首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The application of ellipsometry of the study of the adsorption behavior of proteins and synthetic macromolecules at the air-water interface has been investigated. It is shown that for macromolecules the amount adsorbed per unit area, Γ, as determined by ellipsometry, only has a well-defined physical meaning if the refractive-index increment remains constant up to high concentrations present in the adsorbed layer. It has been found experimentally that this conditioned is fulfilled for proteins. The ellipsometric Γ values of some protein agree satisfactorily with those obtained by two independent techniques has been used to investigate the adsorption from solution of κ-casein, bovine serum albumin, and polyvinyl alcohol. For bovine serum albumin, Γ reaches a plateau value of 2.9 mg/m2 for concentrations ≥ 0.05 wt%. The thickness of the adsorbed molecules. For κ-casein, Γ steadily increases with increasing centration and multilayers are formed. The technique provides interesting information on conformational changes in adsorbed macromolecules, on the rate of the process, and on the conditions under which these occur.  相似文献   

2.
Aggregation of proteins is a serious problem, affecting both industrial production of proteins and human health. Despite recent advances in the theories and experimental techniques available to address understanding of protein aggregation processes, mechanisms of aggregate formation have proved challenging to study. This is in part because the typical irreversibility of protein aggregation processes at atmospheric conditions complicates analysis of their kinetics and thermodynamics. Because high hydrostatic pressures act to disfavor the hydrophobic and electrostatic interactions that cause protein aggregation, studies conducted under high hydrostatic pressures may allow protein aggregates to be formed reversibly, enabling thermodynamic and kinetic parameters to be measured in greater detail. Although application of high hydrostatic pressures to protein aggregation problems is rather recent, a growing literature, reviewed herein, suggests that high pressure may be a useful tool for both understanding protein aggregation and reversing it in industrial applications.  相似文献   

3.
4.
Hu Z  Ma B  Wolfson H  Nussinov R 《Proteins》2000,39(4):331-342
A number of studies have addressed the question of which are the critical residues at protein-binding sites. These studies examined either a single or a few protein-protein interfaces. The most extensive study to date has been an analysis of alanine-scanning mutagenesis. However, although the total number of mutations was large, the number of protein interfaces was small, with some of the interfaces closely related. Here we show that although overall binding sites are hydrophobic, they are studded with specific, conserved polar residues at specific locations, possibly serving as energy "hot spots." Our results confirm and generalize the alanine-scanning data analysis, despite its limited size. Previously Trp, Arg, and Tyr were shown to constitute energetic hot spots. These were rationalized by their polar interactions and by their surrounding rings of hydrophobic residues. However, there was no compelling reason as to why specifically these residues were conserved. Here we show that other polar residues are similarly conserved. These conserved residues have been detected consistently in all interface families that we have examined. Our results are based on an extensive examination of residues which are in contact across protein interfaces. We utilize all clustered interface families with at least five members and with sequence similarity between the members in the range of 20-90%. There are 11 such clustered interface families, comprising a total of 97 crystal structures. Our three-dimensional superpositioning analysis of the occurrences of matched residues in each of the families identifies conserved residues at spatially similar environments. Additionally, in enzyme inhibitors, we observe that residues are more conserved at the interfaces than at other locations. On the other hand, antibody-protein interfaces have similar surface conservation as compared to their corresponding linear sequence alignment, consistent with the suggestion that evolution has optimized protein interfaces for function.  相似文献   

5.
6.
Protein–protein interactions (PPIs) are ubiquitous in Biology, and thus offer an enormous potential for the discovery of novel therapeutics. Although protein interfaces are large and lack defining physiochemical traits, is well established that only a small portion of interface residues, the so-called hot spot residues, contribute the most to the binding energy of the protein complex. Moreover, recent successes in development of novel drugs aimed at disrupting PPIs rely on targeting such residues. Experimental methods for describing critical residues are lengthy and costly; therefore, there is a need for computational tools that can complement experimental efforts. Here, we describe a new computational approach to predict hot spot residues in protein interfaces. The method, called Presaging Critical Residues in Protein interfaces (PCRPi), depends on the integration of diverse metrics into a unique probabilistic measure by using Bayesian Networks. We have benchmarked our method using a large set of experimentally verified hot spot residues and on a blind prediction on the protein complex formed by HRAS protein and a single domain antibody. Under both scenarios, PCRPi delivered consistent and accurate predictions. Finally, PCRPi is able to handle cases where some of the input data is either missing or not reliable (e.g. evolutionary information).  相似文献   

7.
The site-specific incorporation of unnatural amino acids (UAAs) into proteins in bacteria is made possible by the evolution of aminoacyl-tRNA synthetases that selectively recognize and aminoacylate the amino acid of interest. Recently we have discovered that some of the previously evolved aaRSs display a degree of polyspecificity and are capable of recognizing multiple UAAs. Herein we report the polyspecificity of an aaRS evolved to encode a comarin containing amino acid. This polyspecificity was then exploited to introduce several UAAs into the fluorophore of GFP, altering its photophysical properties.  相似文献   

8.
9.
Motions through the energy landscape of proteins lead to biological function. At temperatures below a dynamical transition (150-250 K), some of these motions are arrested and the activity of some proteins ceases. Here, we introduce the technique of temperature-derivative fluorescence microspectrophotometry to investigate the dynamical behavior of single protein crystals. The observation of glass transitions in thin films of water/glycerol mixtures allowed us to demonstrate the potential of the technique. Then, protein crystals were investigated, after soaking the samples in a small amount of fluorescein. If the fluorophore resides within the crystal channels, temperature-dependent changes in solvent dynamics can be monitored. Alternatively, if the fluorophore binds to the protein, local dynamical transitions within the biomolecule can be probed directly. A clear dynamical transition was observed at 175 K in the active site of crystalline human butyrylcholinesterase. The results suggest that the dynamics of crystalline proteins is strongly dependent on solvent composition and confinement in the crystal channels. Beyond applications in the field of kinetic crystallography, the highly sensitive temperature-derivative fluorescence microspectrophotometry technique opens the way to many studies on the dynamics of biological nanosamples.  相似文献   

10.
11.
12.
Several approaches, some of which are described in this issue, have been proposed to assemble a complete protein interaction map. These are often based on high throughput methods that explore the ability of each gene product to bind any other element of the proteome of the organism. Here we propose that a large number of interactions can be inferred by revealing the rules underlying recognition specificity of a small number (a few hundreds) of families of protein recognition modules. This can be achieved through the construction and characterization of domain repertoires. A domain repertoire is assembled in a combinatorial fashion by allowing each amino acid position in the binding site of a given protein recognition domain to vary to include all the residues allowed at that position in the domain family. The repertoire is then searched by phage display techniques with any target of interest and from the primary structure of the binding site of the selected domains one derives rules that are used to infer the formation of complexes between natural proteins in the cell.  相似文献   

13.
Hetero dimer (different monomers) interfaces are involved in catalysis and regulation through the formation of interface active sites. This is critical in cell and molecular biology events. The physical and chemical factors determining the formation of the interface active sites is often large in numbers. The combined role of interacting features is frequently combinatorial and additive in nature. Therefore, it is important to determine the physical and chemical features of such interactions. A number of such features have been documented in literature since 1975. However, the use of such interaction features in the prediction of interaction partners and sites given their sequences is still a challenge. In a non-redundant dataset of 156 hetero-dimer structures determined by X-ray crystallography, the interacting partners are often varying in size and thus, size variation between subunits is an important factor in determining the mode of interface formation. The size of protein subunits interacting are either small-small, largelarge, medium-medium, large-small, large-medium and small-medium. It should also be noted that the interface formed between subunits have physical interactions at N terminal (N), C terminal (C) and middle (M) region of the protein with reference to their sequences in one dimension. These features are believed to have application in the prediction of interaction partners and sites from sequences. However, the use of such features for interaction prediction from sequence is not currently clear.  相似文献   

14.
The binding ofRicinus communis agglutinin andAbrus agglutinin to 4-methylumbelliferyl β-D-galactopyranoside was studied by equilibrium dialysis, fluo-rescence quenching and fluorescence polarization. The number of binding sites and the association constant value obtained by fluorescence polarization for bothRicinus communis agglutinin andAbrus agglutinin are in close agreement with those obtained by the other methods. This indicates the potential of ligand-fluorescence polarization measurements in the investigation of lectin-sugar interactions.  相似文献   

15.
16.
17.
Cutinase from Fusarium solani pisi is the model-system for a new approach to assess and enhance protein stability based on the use of synthetic triazine-scaffolded affinity ligands as a novel protein-stabilizing tool. The active site of cutinase is excluded from the main surface regions postulated to be involved in early protein's thermal unfolding events. Hence, these regions are suitable targets for binding complementary affinity ligands with a potential stabilizing effect. A random solid-phase combinatorial library of triazine-bisubstituted molecules was screened for binding cutinase by a rapid fluorescence-based method and affinity chromatography. The best binding substituents were combined with those previously selected by screening a rationally designed library. A second-generation solid-phase biased library was designed and synthesized, following a semi-rational methodology. A dual screening of this library enabled the selection of ligands binding cutinase with higher affinity while retaining its functionality. These compounds were utilized for thermostability assessment with adsorbed cutinase at 60 degrees C and pH 8.0. When bound to different types of ligands, the enzyme showed markedly distinct activity retention profiles, with some synthetic affinity ligands displaying a stabilizing effect on cutinase and others a clearly destabilizing effect, when compared with the free enzyme.  相似文献   

18.
The suitability of high resolution, in situ dc-sheet resistance monitoring (SRM) as a simplified and reliable sensing technique towards detection and tracking of protein immobilization has been explored. Non-specific adsorption of bovine serum albumin (BSA) onto a very thin gold film, acting as the sensing resistor, has been employed as a model system. For comparison, the novel sensing method was combined with surface plasmon resonance (SPR) spectroscopy, using the same flow cell and sensing surface. Two different, well known adsorption states, involving a composite layer of irreversibly and reversibly bound BSA, were clearly resolved by both methods. Clearly structured, pronounced and fully reproducible film resistance modulations have been resolved in the associated SRM data. The transition from reversibly bound BSA to the diluted protein phase is associated with an unusually large decrease in the dc-sheet resistance. The observed resistance modulation magnitude for an adsorbed BSA monolayer corresponds to approximately 1%, and up to 100 mOmega at a 10 Omega sensing resistor. The sheet resistance of irreversibly bound BSA was determined to 0.24 kOmega/cm2, and the associated specific resistivity estimated to 1-2x10(4) Omega cm.  相似文献   

19.
20.
Pollen cultures as a tool to study plant development.   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号