首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Degenerate mitochondria   总被引:1,自引:0,他引:1       下载免费PDF全文
Mitochondria are the main sites of biological energy generation in eukaryotes. These organelles are remnants of a bacterial endosymbiont that took up residence inside a host cell over 1,500 million years ago. Comparative genomics studies suggest that the mitochondrion is monophyletic in origin. Thus, the original mitochondrial endosymbiont has evolved independently in anaerobic and aerobic environments that are inhabited by diverse eukaryotic lineages. This process has resulted in a collection of morphologically, genetically and functionally heterogeneous organelle variants that include anaerobic and aerobic mitochondria, hydrogenosomes and mitosomes. Current studies aim to determine whether a central common function drives the retention of mitochondrial organelles in different eukaryotic organisms.  相似文献   

2.
Acquisition of mitochondria by the ancestor of all living eukaryotes represented a crucial milestone in the evolution of the eukaryotic cell. Nevertheless, a number of anaerobic unicellular eukaryotes have secondarily discarded certain mitochondrial features, leading to modified organelles such as hydrogenosomes and mitosomes via degenerative evolution. These mitochondrion-derived organelles have lost many of the typical characteristics of aerobic mitochondria, including certain metabolic pathways, morphological traits, and, in most cases, the organellar genome. So far, the evolutionary pathway leading from aerobic mitochondria to anaerobic degenerate organelles has remained unclear due to the lack of examples representing intermediate stages. The human parasitic stramenopile Blastocystis is a rare example of an anaerobic eukaryote with organelles that have retained some mitochondrial characteristics, including a genome, whereas they lack others, such as cytochromes. Here we report the sequence and comparative analysis of the organellar genome from two different Blastocystis isolates as well as a comparison to other genomes from stramenopile mitochondria. Analysis of the characteristics displayed by the unique Blastocystis organelle genome gives us an insight into the initial evolutionary steps that may have led from mitochondria to hydrogenosomes and mitosomes.  相似文献   

3.
Published data suggest that hydrogenosomes, organelles found in diverse anaerobic eukaryotes that make energy and hydrogen, were once mitochondria. As hydrogenosomes generally lack a genome, the conversion is probably one way. The sources of the key hydrogenosomal enzymes, pyruvate : ferredoxin oxidoreductase (PFO) and hydrogenase, are not resolved by current phylogenetic analyses, but it is likely that both were present at an early stage of eukaryotic evolution. Once thought to be restricted to a few unusual anaerobic eukaryotes, the proteins are intimately integrated into the fabric of diverse eukaryotic cells, where they are targeted to different cell compartments, and not just hydrogenosomes. There is no evidence supporting the view that PFO and hydrogenase originated from the mitochondrial endosymbiont, as posited by the hydrogen hypothesis for eukaryogenesis. Other organelles derived from mitochondria have now been described in anaerobic and parasitic microbial eukaryotes, including species that were once thought to have diverged before the mitochondrial symbiosis. It thus seems possible that all eukaryotes may eventually be shown to contain an organelle of mitochondrial ancestry, to which different types of biochemistry can be targeted. It remains to be seen if, despite their obvious differences, this family of organelles shares a common function of importance for the eukaryotic cell, other than energy production, that might provide the underlying selection pressure for organelle retention.  相似文献   

4.
Until recently, the origin and evolution of mitochondria was explained by the serial endosymbiosis hypothesis. This hypothesis posits that contemporary mitochondria are the direct descendants of a bacterial endosymbiont, which was settled in a nucleus-containing amitochondriate host cell. Results of the mitochondrial gene sequences support a monophyletic origin of the mitochondria from a single eubacterial ancestor shared with a subdivision of the alpha-proteobacteria. In recent years, the complete sequences of the vast variety of mitochondrial and eubacterial genomes were determined. These data indicate that the mitochondrial genome evolved from a common ancestor of all extant eukaryotes and assume a possibility that the mitochondrial and nuclear constituents of the eukaryotic cell originated simultaneously.  相似文献   

5.
Available data suggest that unusual organelles called hydrogenosomes, that make ATP and hydrogen, and which are found in diverse anaerobic eukaryotes, were once mitochondria. The evolutionary origins of the enzymes used to make hydrogen, pyruvate:ferredoxin oxidoreductase (PFO) and hydrogenase, are unresolved, but it seems likely that both were present at an early stage of eukaryotic evolution. Once thought to be restricted to a few unusual anaerobes, these proteins are found in diverse eukaryotic cells, including our own, where they are targeted to different cell compartments. Organelles related to mitochondria and hydrogenosomes have now been found in species of anaerobic and parasitic protozoa that were previously thought to have separated from other eukaryotes before the mitochondrial endosymbiosis. Thus it is possible that all eukaryotes may eventually be shown to contain an organelle of mitochondrial ancestry, bearing testimony to the important role that the mitochondrial endosymbiosis has played in eukaryotic evolution. It remains to be seen if members of this family of organelles share a common function essential to the eukaryotic cell, that provides the underlying selection pressure for organelle retention under different living conditions.  相似文献   

6.
The endosymbiotic theory for the origin of mitochondria requires substantial modification. The three identifiable ancestral sources to the proteome of mitochondria are proteins descended from the ancestral alpha-proteobacteria symbiont, proteins with no homology to bacterial orthologs, and diverse proteins with bacterial affinities not derived from alpha-proteobacteria. Random mutations in the form of deletions large and small seem to have eliminated nonessential genes from the endosymbiont-mitochondrial genome lineages. This process, together with the transfer of genes from the endosymbiont-mitochondrial genome to nuclei, has led to a marked reduction in the size of mitochondrial genomes. All proteins of bacterial descent that are encoded by nuclear genes were probably transferred by the same mechanism, involving the disintegration of mitochondria or bacteria by the intracellular membranous vacuoles of cells to release nucleic acid fragments that transform the nuclear genome. This ongoing process has intermittently introduced bacterial genes to nuclear genomes. The genomes of the last common ancestor of all organisms, in particular of mitochondria, encoded cytochrome oxidase homologues. There are no phylogenetic indications either in the mitochondrial proteome or in the nuclear genomes that the initial or subsequent function of the ancestor to the mitochondria was anaerobic. In contrast, there are indications that relatively advanced eukaryotes adapted to anaerobiosis by dismantling their mitochondria and refitting them as hydrogenosomes. Accordingly, a continuous history of aerobic respiration seems to have been the fate of most mitochondrial lineages. The initial phases of this history may have involved aerobic respiration by the symbiont functioning as a scavenger of toxic oxygen. The transition to mitochondria capable of active ATP export to the host cell seems to have required recruitment of eukaryotic ATP transport proteins from the nucleus. The identity of the ancestral host of the alpha-proteobacterial endosymbiont is unclear, but there is no indication that it was an autotroph. There are no indications of a specific alpha-proteobacterial origin to genes for glycolysis. In the absence of data to the contrary, it is assumed that the ancestral host cell was a heterotroph.  相似文献   

7.
Origin and Evolution of the Mitochondrial Proteome   总被引:10,自引:0,他引:10       下载免费PDF全文
The endosymbiotic theory for the origin of mitochondria requires substantial modification. The three identifiable ancestral sources to the proteome of mitochondria are proteins descended from the ancestral α-proteobacteria symbiont, proteins with no homology to bacterial orthologs, and diverse proteins with bacterial affinities not derived from α-proteobacteria. Random mutations in the form of deletions large and small seem to have eliminated nonessential genes from the endosymbiont-mitochondrial genome lineages. This process, together with the transfer of genes from the endosymbiont-mitochondrial genome to nuclei, has led to a marked reduction in the size of mitochondrial genomes. All proteins of bacterial descent that are encoded by nuclear genes were probably transferred by the same mechanism, involving the disintegration of mitochondria or bacteria by the intracellular membranous vacuoles of cells to release nucleic acid fragments that transform the nuclear genome. This ongoing process has intermittently introduced bacterial genes to nuclear genomes. The genomes of the last common ancestor of all organisms, in particular of mitochondria, encoded cytochrome oxidase homologues. There are no phylogenetic indications either in the mitochondrial proteome or in the nuclear genomes that the initial or subsequent function of the ancestor to the mitochondria was anaerobic. In contrast, there are indications that relatively advanced eukaryotes adapted to anaerobiosis by dismantling their mitochondria and refitting them as hydrogenosomes. Accordingly, a continuous history of aerobic respiration seems to have been the fate of most mitochondrial lineages. The initial phases of this history may have involved aerobic respiration by the symbiont functioning as a scavenger of toxic oxygen. The transition to mitochondria capable of active ATP export to the host cell seems to have required recruitment of eukaryotic ATP transport proteins from the nucleus. The identity of the ancestral host of the α-proteobacterial endosymbiont is unclear, but there is no indication that it was an autotroph. There are no indications of a specific α-proteobacterial origin to genes for glycolysis. In the absence of data to the contrary, it is assumed that the ancestral host cell was a heterotroph.  相似文献   

8.
The anaerobic chytrid Piromyces sp. E2 lacks mitochondria, but contains hydrogen-producing organelles, the hydrogenosomes. We are interested in how the adaptation to anaerobiosis influenced enzyme compartmentalization in this organism. Random sequencing of a cDNA library from Piromyces sp. E2 resulted in the isolation of cDNAs encoding malate dehydrogenase, aconitase and acetohydroxyacid reductoisomerase. Phylogenetic analysis of the deduced amino acid sequences revealed that they are closely related to their mitochondrial homologues from aerobic eukaryotes. However, the deduced sequences lack N-terminal extensions, which function as mitochondrial leader sequences in the corresponding mitochondrial enzymes from aerobic eukaryotes. Subcellular fractionation and enzyme assays confirmed that the corresponding enzymes are located in the cytosol. As anaerobic chytrids evolved from aerobic, mitochondria-bearing ancestors, we suggest that, in the course of the adaptation from an aerobic to an anaerobic lifestyle, mitochondrial enzymes were retargeted to the cytosol with the concomitant loss of their N-terminal leader sequences.  相似文献   

9.
10.
Mitochondria occur as aerobic, facultatively anaerobic, and, in the case of hydrogenosomes, strictly anaerobic forms. This physiological diversity of mitochondrial oxygen requirement is paralleled by that of free-living alpha-proteobacteria, the group of eubacteria from which mitochondria arose, many of which are facultative anaerobes. Although ATP synthesis in mitochondria usually involves the oxidation of reduced carbon compounds, many alpha-proteobacteria and some mitochondria are known to use sulfide (H2S) as an electron donor for the respiratory chain and its associated ATP synthesis. In many eubacteria, the oxidation of sulfide involves the enzyme sulfide:quinone oxidoreductase (SQR). Nuclear-encoded homologs of SQR are found in several eukaryotic genomes. Here we show that eukaryotic SQR genes characterized to date can be traced to a single acquisition from a eubacterial donor in the common ancestor of animals and fungi. Yet, SQR is not a well-conserved protein, and our analyses suggest that the SQR gene has furthermore undergone some lateral transfer among prokaryotes during evolution, leaving the precise eubacterial lineage from which eukaryotes obtained their SQR difficult to discern with phylogenetic methods. Newer geochemical data and microfossil evidence indicate that major phases of early eukaryotic diversification occurred during a period of the Earth's history from 1 to 2 billion years before present in which the subsurface ocean waters contained almost no oxygen but contained high concentrations of sulfide, suggesting that the ability to deal with sulfide was essential for prokaryotes and eukaryotes during that time. Notwithstanding poor resolution in deep SQR phylogeny and lack of a specifically alpha-protebacterial branch for the eukaryotic enzyme on the basis of current lineage sampling, a single eubacterial origin of eukaryotic SQR and the evident need of ancient eukaryotes to deal with sulfide, a process today germane to mitochondrial quinone reduction, are compatible with the view that eukaryotic SQR was an acquisition from the mitochondrial endosymbiont.  相似文献   

11.
Gray MW 《EMBO reports》2011,12(9):873-873
The mitochondrion is probably the evolutionary remnant of a bacterial symbiont, yet contemporary mitochondria are nothing like contemporary bacteria. Evolutionary shrinkage of the mitochondrial genome is well documented, but what about wholesale shrinkage of the organelle itself?Considering its central role in energy metabolism in almost all eukaryotes, the mitochondrion is an amazingly plastic organelle, both evolutionarily and functionally. The few genes that the mitochondrial genome (mitochondrial DNA; mtDNA) encodes are clearly bacterial in origin—emanating from the α-proteobacterial lineage—supporting the widely held view that the mitochondrion is the evolutionary remnant of a bacterial symbiont (Gray et al, 2001). However, contemporary mitochondria are nothing like contemporary bacteria. For one thing, even the most gene-rich mtDNA encodes far less genetic information than the most gene-poor bacterial genome, and mitochondrial genomes are different from bacterial genomes in form, organization and mode of expression; these features vary tremendously among diverse eukaryotes. Mitochondrial genomes might be circular, linear or even highly fragmented, and they might contain highly fragmented and rearranged genes. Only within a poorly studied group of eukaryotic microbes—protists—known as jakobid flagellates does the mtDNA resemble a typical, albeit highly reduced, bacterial genome.In addition, the mitochondrial proteome is not only overwhelmingly (>90%) encoded in the nucleus, but only a small proportion (10–15%) is demonstrably α-proteobacterial in evolutionary affiliation. Thus, in the evolutionary transition from bacterial symbiont to integrated organelle, the mitochondrion has undergone an impressive degree of re-tailoring, shedding the bulk of its genetic information and taking on proteins of diverse evolutionary origins. Moreover, this re-tailoring is highly variable within different eukaryotic lineages, with an intriguing chunk of the mitochondrial proteome seeming to be organism-specific—lacking demonstrable sequence homologues other than in very close evolutionary relatives.Although the evolutionary shrinkage of the mitochondrial genome is well-documented, what is less widely appreciated is the wholesale shrinkage of the organelle itself in certain anaerobic eukaryotes. Taken to its extreme, such shrinkage involves complete loss of the mitochondrial genome, with a consequent reduction in the structural complexity and biochemical versatility of the organelle. This simplification might include elimination of the electron-transport chain (ETC) and thus lead to inability of the resulting mitochondrion-related organelle (MRO) to carry out a key function of aerobic mitochondria: ATP synthesis through coupled oxidative phosphorylation (for a full account, see Hjort et al, 2010).One such MRO, the hydrogenosome, is a hydrogen-producing organelle that was originally characterized in an anaerobic protist, Trichomonas vaginalis. The T. vaginalis hydrogenosome lacks mtDNA as well as components of the classic mitochondrial ETC, relying instead on substrate-level phosphorylation to generate ATP. Initially, the resemblance between the anaerobic biochemistry of the T. vaginalis MRO and that of anaerobic bacteria such as Clostridia raised the possibility that the hydrogenosome might have a different evolutionary origin than the classic aerobic mitochondrion. However, studies of hydrogenosomal proteins have demonstrated that the hydrogenosome is an evolutionarily derived (remnant) mitochondrion. Hydrogenosomes have been found in eukaryotes that are widely separated in phylogenetic trees, and in such trees, anaerobic, hydrogenosome-containing eukaryotes are often interspersed with close relatives that grow aerobically and contain conventional mitochondria. This punctate phylogenetic distribution suggests that the transition from mitochondrion to hydrogenosome has happened repeatedly and independently throughout eukaryotic evolution.The mitosome, an even more shrunken MRO that has not only dispensed entirely with a genome, but also has no ATP-generating capacity. This MRO was discovered in anaerobic eukaryotes that were initially thought to lack mitochondria entirely, the postulate being that they diverged away from the main line of eukaryotic evolution prior to the symbiosis that led to the mitochondrion. However, in all supposedly amitochondriate protists that have been examined, a candidate mitosome has been identified. As with hydrogenosomes, a punctate phylogenetic distribution of mitosomes is emerging.Recently, intermediate forms of ''shrinking organelle'' have been identified in the anaerobic protists Nyctotherus ovalis, Blastocystis sp. and Proteromonas lacertae (Hjort et al, 2010; Pérez-Brocal et al, 2010; de Graaf et al, 2011), relatives of brown algae and diatoms. In these cases, regions of the mtDNA that code for terminal portions of the ETC and for the mitochondrial ATP synthase have been discarded. The remaining DNA specifies genes for components of a mitochondrial translation system, as well as subunits of a proton-pumping complex I (NADH:ubiquinone oxidoreductase); a remarkable example—comparing the ciliate Nyctotherus with the stramenopiles Blastocystsis or Proteromonas—of convergent mtDNA evolution. These observations suggest that the transitional MROs of Nyctotherus, Blastocystis and Proteromonas retain a partial ETC, as well as the ability to synthesize protein, whereas other data (EST surveys) indicate that they are metabolically more complex than either hydrogenosomes or mitosomes. The discovery of these particular MROs is important because their existence argues that the transition from fully fledged aerobic mitochondrion to fully fledged anaerobic mitosome proceeds through, and might stop at, several intermediate stages: a realization that not only dramatically emphasizes the evolutionary and functional versatility of the mitochondrion, but also opens the possibility that we might yet uncover still other variations of this incredible shrinking organelle.  相似文献   

12.
Summary: Major insights into the phylogenetic distribution, biochemistry, and evolutionary significance of organelles involved in ATP synthesis (energy metabolism) in eukaryotes that thrive in anaerobic environments for all or part of their life cycles have accrued in recent years. All known eukaryotic groups possess an organelle of mitochondrial origin, mapping the origin of mitochondria to the eukaryotic common ancestor, and genome sequence data are rapidly accumulating for eukaryotes that possess anaerobic mitochondria, hydrogenosomes, or mitosomes. Here we review the available biochemical data on the enzymes and pathways that eukaryotes use in anaerobic energy metabolism and summarize the metabolic end products that they generate in their anaerobic habitats, focusing on the biochemical roles that their mitochondria play in anaerobic ATP synthesis. We present metabolic maps of compartmentalized energy metabolism for 16 well-studied species. There are currently no enzymes of core anaerobic energy metabolism that are specific to any of the six eukaryotic supergroup lineages; genes present in one supergroup are also found in at least one other supergroup. The gene distribution across lineages thus reflects the presence of anaerobic energy metabolism in the eukaryote common ancestor and differential loss during the specialization of some lineages to oxic niches, just as oxphos capabilities have been differentially lost in specialization to anoxic niches and the parasitic life-style. Some facultative anaerobes have retained both aerobic and anaerobic pathways. Diversified eukaryotic lineages have retained the same enzymes of anaerobic ATP synthesis, in line with geochemical data indicating low environmental oxygen levels while eukaryotes arose and diversified.  相似文献   

13.
Accumulating data suggest that the eukaryotic cell originated from a merger of two prokaryotes, an archaeal host and a bacterial endosymbiont. However, since prokaryotes are unable to perform phagocytosis, the means by which the endosymbiont entered its host is an enigma. We suggest that a predatory or parasitic interaction between prokaryotes provides a reasonable explanation for this conundrum. According to the model presented here, the host in this interaction was an anaerobic archaeon with a periplasm‐like space. The predator was a small (facultative) aerobic α‐proteobacterium, which penetrated and replicated within the host periplasm, and later became the mitochondria. Plausible conditions under which this interaction took place and circumstances that may have led to the contemporary complex eukaryotic cell are discussed.  相似文献   

14.
The citric acid or tricarboxylic acid cycle is a central element of higher-plant carbon metabolism which provides, among other things, electrons for oxidative phosphorylation in the inner mitochondrial membrane, intermediates for amino-acid biosynthesis, and oxaloacetate for gluconeogenesis from succinate derived from fatty acids via the glyoxylate cycle in glyoxysomes. The tricarboxylic acid cycle is a typical mitochondrial pathway and is widespread among alpha-proteobacteria, the group of eubacteria as defined under rRNA systematics from which mitochondria arose. Most of the enzymes of the tricarboxylic acid cycle are encoded in the nucleus in higher eukaryotes, and several have been previously shown to branch with their homologues from alpha-proteobacteria, indicating that the eukaryotic nuclear genes were acquired from the mitochondrial genome during the course of evolution. Here, we investigate the individual evolutionary histories of all of the enzymes of the tricarboxylic acid cycle and the glyoxylate cycle using protein maximum likelihood phylogenies, focusing on the evolutionary origin of the nuclear-encoded proteins in higher plants. The results indicate that about half of the proteins involved in this eukaryotic pathway are most similar to their alpha-proteobacterial homologues, whereas the remainder are most similar to eubacterial, but not specifically alpha-proteobacterial, homologues. A consideration of (a) the process of lateral gene transfer among free-living prokaryotes and (b) the mechanistics of endosymbiotic (symbiont-to-host) gene transfer reveals that it is unrealistic to expect all nuclear genes that were acquired from the alpha-proteobacterial ancestor of mitochondria to branch specifically with their homologues encoded in the genomes of contemporary alpha-proteobacteria. Rather, even if molecular phylogenetics were to work perfectly (which it does not), then some nuclear-encoded proteins that were acquired from the alpha-proteobacterial ancestor of mitochondria should, in phylogenetic trees, branch with homologues that are no longer found in most alpha-proteobacterial genomes, and some should reside on long branches that reveal affinity to eubacterial rather than archaebacterial homologues, but no particular affinity for any specific eubacterial donor.  相似文献   

15.
All extant eukaryotes are now considered to possess mitochondria in one form or another. Many parasites or anaerobic protists have highly reduced versions of mitochondria, which have generally lost their genome and the capacity to generate ATP through oxidative phosphorylation. These organelles have been called hydrogenosomes, when they make hydrogen, or remnant mitochondria or mitosomes when their functions were cryptic. More recently, organelles with features blurring the distinction between mitochondria, hydrogenosomes and mitosomes have been identified. These organelles have retained a mitochondrial genome and include the mitochondrial-like organelle of Blastocystis and the hydrogenosome of the anaerobic ciliate Nyctotherus. Studying eukaryotic diversity from the perspective of their mitochondrial variants has yielded important insights into eukaryote molecular cell biology and evolution. These investigations are contributing to understanding the essential functions of mitochondria, defined in the broadest sense, and the limits to which reductive evolution can proceed while maintaining a viable organelle.  相似文献   

16.
The evolution of mitochondrial ADP and ATP exchanging proteins (AACs) highlights a key event in the evolution of the eukaryotic cell, as ATP exporting carriers were indispensable in establishing the role of mitochondria as ATP-generating cellular organelles. Hydrogenosomes, i.e. ATP- and hydrogen-generating organelles of certain anaerobic unicellular eukaryotes, are believed to have evolved from the same ancestral endosymbiont that gave rise to present day mitochondria. Notably, the hydrogenosomes of the parasitic anaerobic flagellate Trichomonas seemed to be deficient in mitochondrial-type AACs. Instead, HMP 31, a different member of the mitochondrial carrier family (MCF) with a hitherto unknown function, is abundant in the hydrogenosomal membranes of Trichomonas vaginalis. Here we show that the homologous HMP 31 of closely related Trichomonas gallinae specifically transports ADP and ATP with high efficiency, as do genuine mitochondrial AACs. However, phylogenetic analysis and its resistance against bongkrekic acid (BKA, an efficient inhibitor of mitochondrial-type AACs) identify HMP 31 as a member of the mitochondrial carrier family that is distinct from all mitochondrial and hydrogenosomal AACs studied so far. Thus, our data support the hypothesis that the various hydrogenosomes evolved repeatedly and independently.  相似文献   

17.
Fungal hydrogenosomes contain mitochondrial heat-shock proteins   总被引:3,自引:0,他引:3  
At least three groups of anaerobic eukaryotes lack mitochondria and instead contain hydrogenosomes, peculiar organelles that make energy and excrete hydrogen. Published data indicate that ciliate and trichomonad hydrogenosomes share common ancestry with mitochondria, but the evolutionary origins of fungal hydrogenosomes have been controversial. We have now isolated full-length genes for heat shock proteins 60 and 70 from the anaerobic fungus Neocallimastix patriciarum, which phylogenetic analyses reveal share common ancestry with mitochondrial orthologues. In aerobic organisms these proteins function in mitochondrial import and protein folding. Homologous antibodies demonstrated the localization of both proteins to fungal hydrogenosomes. Moreover, both sequences contain amino-terminal extensions that in heterologous targeting experiments were shown to be necessary and sufficient to locate both proteins and green fluorescent protein to the mitochondria of mammalian cells. This finding, that fungal hydrogenosomes use mitochondrial targeting signals to import two proteins of mitochondrial ancestry that play key roles in aerobic mitochondria, provides further strong evidence that the fungal organelle is also of mitochondrial ancestry. The extraordinary capacity of eukaryotes to repeatedly evolve hydrogen-producing organelles apparently reflects a general ability to modify the biochemistry of the mitochondrial compartment.  相似文献   

18.
Mitochondria originated from Gram-negative bacteria through endosymbiosis. In modern day mitochondria, the Sorting and Assembly Machinery (SAM) is responsible for eukaryotic β-barrel protein assembly in the mitochondrial outer membrane. The SAM is the functional equivalent of the β-barrel assembly machinery found in the outer membrane of Gram-negative bacteria. In this study we examined the import pathway of a pathogenic bacterial protein, PorB, which is targeted from pathogenic Neisseria to the host mitochondria. We have developed a new method for measurement of PorB assembly into mitochondria that relies on the mobility shift exhibited by bacterial β-barrel proteins once folded and separated under semi-native electrophoretic conditions. We show that PorB is targeted to the outer mitochondrial membrane with a dependence on the intermembrane space shuttling chaperones and the core component of the SAM, Sam50, which is a functional homologue of BamA that is required for PorB assembly in bacteria. The peripheral subunits of the SAM, Sam35 and Sam37, which are essential for eukaryotic β-barrel protein assembly but do not have distinguishable functional homologues in bacteria, are not required for PorB assembly in eukaryotes. This shows that PorB uses an evolutionary conserved 'bacterial like' mechanism to infiltrate the host mitochondrial outer membrane.  相似文献   

19.
Mitochondria are usually considered to be the powerhouses of the cell and to be responsible for the aerobic production of ATP. However, many eukaryotic organisms are known to possess anaerobically functioning mitochondria, which differ significantly from classical aerobically functioning mitochondria. Recently, functional and phylogenetic studies on some enzymes involved clearly indicated an unexpected evolutionary relationship between these anaerobically functioning mitochondria and the classical aerobic type. Mitochondria evolved by an endosymbiotic event between an anaerobically functioning archaebacterial host and an aerobic alpha-proteobacterium. However, true anaerobically functioning mitochondria, such as found in parasitic helminths and some lower marine organisms, most likely did not originate directly from the pluripotent ancestral mitochondrion, but arose later in evolution from the aerobic type of mitochondria after these were already adapted to an aerobic way of life by losing their anaerobic capacities. This review will focus on some biochemical and evolutionary aspects of these fermentative mitochondria, with special attention to fumarate reductase, the synthesis of the rhodoquinone involved, and the enzymes involved in acetate production (acetate : succinate CoA-transferase and succinyl CoA-synthetase).  相似文献   

20.
The bioenergetic organelles of eukaryotic cells, mitochondria and chloroplasts, are derived from endosymbiotic bacteria. Their electron transport chains (ETCs) resemble those of free-living bacteria, but were tailored for energy transformation within the host cell. Parallel evolutionary processes in mitochondria and chloroplasts include reductive as well as expansive events: On one hand, bacterial complexes were lost in eukaryotes with a concomitant loss of metabolic flexibility. On the other hand, new subunits have been added to the remaining bacterial complexes, new complexes have been introduced, and elaborate folding patterns of the thylakoid and mitochondrial inner membranes have emerged. Some bacterial pathways were reinvented independently by eukaryotes, such as parallel routes for quinol oxidation or the use of various anaerobic electron acceptors. Multicellular organization and ontogenetic cycles in eukaryotes gave rise to further modifications of the bioenergetic organelles. Besides mitochondria and chloroplasts, eukaryotes have ETCs in other membranes, such as the plasma membrane (PM) redox system, or the cytochrome P450 (CYP) system. These systems have fewer complexes and simpler branching patterns than those in energy-transforming organelles, and they are often adapted to non-bioenergetic functions such as detoxification or cellular defense.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号