首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitro groups are found in a number of bioactive compounds. Most of them arise by a stepwise mono-oxygenation of amino groups. One of the involved enzymes is AurF participating in the biosynthesis of aureothin. Its structure was established at 2.1 A resolution showing a homodimer with a binuclear manganese cluster. The enzyme preparation, which yielded the analyzed crystals, showed activity using in vitro and in vivo assays. Chain fold and cluster are homologous with ribonucleotide reductase subunit R2 and related enzymes. The two manganese ions and an iron content of about 15% were established by anomalous X-ray diffraction. A comparison of the cluster with more common di-iron clusters suggested an additional histidine in the coordination sphere to cause the preference for manganese over iron. There is no oxo-bridge. The substrate p-amino-benzoate was modeled into the active center. The model is supported by mutant activity measurements. It shows the geometry of the reaction and explains the established substrate spectrum.  相似文献   

2.
Nickel bis(dithiolene) complexes have been known for over four decades, yet little is known regarding the chemistry of this important subclass of inorganic coordination complexes in olefin oligomerization or polymerization. We report here that Ni(S(2)C(2)R(2))(2) (R=Ph, CF(3)) are converted to active catalysts for ethylene oligomerization when activated with methylaluminoxane (MAO). The catalyst activity is comparable to some nickel coordination complexes with N-donor ligands under similar conditions. The products are mainly butenes and hexenes, with small amounts of higher oligomers. The product distribution pattern is consistent with a nickel hydride species being the active center, where fast beta-hydride elimination limits the products to mostly butenes and hexenes. The exact nature of the active center and the reaction mechanism remain to be investigated. In addition, we determined the crystal structure for Ni[S(2)C(2)(CF(3))(2)](2). The molecule crystallizes in the P2(1)/n space group and adopts a planar geometry with expected bond lengths and angles. Comparing this structure with that for the donor-acceptor complex with perylene reveals elongation of both the Ni-S and the S-C bonds in the latter, suggesting reduction of Ni[S(2)C(2)(CF(3))(2)](2) may have occurred in the latter.  相似文献   

3.
The crystal structure of the engineered monomeric human Cu,ZnSOD triple mutant F50E/G51E/E133Q (Q133M2SOD) is reported at atomic resolution (1.02 A). This derivative has about 20 % of the wild-type activity. Crystals of Q133M2SOD have been obtained in the presence of CdCl2. The metal binding site is disordered, with both cadmium and copper ions simultaneously binding to the copper site. The cadmium (II) ions occupy about 45 % of the copper sites by binding the four histidine residues which ligate copper in the native enzyme, and two further water molecules to complete octahedral coordination. The copper ion is tri-coordinate, and the fourth histidine (His63) is detached from copper and bridges cadmium and zinc. X-ray absorption spectroscopy performed on the crystals suggests that the copper ion has undergone partial photoreduction upon exposure to the synchrotron light. The structure is also disordered in the disulfide bridge region of loop IV that is located at the subunit/subunit interface in the native SOD dimer. As a consequence, the catalytically relevant Arg143 residue is disordered. The present structure has been compared to other X-ray structures on various isoenzymes and to the solution structure of the same monomeric form. The structural results suggest that the low activity of monomeric SOD is due to the disorder in the conformation of the side-chain of Arg143 as well as of loop IV. It is proposed that the subunit-subunit interactions in the multimeric forms of the enzyme are needed to stabilize the correct geometry of the cavity and the optimal orientation of the charged residues in the active channel. Furthermore, the different coordination of cadmium and copper ions, contemporaneously present in the same site, are taken as models for the oxidized and reduced copper species, respectively. These properties of the structure have allowed us to revisit the enzymatic mechanism.  相似文献   

4.
The photochemical reaction center from Rhodobacter sphaeroides 2.4.1 has been crystallized. The crystals were obtained in a solution of beta-octylglucoside by the vapor diffusion technique using polyethylene glycol 4000 as the precipitant at 22 degrees C. The orthorhombic crystals (space group P2(1)2(1)2(1)) have cell constants a = 142.5 A, b = 136.1 A, c = 78.5 A, and diffract to 3.7 A. The crystals display pronounced linear dichroism in the carotenoid absorption spectral region.  相似文献   

5.
By improving the expression and purification of Escherichia coli methionine aminopeptidase (eMetAP) and using slightly different crystallization conditions, the resolution of the parent structure was extended from 2.4 to 1.9 A resolution. This has permitted visualization of the coordination geometry and solvent structure of the active-site dinuclear metal center. One solvent molecule (likely a mu-hydroxide) bridges the trigonal bipyramidal (Co1) and octahedral (Co2) cobalt ions. A second solvent (possibly a hydroxide ion) is bound terminally to Co2. A monovalent cation binding site was also identified about 13 A away from the metal center at an interface between the two subdomains of the protein. The first structure of a substrate-like inhibitor, (3R)-amino-(2S)-hydroxyheptanoyl-L-Ala-L-Leu-L-Val-L-Phe-OMe, bound to a methionine aminopeptidase, has also been determined. This inhibitor coordinates the metal center through four interactions as follows: (i) ligation of the N-terminal (3R)-nitrogen to Co2, (ii, iii) bridging coordination of the (2S)-hydroxyl group, and (iv) terminal ligation to Co1 by the keto oxygen of the pseudo-peptide linkage. Inhibitor binding occurs with the displacement of two solvent ligands and the expansion of the coordination sphere of Co1. In addition to the tetradentate, bis-chelate metal coordination, the substrate analogue forms hydrogen bonds with His79 and His178, two conserved residues within the active site of all MetAPs. To evaluate their importance in catalysis His79 and His178 were replaced with alanine. Both substitutions, but especially that of His79, reduce activity. The structure of the His79Ala apoenzyme and the comparison of its electronic absorption spectra with other variants suggest that the loss in activity is not due to a conformational change or a defective metal center. Two different reaction mechanisms are proposed and are compared to those of related enzymes. These results also suggest that inhibitors analogous to that reported here may be useful in preventing angiogenesis in cancer and in the treatment of microbial and fungal infections.  相似文献   

6.
Zinc-substituted cytochrome c has been widely used in studies of protein-protein interactions and photo-induced electron transfer reactions between proteins. However, the coordination geometry of zinc in zinc-substituted cyt c has not yet been determined; two different opinions about the coordination have been reached. Here the solution structures of zinc-substituted cytochrome c that might be five-coordinated and six-coordinated have been refined separately by using (1)H NMR spectroscopy, and the zinc coordination geometry was determined just by NOE distance constraints. Structural analysis of the energy-minimized average solution structures of both the pentacoordinated and hexacoordinated geometries indicate that that zinc in zinc-substituted cyt c should be bound to both His18 and Met80, which means that the zinc is six-coordinated. RMSD values of the family of 25 six-coordinated structures from the average structure are 0.66+/-0.13 A and 1.09+/-0.16 A for the backbone and all heavy atoms, respectively. A statistical analysis of the structure indicates its satisfactory quality. Comparison of the solution structure of the six-coordinated energy-minimized average structure of zinc-substituted cytochrome c with the solution structure of reduced cytochrome c reveals that for the overall folding the secondary structure elements are very close. The availability of the structure provides for a better understanding of the protein-protein complex and for electron transfer processes between Zn cyt c and other metalloproteins.  相似文献   

7.
The crystal structure of purple acid phosphatase from rat bone has been determined by molecular replacement and the structure has been refined to 2.2 A resolution to an R -factor of 21.3 % (R -free 26.5 %). The core of the enzyme consists of two seven-stranded mixed beta-sheets, with each sheet flanked by solvent-exposed alpha-helices on one side. The two sheets pack towards each other forming a beta-sandwich. The di-iron center, located at the bottom of the active-site pocket at one edge of the beta-sandwich, contains a mu-hydroxo or mu-oxo bridge and both metal ions are observed in an almost perfect octahedral coordination geometry. The electron density map indicates that a mu-(hydr)oxo bridge is found in the metal center and that at least one solvent molecule is located in the first coordination sphere of one of the metal ions. The crystallographic study of rat purple acid phosphatase reveals that the mammalian enzymes are very similar in overall structure to the plant enzymes in spite of only 18 % overall sequence identity. In particular, coordination and geometry of the iron cluster is preserved in both enzymes and comparison of the active-sites suggests a common mechanism for the mammalian and plant enzymes. However, significant differences are found in the architecture of the substrate binding pocket.  相似文献   

8.
Kluge S  Weston J 《Biochemistry》2005,44(12):4877-4885
Density functional (B3LYP) calculations indicate that a hydroxide ligand is capable of triggering a reduction in the coordination number of Mg(2+) ions from 6 to 5. Since this could be quite relevant in the mode of action of magnesium-containing enzymes (especially hydrolases in which a metal-bound hydroxide species is believed to play a crucial role), we have performed a systematic deprotonation study of biologically relevant magnesium complexes. We explicitly calculated the preferred coordination number of [MgL(1)(x)L(2)(y)L(3)(z)](2)(-)(n) species at the B3LYP/aug-cc-pVTZ level of theory. L(1), L(2), and L(3) represent combinations of water, hydroxide, carboxylate (models Glu and Asp), ammonia ligands (models Lys and His residues), and fluoride ions. As expected, Mg(2+) exclusively prefers an octahedral coordination geometry with H(2)O, HCO(2)(-), or NH(3). Surprisingly, one hydroxide ligand triggers a change to a trigonal bipyramidal geometry. The isoelectronic fluoride ion behaves similarly. When two OH(-) are present, a tetrahedral coordination geometry is preferred. We postulate that a hydroxide (in addition to its role as an active nucleophile) could be employed by magnesium-containing enzymes to trigger a differential coordination behavior.  相似文献   

9.
His-Val-His and His-Val-Gly-Asp are two naturally occurring peptide sequences, present at the active site of Cu,Zn-superoxide dismutase (Cu,Zn-SOD). The interactions of His-Val-His=A (copper binding site) with Cu(II) and of His-Val-Gly-Asp=B (zinc binding site) with Zn(II) have been studied by using both potentiometric and spectroscopic methods (visible, EPR, NMR). The stoichiometry, stability constants and solution structure of the complexes formed have been determined. The binding modes of the species [CuAH](2+) and [CuA](+) were characterized by histamine type of coordination. [CuA](+) is further stabilized by the formation of a macrochelate with the involvement of the imidazole of the C-terminal histidine. The existence of macrochelate results in a slight distortion of the coordination geometry providing good base for the development of enzyme models. The enhanced stability of the macrochelate suppresses the formation of bis-complexes as well as the amide deprotonation. This process, however, takes place at higher pH resulting in the formation of the 4 N(-) coordinated [NH(2),N(-),N(-),N(im)] species [CuAH(2-)](-). On the other hand, in the case of the Zn(II)-His-Val-Gly-Asp system, coordination takes place at the terminal carboxylate in species [ZnBH(2)](2+). Monodentate binding occurs via the N-terminal imidazole in [ZnBH](+) while histamine type of coordination is possible in [ZnB], [ZnB(2)H](-) and [ZnB(2)](2-) species. Amide deprotonation does not take place in the case of Zn(2+), hydroxo-complexes are formed instead.  相似文献   

10.
To consider possible interaction of the phospholipid membrane with calcium ions, crystal structures of calcium dl-alpha- and beta-glycerophosphates (alpha- and beta-CaGs, respectively) were investigated by X-ray diffraction methods. After many attempts, relatively large single crystals of beta-CaG were prepared from the aqueous solution containing HCl, while crystals of CaHPO4.2H2O were obtained from alpha-CaG solution under the same crystallization conditions. The crystal structure of beta-CaG is orthorhombic with space group Pna2(1) and cell dimensions of a = 8.251(1), b = 13.038(3), c = 25.483 (10) A, V = 2741.5 (13) A3 and Z = 16 [four molecules (A to D) in an asymmetric unit]. Molecules of A to D took, as a whole, similar extended conformations, although A and B were different from C and D in the orientation about a glycerol C-C bond. Four independent beta-glycerophosphates commonly act as two types of bidentate ligands, where one is the coordination to the calcium ion by the glycerol O(1) and phosphate O(22) atoms, and the other by the phosphate O(22) and O(23) atoms, thus forming the calcium coordination of a distorted square plane, respectively. Each of four independent calcium ions forms the same coordination geometry of a distorted pentagonal bipyramid. Infinite double layers consisting of alternate A/B molecules and of alternative C/D ones and sandwiching calcium ions were arranged face-to-face along the b-direction and were piled up in the a-direction, thus forming the stacked bilayer unit with the thickness of d002 = 12.75 A. The elaborate networks of calcium coordinations and hydrogen bondings were formed among the layers and stabilized the crystal structure. Based on the structural parameters of the present beta-CaG crystal, a possible interaction model of phospholipid with calcium ions was proposed.  相似文献   

11.
Iverson TM  Alber BE  Kisker C  Ferry JG  Rees DC 《Biochemistry》2000,39(31):9222-9231
The prototype of the gamma-class of carbonic anhydrase has been characterized from the methanogenic archaeon Methanosarcina thermophila. Previously reported kinetic studies of the gamma-class carbonic anhydrase are consistent with this enzyme having a reaction mechanism similar to that of the mammalian alpha-class carbonic anhydrase. However, the overall folds of these two enzymes are dissimilar, and apart from the zinc-coordinating histidines, the active site residues bear little resemblance to one another. The crystal structures of zinc-containing and cobalt-substituted gamma-class carbonic anhydrases from M. thermophila are reported here between 1.46 and 1.95 A resolution in the unbound form and cocrystallized with either SO(4)(2)(-) or HCO(3)(-). Relative to the tetrahedral coordination geometry seen at the active site in the alpha-class of carbonic anhydrases, the active site of the gamma-class enzyme contains additional metal-bound water ligands, so the overall coordination geometry is trigonal bipyramidal for the zinc-containing enzyme and octahedral for the cobalt-substituted enzyme. Ligands bound to the active site all make contacts with the side chain of Glu 62 in manners that suggest the side chain is likely protonated. In the uncomplexed zinc-containing enzyme, the side chains of Glu 62 and Glu 84 appear to share a proton; additionally, Glu 84 exhibits multiple conformations. This suggests that Glu 84 may act as a proton shuttle, which is an important aspect of the reaction mechanism of alpha-class carbonic anhydrases. A hydrophobic pocket on the surface of the enzyme may participate in the trapping of CO(2) at the active site. On the basis of the coordination geometry at the active site, ligand binding modes, the behavior of the side chains of Glu 62 and Glu 84, and analogies to the well-characterized alpha-class of carbonic anhydrases, a more-defined reaction mechanism is proposed for the gamma-class of carbonic anhydrases.  相似文献   

12.
The structure determination of rabbit phosphoglucomutase   总被引:1,自引:0,他引:1  
Tetragonal crystals of rabbit phosphoglucomutase have been grown from solutions containing ammonium sulphate, polyethylene glycol solution and enzyme. There are two molecules, each of relative molecular mass 64 000 per asymmetric unit. A rotation function suggests that these are related by a twofold axis. X-ray diffraction data for five heavy-atom derivatives and native crystals have been collected by using oscillation photography. A tentative and partial solution of the KAu(CN)2 sites has been obtained. The enzyme in the native crystals is phosphorylated, but the phosphate can be removed without harm to the crystals. Similarly the essential Mg2+ ion can be removed or replaced by Zn2+. The enzyme is active in the native crystals.  相似文献   

13.
A series of tridentate SNS ligand precursors were metallated with ZnCl2 to give new tridentate SNS pincer zinc complexes. The zinc complexes serve as models for the zinc active site in liver alcohol dehydrogenase (LADH) and were characterized with single crystal X-ray diffraction, 1H, 13C, and HSQC NMR spectroscopies and electrospray mass spectrometry. The bond lengths and bond angles of the zinc complexes correlate well to those in horse LADH. The zinc complexes feature SNS donor atoms and pseudotetrahedral geometry about the zinc center, as is seen for liver alcohol dehydrogenase. The SNS ligand precursors were characterized with 1H, 13C, and HSQC NMR spectroscopies and cyclic voltammetry, and were found to be redox active. Gaussian calculations were performed and agree quite well with the experimentally observed oxidation potential for the pincer ligand. The zinc complexes were screened for the reduction of electron poor aldehydes in the presence of a hydrogen donor, 1-benzyl-1,4-dihydronicotinamide (BNAH). The zinc complexes enhance the reduction of electron poor aldehydes. Density functional theory calculations were performed to better understand why the geometry about the zinc center is pseudo-tetrahedral rather than pseudo-square planar, which is seen for most pincer complexes. For the SNS tridentate pincer complexes, the data indicate that the pseudo-tetrahedral geometry was 43.8 kcal/mol more stable than the pseudo-square planar geometry. Density functional theory calculations were also performed on zinc complexes with monodentate ligands and the data indicate that the pseudo-tetrahedral geometry was 30.6 kcal/mol more stable than pseudo-square planar geometry. Overall, the relative stabilities of the pseudo-tetrahedral and pseudo-square planar systems are the same for this coordination environment whether the ligand set is a single tridentate SNS system or is broken into three separate units. The preference of a d10 Zn center to attain a tetrahedral local environment trumps any stabilization gained by removal of constraints within the ligand set.  相似文献   

14.
Nitrosocyanin (NC) is a mononuclear red copper protein isolated from the ammonia oxidizing bacterium Nitrosomonas europaea. Although NC exhibits some sequence homology to classic blue copper proteins, its spectroscopic and electrochemical properties are drastically different. The 1.65 A resolution crystal structure of oxidized NC reveals an unprecedented trimer of single domain cupredoxins. Each copper center is partially covered by an unusual extended beta-hairpin structure from an adjacent monomer. The copper ion is coordinated by His 98, His 103, Cys 95, a single side chain oxygen of Glu 60, and a solvent molecule. In the 2.3 A resolution structure of reduced NC, His 98 shifts away from the copper ion, and the solvent molecule is not observed. The arrangement of these ligands renders the coordination geometry of the NC red copper center distinct from that of blue copper centers. In particular, the red copper center has a higher coordination number and lacks the long Cu-S(Met) and short Cu-S(Cys) bond distances characteristic of blue copper. Moreover, the red copper center is square pyramidal whereas blue copper is typically distorted tetrahedral. Analysis of the NC structure provides insight into possible functions of this new type of biological copper center.  相似文献   

15.
Crystals of self complementary DNA hexamers d(CACGTG), d(CCGCGG) and d(GGCGCC) were grown by vapour diffusion technique and studied by microRaman and microIR spectroscopies. The oligonucleotides were studied in parallel in solution by vibrational spectroscopy. A B- greater than Z transition was detected by Raman spectroscopy during the crystallization process for d(CACGTG). Vibrational spectroscopy shows that the d(GGCGCC) crystals adopt a B geometry. On the contrary the d(CCGCGG) sequence which is shown to be able to undergo in solution or in films quite easily the B- greater than Z transition, remains trapped in crystals in a geometry which may correspond to an intermediate conformation often proposed in models of the B- greater than Z transition. The crystals used in this study were characterized by X-ray diffraction. The unit cell and space group have been determined.  相似文献   

16.
Reaction of carboxypeptidase A crystals with diazotized arsanilic acid uniquely modifies Tyr-248 to form a monazo derivative, which-in solution-forms an intramolecular inner-sphere coordination complex in the active site zinc atom. tarsanilazocarboxypeptidase exhibits spectral properties that are closely similar to those of the model complex, tetrazolylazo-N-carbobenzoxytyrosine Zn2+, with a distinctive maximum at 510 nm. In addition, its circular dichroic spectrum reveals a negative extremum at this wavelength, also characteristic of this complex. Both spectra are exquisitely responsive to pth changes and serve to monitor formation and dissociation of the metal-azophenol complex. Two pKapp at 7.7 and 9.5 delineate the pH range over which the probe characteristics most effectively gauge conformational features of the active center of arsanilazcarboxypeptidase. Other environmental parameters, e.g., substrates and inhibitors, as well as crystallization of the enzyme also critically influence the formation and dissociation of the complex; the response of the probe suggests that they induce conformational movement of the azoTyr-248 residue away from the zinc atom. tthe now available chemical, functional, structural data bearing on the spatial relationships of Tyr-248 and Zn, both thought critical to catalysis, are evaluated, based on spectra of arsanilazo- and nitrocarboxypeptidase crystals and solutions as well as on detailed kinetic analyses of the native enzyme in both physical states and based on the X-ray structure analysis of the native enzyme and its Gly-L-Tyr complex. Collectively all of the data show that the conformation of carboxypeptidase in crystals differs from that in solution. Moreover, reexamination of the original X-ray maps reported in 1968 and thought to preclude a Tyr-248-Zn interaction now leads to the conclusion that in up to 25 per cent of the molecules in the crystals ttyr-248 interacts with the active site zinc atom (W.D. Lipscomb (1973), Proc. Nat. Acad. Sci U.S. 70, 3797). Thus, even in the crystals the enzyme exists in at least two different conformations. In one of these Tyr-248 is near while in the other it is far from the zinc atom. The spectral effects of Gly-L-Tyr and beta-phenylpropionate on solutions of arsanilazo- and of nitrocarboxypeptidase demonstrate that during the catalytic process Tyr-248 moves away from the zinc atom. This implies a mechanistic role for Tyr-248 different from that postulated on the basis of X-ray crystallographic analysis. Indeed, the proximity of ttyr-248 to the zinc atom, when altered by substrates and inhibitor, may reflect certain of the properties characteristic of the entatic, active site.  相似文献   

17.
Three crystal structures have been determined of active site specific substituted Cd(II) horse liver alcohol dehydrogenase and its complexes. Intensities were collected for the free, orthorhombic enzyme to 2.4-A resolution and for a triclinic binary complex with NADH to 2.7-A resolution. A ternary complex was crystallized from an equilibrium mixture of NAD+ and p-bromobenzyl alcohol. The microspectrophotometric analysis of these single crystals showed the protein-bound coenzyme to be largely NADH, which proves the complex to consist of CdII-LADH, NADH, and p-bromobenzyl alcohol. Intensity data for this abortive ternary complex were collected to 2.9-A resolution. The coordination geometry in the free Cd(II)-substituted enzyme is highly similar to that of the native enzyme. Cd(II) is bound to Cys-46, Cys-174, His-67, and a water molecule in a distorted tetrahedral geometry. Binding of coenzymes induces a conformational change similar to that in the native enzyme. The interactions between the coenzyme and the protein in the binary and ternary complexes are highly similar to those in the native ternary complexes. The substrate binds directly to the cadmium ion in a distorted tetrahedral geometry. No large, significant structural changes compared to the native ternary complex with coenzyme and p-bromobenzyl alcohol were found. The implications of these results for the use of active site specific Cd(II)-substituted horse liver alcohol dehydrogenase as a model system for the native enzyme are discussed.  相似文献   

18.
The visible absorption of crystals of Co(II)-substituted human carbonic anhydrase II (Co(II)-HCA II) were measured over a pH range of 6.0-11.0 giving an estimate of pKa 8.4 for the ionization of the metal-bound water in the crystal. This is higher by about 1.2 pKa units than the pKa near 7.2 for Co(II)-CA II in solution. This effect is attributed to a nonspecific ionic strength effect of 1.4 M citrate in the precipitant solution used in the crystal growth. A pKa of 8.3 for the aqueous ligand of the cobalt was measured for Co(II)-HCA II in solution containing 0.8 M citrate. Citrate is not an inhibitor of the catalytic activity of Co(II)-HCA II and was not observed in crystal structures. The X-ray structures at 1.5-1.6 Å resolution of Co(II)-HCA II were determined for crystals prepared at pH 6.0, 8.5 and 11.0 and revealed no conformational changes of amino-acid side chains as a result of the use of citrate. However, the studies of Co(II)-HCA II did reveal a change in metal coordination from tetrahedral at pH 11 to a coordination consistent with a mixed population of both tetrahedral and penta-coordinate at pH 8.5 to an octahedral geometry characteristic of the oxidized enzyme Co(III)-HCA II at pH 6.0.  相似文献   

19.
Functional anion binding sites in dogfish M4 lactate dehydrogenase   总被引:3,自引:0,他引:3  
X-ray diffraction data have been collected from dogfish M4 lactate dehydrogenase crystals in which ammonium sulfate had been exchanged by citrate at pH 6.0 and 7.8. Data were also collected from crystals which had been soaked in 0.1 m oxamate, a lactate dehydrogenase inhibitor. The difference electron density maps obtained have been interpreted in terms of two exchangeable anion binding sites, one at the active center and one between two subunits. The active center site is coincident with the substrate binding site in a ternary complex, while the subunit boundary site, which has been observed in several different forms of the enzyme, may be involved in stabilizing the tetramer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号