首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report we describe two nonallelic Mendelian protoporphyrin accumulating mutants brs-1 and brc-1. Results of experiments with these mutants lead us to postulate that porphyrin biosynthesis branches into light and dark steps between protoporphyrin-IX and magnesium protoporphyrin. We hypothesize that the brc locus controls a dark step while the brs locus either controls a step in the main pathway before the branch or mediates the preparation of the magnesium ion for its insertion into protoporphyrin-IX. The brs-1 mutant is thought to be light sensitive because a block prior to the branch point in the porphyrin pathway prevents chlorophyll formation in either the light or the dark. The brc-1 mutant, which also accumulates protoporphyrin in the dark, forms chlorophyll and chloroplast lamellae when transferred to the light, showing that function of the porphyrin pathway is normal in the light.  相似文献   

2.
Summary A chlorophyll-deficient mutant, br s -1, of Chlamydomonas reinhardtii has been shown to accumulate low levels of an intermediate, protoporphyrin (PROTO), and to form light-brown colonies. A double mutant, br s -1 r-1, accumulates 15-fold more PROTO than br s -1 and forms dark-brown colonies. Enzymes synthesizing the first intermediate of chlorophyll, delta-aminolevulinate (ALA), from these two mutants and the wild-type are equally sensitive to inhibition by heme. The activity of ALA-synthesizing enzymes from br s -1 r-1 is similar to that of the wild-type and is more than threefold that of br s -1. It is proposed that the ALA-synthesizing enzymes in br s -1 are under repression while r-1 is a mutation of the regulatory gene and consequently derepresses the synthesis of its own ALA-synthesizing enzymes. In addition, by mutagenizing br s -1, we isolated six more double mutants having the same phenotype as br s -1 r-1. Five of them are identical to br s -1 r-1, the remaining one (db-10) carries a second mutation nonallelic to r-1. The ALA-synthesizing enzymes from db-10 are much less sensitive to heme inhibition than those from the wild type. It is proposed that ALA synthesis in Clamydomonas is regulated both allosterically and genetically.Abbreviations PROTO protoporphyrin - ALA delta-aminolevulinate - Mg-PROTO magnesium-protoporphyrin - GSA glutamate-1-semialdehyde  相似文献   

3.
We have monitored the accumulation of photosynthetic proteins in developing pigment-deficient mutants of Zea mays. The proteins examined are the CO2-fixing enzymes, phoshoenolpyruvate carboxylase (E.C. 4.1.1.31) and ribulose-1,5-bisphosphate carboxylase (E.C.4.1.1.39), and three thylakoid membrane proteins, the light-harvesting chlorophyll a/b binding protein (LHCP) of photosystem II, the 65 kilodalton chlorophyll a binding protein of photosystem I and the alpha subunit polypeptide of coupling factor I. Using a sensitive protein-blot technique, we have compared the relative quantities of each protein in mutants and their normal siblings. Carboxylase accumulation was found to be independent of chlorophyll content, while the amounts of the thylakoid proteins increase at about the same time as chlorophyll in delayed-greening mutants. The relative quantity of LHCP is closely correlated with the relative quantity of chlorophyll at all stages of development in all mutants. Because pigment-deficient mutants are arrested at early stages in chloroplast development, these findings suggest that the processes of chloroplast development, chlorophyll synthesis and thylakoid protein accumulation are coordinated during leaf development but that carboxylase accumulation is controlled by different regulatory mechanisms. A white leaf mutant was found to contain low levels of LHCP mRNA, demonstrating that the accumulation of LHCP mRNA is not controlled exclusively by phytochrome.  相似文献   

4.
Four mutants of maize (Zea mays L.) defective in chlorophyll biosynthesis have been analyzed with regard to the sites of their lesions and their effects on chloroplast development. Two yellow mutants, which accumulate no detectable porphyrin precursors when grown in darkness, are defective in the conversion of protoporphyrin IX to magnesium protoporphyrin. Etioplasts of these mutants may develop elaborate lamellar membrane systems, but prolamellar bodies are never observed. Two mutants, which are necrotic when grown under illumination, develop normal (non-necrotic) leaf tissue in the dark and accumulate a small amount of magnesium protoporphyrin monomethyl ester, corresponding approximately to the amount of protochlorophyllide accumulated by normal plants. The etioplasts of these mutants contain noncrystalline bodies. The implications of these observations with respect to chloroplast development are discussed.Journal Paper No. J-9136 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa Project No. 2035  相似文献   

5.
The qualitative screening method used to select complex I mutants in the microalga Chlamydomonas, based on reduced growth under heterotrophic conditions, is not suitable for high‐throughput screening. In order to develop a fast screening method based on measurements of chlorophyll fluorescence, we first demonstrated that complex I mutants displayed decreased photosystem II efficiency in the genetic background of a photosynthetic mutation leading to reduced formation of the electrochemical proton gradient in the chloroplast (pgrl1 mutation). In contrast, single mutants (complex I and pgrl1 mutants) could not be distinguished from the wild type by their photosystem II efficiency under the conditions tested. We next performed insertional mutagenesis on the pgrl1 mutant. Out of about 3000 hygromycin‐resistant insertional transformants, 46 had decreased photosystem II efficiency and three were complex I mutants. One of the mutants was tagged and whole genome sequencing identified the resistance cassette in NDUFAF3, a homolog of the human NDUFAF3 gene, encoding for an assembly factor involved in complex I assembly. Complemented strains showed restored complex I activity and assembly. Overall, we describe here a screening method which is fast and particularly suited for the identification of Chlamydomonas complex I mutants.  相似文献   

6.
The variable fluorescence and polypeptide and carotenoid compositions of the chlorophyll b-deficient mutant C-48 of the unicellular green alga Chlamydomonas reinhardtii and its double mutants without chlorophyll b and with inactive photosystem II were compared with those of the wild-type algal cells. Studying variable fluorescence demonstrated the alterations at the donor side (AC-121), the acceptor side (AC-234) or immediately in the photosystem II reaction centre (AC-184, AC-864). Gel electrophoresis showed that the absence of chlorophyll b in all mutants was due to the lack of 26, 28 and 31 kDa polypeptides in the light-harvesting chlorophyll a/b-protein complex II (LHC II). As a result of the second mutation, the chlorophyll a-protein complex of photosystem II did not form in chloroplast membranes. The disassembly of this complex in the mutants AC-121, AC-234 and AC-864 was related to the deficiency of both polypeptides of the reaction centre (30 and 32 kDa) and polypeptides of the water-oxidizing system (18, 23 and 34 kDa). Besides the loss of these polypeptides, the contents of polypeptides with molecular masses of 47 and 51 kDa decreased in the double mutant AC-184. Substantial changes were revealed in the carotenoid composition of the double mutants. We observed the considerable accumulation of carotenes that accompanied alterations in the donor (mutant AC-121) or acceptor (mutant AC-234) sides of PS II. In the first case, beta-carotene predominantly accumulated (87%); in the second case, it was alpha-carotene (52%). Alterations in the PS II reaction centre (mutants AC-184, AC-864) caused accumulation of xanthophylls, mainly lutein (38-41%). We suppose that alterations in different parts of the PS II chloroplast membrane lead to substantial changes in the carotenoid composition.  相似文献   

7.
The regulation by light of the composition of the photosynthetic apparatus was investigated in photomorphogenic mutants of Arabidopsis thaliana (L.) Heynh. cv. Landsberg erecta. Leaf chlorophyll, photosynthesis, photosystem II function, and ribulose-1,5-bisphosphate carboxylase-oxygenase and photosystem II contents were determined for plants grown under high- or low-irradiance growth regimes. Although certain mutant lines had altered chloroplast composition compared to the wild type, all photoreceptor mutants tested were capable of light-dependent changes in chloroplast composition and photosynthetic function, indicating that photoreceptors do not play a central role in the regulation of acclimation at the level of the chloroplast. However, the clear acclimation defect in a det1 signal transduction mutant indicates that photoreceptor-controlled responses either share regulatory components with acclimation, or are important in the expression of components which in turn regulate acclimation. We suggest that the COP/DET/FUS regulatory cluster is a focus for multiple signal transduction pathways, including some of the metabolic signals which form the basis for the acclimatory response. Received: 22 April 1999 / Accepted: 6 June 1999  相似文献   

8.
The galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the predominant lipids in thylakoid membranes and indispensable for photosynthesis. Among the three isoforms that catalyze MGDG synthesis in Arabidopsis thaliana, MGD1 is responsible for most galactolipid synthesis in chloroplasts, whereas MGD2 and MGD3 are required for DGDG accumulation during phosphate (Pi) starvation. A null mutant of Arabidopsis MGD1 (mgd12), which lacks both galactolipids and shows a severe defect in chloroplast biogenesis under nutrient‐sufficient conditions, accumulated large amounts of DGDG, with a strong induction of MGD2/3 expression, during Pi starvation. In plastids of Pi‐starved mgd1‐2 leaves, biogenesis of thylakoid‐like internal membranes, occasionally associated with invagination of the inner envelope, was observed, together with chlorophyll accumulation. Moreover, the mutant accumulated photosynthetic membrane proteins upon Pi starvation, indicating a compensation for MGD1 deficiency by Pi stress‐induced galactolipid biosynthesis. However, photosynthetic activity in the mutant was still abolished, and light‐harvesting/photosystem core complexes were improperly formed, suggesting a requirement for MGDG for proper assembly of these complexes. During Pi starvation, distribution of plastid nucleoids changed concomitantly with internal membrane biogenesis in the mgd1‐2 mutant. Moreover, the reduced expression of nuclear‐ and plastid‐encoded photosynthetic genes observed in the mgd1‐2 mutant under Pi‐sufficient conditions was restored after Pi starvation. In contrast, Pi starvation had no such positive effects in mutants lacking chlorophyll biosynthesis. These observations demonstrate that galactolipid biosynthesis and subsequent membrane biogenesis inside the plastid strongly influence nucleoid distribution and the expression of both plastid‐ and nuclear‐encoded photosynthetic genes, independently of photosynthesis.  相似文献   

9.
We are interested in the mechanism of insertion of proteins into the chloroplast thylakoid membrane and the role that accessory pigments may play in this process. For this reason we have begun a molecular analysis of mutant plants deficient in pigments that associate with thylakoid membrane proteins. We have characterized plants that are homozygous for the previously isolated, recessive mutation chlorina-1 (ch-1) or Arabidopsis thaliana. Despite the lack of chlorophyll b and light-harvesting proteins of photosystem II (LHCPII) near normal levels of LHCPII mRNA are found in the mutant, in contrast to LHCPII mRNA levels in carotenoid-deficient mutants. The LHCPII mRNA of chlorina-1 plants can be translated in vitro so it is likely that LHCPII is not stable in ch-1 plants. Moreover, the thylakoid membranes of ch-1 plants remain appressed even though LHCPII levels are drastically reduced.  相似文献   

10.
A chlorophyll-deficient xantha mutant of cotton (Gossypium hirsutum L.) was examined with respect to development and structural organization of the chloroplast membrane system as affected by disruption of early stages of chlorophyll biosynthesis in the light. The analysis of early chlorophyll precursors showed that the mutant is unable to synthesize 5-aminolevulinic acid (5-ALA) in the light. The disorders in early stages of chlorophyll biosynthesis arrested the development of chloroplast membrane system at the stage of vesicles and single thylakoids. The accumulation of 2–5% chlorophyll in the mutant was related to the formation of light-harvesting chlorophyll-a/b-protein complexes I and II, whereas pigment-protein complexes composing reaction centers of photosystem I and photosystem II were lacking. It is concluded that the chloroplast membrane system in the mutant with impaired 5-ALA synthesis is incapable of development and is even reduced upon long-term growing under light.  相似文献   

11.
In angiosperms, cyclic electron transport (CET) around photosystem I (PSI) consists of two pathways, depending on PGR5/PGRL1 proteins and the chloroplast NDH complex. In single mutants defective in chloroplast NDH, photosynthetic electron transport is only slightly affected at low light intensity, but in double mutants impaired in both CET pathways photosynthesis and plant growth are severely affected. The question is whether this strong mutant phenotype observed in double mutants can be simply explained by the additive effect of defects in both CET pathways. In this study, we used the weak mutant allele of pgr5-2 for the background of double mutants to avoid possible problems caused by the secondary effects due to the strong mutant phenotype. In two double mutants, crr2-2 pgr5-2 and ndhs-1 pgr5-2, the plant growth was unaffected and linear electron transport was only slightly affected. However, NPQ induction was more severely impaired in the double mutants than in the pgr5-2 single mutant. A similar trend was observed in the size of the proton motive force. Despite the slight reduction in photosystem II parameters, PSI parameters were severely affected in the pgr5-2 single mutant, the phenotype that was further enhanced by adding the NDH defects. Despite the lack of ?pH-dependent regulation at the cytochrome b6f complex (donor-side regulation of PSI), the plastoquinone pool was more reduced in the double mutants than in the pgr5-2 single mutants. This phenotype suggests that both PGR5/PGRL1- and NDH-dependent CET contribute to supply sufficient acceptors from PSI by balancing the ATP/NADPH production ratio.  相似文献   

12.
Photosynthetic organisms exhibit a green color due to the accumulation of chlorophyll pigments in chloroplasts. Mg-protoporphyrin IX chelatase (Mg-chelatase) comprises three subunits (ChlH, ChlD and ChlI) and catalyzes the insertion of Mg2+ into protoporphyrin IX, the last common intermediate precursor in both chlorophyll and heme biosyntheses, to produce Mg-protoporphyrin IX (MgProto). Chlorophyll deficiency in higher plants results in chlorina (yellowish-green) phenotype. To date, 10 chlorina (chl) mutants have been isolated in rice, but the corresponding genes have not yet been identified. Rice Chl1 and Chl9 genes were mapped to chromosome 3 and isolated by map-based cloning. A missense mutation occurred in a highly conserved amino acid of ChlD in the chl1 mutant and ChlI in the chl9 mutant. Ultrastructural analyses have revealed that the grana are poorly stacked, resulting in the underdevelopment of chloroplasts. In the seedlings fed with aminolevulinate-dipyridyl in darkness, MgProto levels in the chl1 and chl9 mutants decreased up to 25% and 31% of that in wild-type, respectively, indicating that the Mg-chelatase activity is significantly reduced, causing the eventual decrease in chlorophyll synthesis. Furthermore, Northern blot analysis indicated that the nuclear genes encoding the three subunits of Mg-chelatase and LhcpII in chl1 mutant are expressed about 2-fold higher than those in WT, but are not altered in the chl9 mutant. This result indicates that the ChlD subunit participates in negative feedback regulation of plastid-to-nucleus in the expression of nuclear genes encoding chloroplast proteins, but not the ChlI subunit.Haitao Zhang and Jinjie Li contributed equally to this work  相似文献   

13.
The senescence of leaves is characterized by yellowing as chlorophyll pigments are degraded. Proteins of the chloroplasts also decline during this phase of development. There exists a non-yellowing mutant genotype of Festuca pratensis Huds. which does not suffer a loss of chlorophyll during senescence. The fate of chloroplast membrane proteins was studied in mutant and wild-type plants by immune blotting and immuno-electron microscopy. Intrinsic proteins of photosystem II, exemplified by the light-harvesting chlorophyll a/b-binding protein (LHCP-2) and D1, were shown to be unusually stable in the mutant during senescence, whereas the extrinsic 33-kilodalton protein of the oxygen-evolving complex was equally lable in both genotypes. An ultrastructural study revealed that while the intrinsic proteins remained in the internal membranes of the chloroplasts, they ceased to display the heterogenous lateral distribution within the lamellae which was characteristic of nonsenescent chloroplasts. These observations are discussed in the light of possible mechanisms of protein turnover in chloroplasts.Abbreviations kDa kilodalton - LHCP-2 light-harvesting chlorophyll a/b-binding protein - Mr relative molecular mass - PSII photosystem II - SDS sodium dodecyl sulphate  相似文献   

14.
Eight chlorophyll b deficient nuclear mutants of pea (Pisum sativum L.) have been characterized by low temperature fluorescence emission spectra of their leaves and by the ultrastructure, photochemical activities and polypeptide compositions of the thylakoid membranes. The room temperature fluorescence induction kinetics of leaves and isolated thylakoids have also been recorded. In addition, the effects of Mg2+ on the fluorescence kinetics of the membranes have been investigated. The mutants are all deficient in the major polypeptide of the light-harvesting chlorophyll a/b protein of photosystem II. The low temperature fluorescence emission spectra of aurea-5106, xantha-5371 and –5820 show little or no fluorescence around 730 nm (photosystem I fluorescence), but possess maxima at 685 and 695 nm (photosystem II fluorescence). These three mutants have low photosystem II activities, but significant photosystem I activities. The long-wavelength fluorescence maximum is reduced for three other mutants. The Mg2+ effect on the variable component of the room temperature fluorescence (685 nm) induction kinetics is reduced in all mutants, and completely absent in aurea-5106 and xantha-5820. The thylakoid membranes of these 2 mutants are appressed pairwise in 2-disc grana of large diameter. Chlorotica-1-206A and–130A have significant long-wavelength maxima in the fluorescence spectra and show the largest Mg2+ enhancement of the variable part of the fluorescence kinetics. These two mutants have rather normally structured chloroplast membranes, though the stroma regions are reduced. The four remaining mutants are in several respects of an intermediate type.Abbreviations Chl chlorophyll - CPI Chi-protein complex I, Fo, Fv - Fm parameters of room temperature chlorophyll fluorescence induction kinetics - F685, F695 and F-1 components of low temperature chlorophyll emission with maximum at 685, 695 and ca 735 nm, respectively - PSI photosystem I - PSII photosystem II - LHCI and LHCII light-harvesting chlorophyll a/b complexes associated with PSI and PSII, respectively - SDS sodium dodecyl sulfate  相似文献   

15.
A comparative study of photosystem II complexes isolated from tobacco (Nicotiana tabacum L. cv. John William's Broadleaf) which contains normal stacked thylakoid membranes, and from two chlorophyll deficient tobacco mutants (Su/su and Su/su var. Aurea) which have low stacked grana or essentially unstacked thylakoids with occasional membrane doublings, has been carried out. The corresponding photosystem II complexes had an O2 evolving activity ranging from 290 (for the wild type) to 1100 mol O2 x mg chlorophyll-1 x h-1 (for the mutant Su/su var. Aurea). The reduced photosynthetic unit size was also obvious in the mangenese and cytochromeb559 content. The photosystem II complex from the wild type contained 4 Mn and 1 cytochromeb559 per 200 to 280 chlorophylls, while the corresponding value for the mutant Su/su var. Aurea was 4 Mn and 1 cytochromeb559 per 35 to 60 chlorophylls. We have also examined the polypeptide composition and show that the photosystem II complex from the wild type consisted of polypeptides of 48, 42, 33, 32, 30, 28, 23, 21, 18, 16 and 10 kDa, while the mutant complex mainly contained the polypeptides of 48, 42, 33, 32, 30, 28 and 10 kDa. In the mutant photosystem II complex the light-harvesting chlorophyll protein (peptide of 28 kDa) was reduced by a factor of 5 to 6 as compared to the wild type. With respect to the peptide composition and the photosynthetic unit size, the Triton-solubilized photosystem II complex from the mutant Su/su var. Aurea was very similar to O2 evolving photosystem II reaction center core complexes.Abbreviations PS photosystem - chl chlorophyll - LHCP light-harvesting chlorophyll a/b protein complex  相似文献   

16.
Absorption and low temperature fluorescence emission spectra were measured on chloroplast thylakoids and on purified reaction center chlorophyll a-protein complexes of photosystem I, CP-a1. A clear association between the presence of ß-carotene and the occurrence of far red absorbing and emitting chlorophyll a components of the reaction center antennae of photosystem I was demonstrated. For this study chloroplasts and CP-a1 were obtained from normal and carotenoid deficient plant material of various sources. The experimental material included 1) lyophilized pea chloroplasts extracted with petroleum ether, 2) the carotenoid deficient mutant C-6E of Scenedesmus obliquus and 3) wheat chloroplasts derived from normal and SAN-9789 treated plants. Removal of carotenoids, most likely principally ß-carotene, caused a loss of long wavelength absorbing chlorophylls in chloroplasts and purified CP-a1, and the loss or diminution of the long wavelength peak seen in the low temperature fluorescence emission spectrum. This association between ß-carotene and special chlorophyll a forms may explain both the photoprotective and antenna functions ascribed to ß-carotene. In the absence of carotenoids in wheat and in the Scenedesmus mutant, the chlorophyll a antenna of photosystem I was extremely photosensitive. A triplet-triplet resonance energy transfer from chlorophyll a to ß-carotene and a singlet-singlet energy transfer from excited ß-carotene to chlorophyll would explain the photoprotective and antenna functions, respectively. The role of this association in determining some of the fluorescence properties of photosystem I is also discussed.  相似文献   

17.
Kyle DJ  Zalik S 《Plant physiology》1982,69(6):1392-1400
The development of photochemical activity in relation to pigment and membrane protein accumulation in chloroplasts of greening wild-type barley (Hordeum vulgare L. cv. Gateway) and its virescens mutant were studied. The rate of chlorophyll accumulation per plastid was faster in the wild-type than in the mutant seedlings upon illumination after 6 days of etiolation, but was not different after 8 days. Although the protein content per plastid did not vary during greening, there was a change in the sodium dodecyl sulfate-polyacrylamide gel polypeptide profiles. High molecular weight proteins of 96,000 and 66,000 decreased whereas those at 34,000, 27,000 and 22,000 increased in relative quantity as a function of greening. The fully greened mutant seedlings were not deficient in the light-harvesting chlorophyll protein complex (LHC) or the reaction centers of photosystem I and photosystem II. Photosystem I-associated photochemical activities appeared within the first hour of plastid development and photosystem II associated activities and O2 evolution within the next 6 hours. In all cases, the developmental rates per unit protein were slower in the mutant following 6 days of etiolation, but no differences between the two genotypes could be seen after 8 days due to a decrease in the developmental rate of the wild-type chloroplasts. An increase in photosynthetic unit size associated with plastid morphogenesis was faster in the wild-type seedlings after 6 days, but again the difference was negligible after 8 days. It was concluded that no single measured photochemical parameter is affected by this mutation, but rather, all aspects of chloroplast development are affected similarly by an overall reduction in the rate of chloroplast morphogenesis. This mutant, therefore, undergoes the normal pattern of proplastid to chloroplast development, but at a markedly reduced rate.  相似文献   

18.
Facultative phototrophs such as Rhodobacter sphaeroides can switch between heterotrophic and photosynthetic growth. This transition is governed by oxygen tension and involves the large‐scale production of bacteriochlorophyll, which shares a biosynthetic pathway with haem up to protoporphyrin IX. Here, the pathways diverge with the insertion of Fe2+ or Mg2+ into protoporphyrin by ferrochelatase or magnesium chelatase, respectively. Tight regulation of this branchpoint is essential, but the mechanisms for switching between respiratory and photosynthetic growth are poorly understood. We show that PufQ governs the haem/bacteriochlorophyll switch; pufQ is found within the oxygen‐regulated pufQBALMX operon encoding the reaction centre–light‐harvesting photosystem complex. A pufQ deletion strain synthesises low levels of bacteriochlorophyll and accumulates the biosynthetic precursor coproporphyrinogen III; a suppressor mutant of this strain harbours a mutation in the hemH gene encoding ferrochelatase, substantially reducing ferrochelatase activity and increasing cellular bacteriochlorophyll levels. FLAG‐immunoprecipitation experiments retrieve a ferrochelatase‐PufQ‐carotenoid complex, proposed to regulate the haem/bacteriochlorophyll branchpoint by directing porphyrin flux toward bacteriochlorophyll production under oxygen‐limiting conditions. The co‐location of pufQ and the photosystem genes in the same operon ensures that switching of tetrapyrrole metabolism toward bacteriochlorophyll is coordinated with the production of reaction centre and light‐harvesting polypeptides.  相似文献   

19.
When grown heterotrophically in the dark on enriched culture medium, the pigment-deficient strain of Scenedesmus obliquus, mutant C-6E, is uniquely characterized by a complete deficiency in carotenoids and chlorophyll b while retaining a low level of chlorophyll a which is exclusively utilized in photosystem I-type reactions. The strain lacks photosystem II activity but exhibits all PS-I reactions tested, including P700 redox reactions, photoreduction of CO2 with hydrogen as electron donor, and O2 uptake following methyl viologen reduction. The mutant contains 10 times more P700 per chlorophyll than the wild type and develops the pigment-protein complex of PS-I, CP-I. The action spectrum for methyl viologen reduction compares favorable to the low temperature absorption spectrum of whole cells. Both the chlorophyll fluorescence excitation and emission spectra of pigment-protein complexes derived from cells of C-6E show patterns typical of PS-I. The strain lacks the LHCs and CP-II as well as their respective apoproteins. The absence of carotenoids appears to prevent the development of the normal variety of pigment-protein complexes and the accumulation of Chl b. This inability is also expressed by the presence of only single stranded thylakoid membranes in the chloroplast of C-6E. When heterotrophically grown cells of this mutant are exposed to white light of 8 or 22 W m?2, 50% of its chlorophyll is lost by photooxidation within 4 or 1.5 hours, respectively.  相似文献   

20.
The structural-functional characteristics of the cells of wild type CC-124 and Brc-1 mutant of the unicellular green algae Chlamydomonas reinhardtii grown in the dark and in the light were studied. The cells of the wild type in heterotrophic and mixotrophic conditions had a well developed structure and high functional activity due to the ability of the cells to synthesize chlorophyll both in the light and in the dark. The cells of Brc-1 mutant lost their ability to synthesize chlorophyll in the dark and the cell color was orange due to brc-1 mutation in the nuclear gene LTS3 that regulated the activity of Mg-chelatase enzyme. In the dark the mutant cells accumulated protoporphyrin IX and had weakly developed structure with low functional activity. Because of the high content of protoporphyrin IX, even a short-term exposure of the Brc-1 mutant cells to the light was accompanied by very strong destructive changes in all the membranes in a cell: plasmalemma, chloroplast, mitochondrion, envelopes of the nucleus and vacuoles. The causes of significant impairment of the membrane components and O2-gas exchange in the Brc-1 mutant cells are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号