vary. All these characters might be useful in future phylogenetic analyses to achieve better hypotheses of relationships within oligochaetes as well as to other groups.  相似文献   

16.
The morphology of the body wall and the gut in the midbody region of adult male and female Loa loa originating from patients in Gabon was studied by transmission and scanning electron microscopy. The cuticle of the dorsal and ventral regions consists of ten layers. In the lateral regions the cuticle is thicker and includes two additional layers. The thin hypodermis contains numerous transhypodermal fibres. A row of median cells is situated between the syncytia in each lateral chord. No intracellular bacteria were observed. The cross-sections of each of the four muscle sectors are comprised of approximately 12 muscle cells of the coelomyarian type. The plasm of the gut cells contains large vacuoles and several mitochondria. The intestinal wall surrounds a wide lumen filled with material which occasionally contains cellular structures. The morphology of L. loa is compared with that of adult Onchocerca volvulus and Brugia malayi. The gut of the adult L. loa has the typical nematode morphology, which might be an indication of its normal function in nutrition. The multilayered cuticle with the rather smooth surface, and the prominent muscles correspond to the migratory activity of this filaria.  相似文献   

17.
18.
The stomach of decapods is a complex organ with specialized structures that are delimited by a cuticle. The morphology and ontogeny of the stomach are largely described, but few studies have focused on the morphology of its cuticle. This study examined the morphology of the stomach cuticle of cardiac sacs, gastric mill ossicles, cardio-pyloric valve and pyloric filters, and during various stages (zoea I and II, megalopa, first juvenile, and adult) of the common spider crab Maja brachydactyla using dissection, histology and transmission electron microscopy. The results show that cuticle morphology varies among structures (e.g., cardiac sacs, urocardiac ossicle, cardio-pyloric valve, pyloric filters), within a single structure (e.g., different sides of the urocardiac ossicle) and among different life stages. The cuticle during the larval stages is very thin and the different layers (epicuticle, exocuticle, and endocuticle) are infrequently distinguishable by histology. Major changes during larval development regarding cuticle morphology are observed after the molt to megalopa, including the increment in thickness in the gastric mill ossicles and cardio-pyloric valve, and the disappearance of the long thickened setae of the cardio-pyloric valve. The cuticle of all the stomach structures in the adults is thicker than in larval and juvenile stages. The cuticle varies in thickness, differential staining affinity and morphology of the cuticle layers. The structure–function relationship of the cuticle morphology is discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号