首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fast, simple and selective HPLC method has been developed for the assay of aciclovir, ganciclovir, and penciclovir in human plasma by coupling HPLC with fluorescence detection. 200 microl plasma, with guanosine 5'-monophosphate as an internal standard, was subjected to protein precipitation with a 7% [v/v] aqueous perchloric acid solution. The 40 microl supernatant was injected into a Diamonsil-5 microm C18 column. Aciclovir, ganciclovir, and penciclovir, with solvents composed of methanol and 0.08% aqueous trifluoroacetic acid solution, were analysed by fluorescence detection at 260 nm (excitation) and 380 nm (emission) using a gradient elution program. The calibration curves of all three analytes were linear between 20 and 2000 ng/ml. The mean absolute recoveries of aciclovir, ganciclovir, and penciclovir were 93.91+/-1.20%, 97.42+/-0.75%, and 99.01+/-3.30%, respectively. The mean inter-day CVs for aciclovir, ganciclovir, and penciclovir, were within 1.29-7.30%, 1.00-5.53%, and 1.19-3.54%, respectively. The intra-day bias for aciclovir, ganciclovir, and penciclovir ranged from -2.01 to 6.33%, 1.81 to 7.37%, and 1.42 to 6.91%, respectively. The method has been validated and applied in pharmacokinetic studies in Chinese adult renal transplant patients.  相似文献   

2.
Assay of coenzyme Q(10) in plasma by a single dilution step   总被引:2,自引:0,他引:2  
A new method is described for determining coenzyme Q(10) (CoQ(10)) in plasma. The method is based on oxidation of CoQ(10) in the sample by treating it with para-benzoquinone followed by extraction with 1-propanol and direct injection into the HPLC apparatus. This method achieves a linear detector response for peak area measurements over the concentration range of 0.05-3.47 microM. Diode array analysis of the peak was consistent with CoQ(10) spectrum. Supplementation of the samples with known amounts of CoQ(10) yielded a quantitative recovery of 96-98.5%; the method showed a level of quantitation of 1.23 nmol per HPLC injection (200 microl of propanol extract containing 33.3 microl of plasma). A correlation of r = 0.99 (P < 0.0001) was found with a reference electrochemical detection method. Within run precision showed a CV% of 1.6 for samples approaching normal values (1.02 microM). Day-to-day precision was also close to 2%.  相似文献   

3.
A sensitive HPLC method has been developed for the assay of imatinib in human plasma, by off-line solid-phase extraction followed by HPLC coupled with UV-Diode Array Detection. Plasma (750 microl), with clozapine added as internal standard, is diluted 3 + 1 with water and subjected to a solid-phase extraction on a C18 cartridge. After matrix components elimination with 2000 microl of water (in two aliquots of 1000 microl), imatinib is eluted with 3 x 500 microl MeOH. The resulting eluate is evaporated under nitrogen at room temperature and is reconstituted in 180 microl 50% methanol. A 50 microl volume is injected onto a Nucleosil 100-5 microm C18 AB column. Imatinib is analyzed using a gradient elution program with solvent mixture constituted of methanol and water containing both 0.05% ammonium acetate. Imatinib is detected by UV at 261 nm. The calibration curves are linear between 0.1 and 10 microg/ml. The limit of quantification and detection are 0.05 and 0.01 microg/ml, respectively. The mean absolute recovery of imatinib is 96%. The method is precise with mean inter-day CVs within 1.1-2.4%, and accurate (range of inter-day deviations -0.6 to +0.7%). The method has been validated and is currently being applied in a clinical study assessing the imatinib plasma concentration variability in a population of chronic myeloid leukemia- and gastro-intestinal stromal tumor-patients.  相似文献   

4.
Methotrexate (MTX) has been widely used at low dose for the treatment of different diseases including rheumatoid arthritis. MTX might be present in plasma in free form, and in blood cells in methotrexate polyglutamate (MTXPG). A rapid and sensitive HPLC method was developed for the determination of plasma MTX level, whole-blood MTX level, and whole-blood total MTX (MTX+MTXPG) level. To determine plasma MTX level or whole-blood MTX level, a 0.2-ml aliquot of plasma or whole blood (after a freeze-thaw cycle to break blood cells) was well mixed with 0.8 ml methanol and centrifuged. To determine whole-blood total MTX level, a 0.1-ml aliquot of whole blood (after a freeze-thaw cycle) was mixed with 80 microl ascorbic acid (114 mM) and incubated at 37 degrees C for 2h to enzymatically convert the MTXPG to MTX. Then 20 microl NaOH solution (0.5M) and 0.8 ml methanol were added and mixed well. After centrifugation, a 0.5-ml aliquot of the supernatant was evaporated to dryness and re-dissolved in 0.2 ml hydrochloric acid (10mM). Methylene chloride (0.2 ml) was added and mixed well. After centrifugation, the top aqueous layer was injected to HPLC for analysis. After the MTX was eluted from the HPLC column, it was electrochemically oxidized and detected by a fluorescence detector. Recoveries of spiked MTX at ppb (ng/ml) level were between 87.9 and 118% with within-day relative standard deviation less than 5.2% and day-to-day relative standard deviation less than 9.8%. The limit of detection (LOD) and limit of quantitation (LOQ) of the described method were 1.2 and 2.6 ng/ml, respectively.  相似文献   

5.
6.
An HPLC method previously described for the assay of amprenavir (APV), ritonavir (RTV), indinavir (IDV), saquinavir (SQV), nelfinavir (NFV), lopinavir (LPV), atazanavir (ATV), nevirapine (NVP) and efavirenz (EFV) can be also conveniently applied, with minor gradient program adjustment, for the determination of the novel non-peptidic HIV protease inhibitor tipranavir (TPV) in human plasma, by off-line solid-phase extraction (SPE) followed by HPLC coupled with UV-diode array detection (DAD). After viral inactivation by heat, the plasma is diluted with phosphate buffer (pH 7), and subjected to a SPE on a C18 cartridge. Matrix components are eliminated with a solution of 0.1% H3PO4 solution neutralised to pH 7, and TPV is eluted with MeOH. The resulting eluate is evaporated and reconstituted in 100 microl MeOH/H2O 50/50. A 40 microl volume is injected onto a Nucleosil C18 AB column and TPV is analysed by UV detection at 201 nm using a gradient elution program constituted of MeCN and phosphate buffer adjusted to pH 5.12 and containing 0.02% sodium heptanesulfonate. The calibration curves are linear up to 75 microg/ml, with a lower limit of quantification of 0.125 microg/ml. The mean absolute recovery of TPV is 77.1+/-4.0%. The method is precise with mean inter-day coefficient of variations (CVs) within 2.2-3.4%, and accurate (range of inter-day deviations from 0.7 to 1.2%). The method has been validated and is currently applied to the monitoring of TPV plasma levels in HIV patients.  相似文献   

7.
A rapid, sensitive and simple high-performance liquid chromatographic (HPLC) method with ultraviolet detector (UV) has been developed for the determination of bifendate in 100 microl plasma of rats. Sample preparation was carried out by deproteinization with 100 microl of acetonitrile. A 20 microl of supernatant was directly injected into the HPLC system with methanol-double distilled water (65/35, v/v) as the mobile phase at a flow rate of 1.0 ml/min. Separation was performed with a microBondapak C(18) column at 30 degrees C. The peak was detected at 278 nm. The calibration curve was linear (r(2)=0.9989) in the concentration range of 0.028-2.80 microg/ml in plasma. The intra- and inter-day variation coefficients were not more than 6.55% and 6.07%, respectively. The limit of detection was 5 ng/ml. The mean recoveries of bifendate were ranged from 94.53% to 99.36% in plasma. The present method has been successfully applied to the pharmacokinetic study of bifendate liposome in rats.  相似文献   

8.
A simple and sensitive high-performance liquid chromatographic (HPLC) method is established for the trace determination of tobramycin in human plasma by derivatization. The method is based on the chemical derivatization of aminoglycoside antibiotic, tobramycin in human plasma, with 1-naphthyl isothiocyanate (NITC) in pyridine at 70 degrees C. After derivatization reaction, a methylamine/acetonitrile solution was added to the reaction mixture to eliminate the excess derivatizing agent and shorten the analysis time. The resulting derivative was separated using a Purospher STAR RP-18e column and a water-acetonitrile (50:50, v/v) mobile phase (detection at 230 nm). Optimization conditions for the derivatization of tobramycin were investigated by HPLC. The linear range for the quantitation of tobramycin in spiked plasma was over 0.93-9.34 mg/l; the detection limit (signal-to-noise ratio=3; injection volume, 10 microl) was about 0.23 mg/l. The relative standard deviation was less than 2.1% for intra-day assay (n=6) and 5.2% for inter-day assay (n=6) and relative recoveries were found greater than 99%.  相似文献   

9.
An adaptation of the HPLC method previously described for the simultaneous assay of amprenavir, ritonavir, indinavir, saquinavir, nelfinavir and efavirenz after solid-phase extraction is proposed here for the separate analysis of the newer PI lopinavir (LPV) and the NNRTI nevirapine (NVP). After viral inactivation by heat (60 degrees C for 60 min), plasma (600 microl), with clozapine added as internal standard, is diluted 1+1 with phosphate buffer pH 7 and subjected to a solid-phase extraction on a C(18) cartridge. Matrix components are eliminated with 2 x 500 microl of a solution of 0.1% H(3)PO(4) neutralised with NaOH to pH 7. LPV and NVP are eluted with 3 x 500 microl MeOH. The resulting eluate is evaporated under nitrogen at room temperature and is reconstituted in 100 microl MeOH 50%. A 40-microl volume is injected onto a Nucleosil 100, 5 microm C(18) AB column. LPV and NVP are analysed separately using a gradient elution program with solvents constituted of MeCN and phosphate buffer adjusted to pH 5.07 and containing 0.02% sodium heptanesulfonate. LPV and NVP are detected by UV at 201 and 282 nm, respectively. The calibration curves are linear up to 10 microg/ml. The mean absolute recovery of LPV and NVP is 91% and 88%, respectively. The method is precise with mean inter-day C.V.s within 2.1-6.6% and 0.9-1.7% for LPV and NVP, and accurate (range of inter-day deviations -1.1 to +2.4%, and -1.9 to +0.8%, for LPV and NVP, respectively). The method has been validated and is currently applied to the monitoring of LPV and NVP in HIV patients, and has been notably applied in a study aimed at assessing the extent of transplacental passage of nevirapine and PIs, notably lopinavir, at the time of delivery in pregnant HIV-infected women.  相似文献   

10.
A GLP-validated, sensitive and specific LC-MS-MS method for the quantification of paclitaxel and its 6-alpha- and 3'-p-hydroxy metabolites is presented. A 0.400 ml plasma aliquot is spiked with a (13)C(6)-labeled paclitaxel internal standard and extracted with 1 ml methyl-tert.-butyl ether. The ether is evaporated and the residue is reconstituted in 130 microl of 30% aqueous acetonitrile (ACN) containing 0.1% trifluoroacetic acid. Isocratic HPLC analysis is performed by injecting 50 microl of the reconstituted material onto a 50x2.1 mm C(18) column with an ACN-water-acetic acid (50:50:0.1) mobile phase at 200 microl/min flow. Detection is by positive ion electrospray followed by multiple reaction monitoring of the following transitions: paclitaxel (854>509 u), 6-alpha-hydroxy paclitaxel (870>525 u), 3'-p-hydroxy paclitaxel (870>509 u) and internal standard (860>509 u). Quantification is by peak area ratio against the 13C(6) internal standard. The method range is 0.117-117 nM (0.1-100 ng/ml) for paclitaxel and both metabolites using a 0.400 ml human or dog plasma sample. Analysis time per sample is less than 5 min.  相似文献   

11.
12.
Three phase liquid phase microextraction (three phase LPME) technique coupled with HPLC-UV has been applied as a sensitive and efficient sample preparation method to determine phenylacetic acid (PAA) as a biomarker of depressive disorders and phenylpropionic acid (PPA) in biological fluids. The compounds were extracted from 3.0 ml aqueous solution with the adjustment of pH at a fixed value in the range of 2.0-3.5 (donor solution) into an organic phase (1-hexanol) layered on the surface of the donor solution and finally back-extracted into 4.0 microl of the acceptor microdrop (pH 11.1) located at the end of the microsyringe needle. After a prescribed back-extraction time, the acceptor microdrop was withdrawn into the microsyringe and then directly injected into the HPLC system. In order to achieve maximum extraction efficiency, different parameters affecting the extraction conditions were optimized. At the optimum conditions (donor solution: 2.3M Na(2)SO(4), pH 2.0-3.5; organic membrane: 95 microl of 1-hexanol; acceptor solution: 4.0 microl of 0.1M NH(3)/NH(4)(+) with pH 11.1; donor solution temperature: 45-50 degrees C; extraction time: 20 min and back-extraction time: 12 min), up to 110-fold enrichment factor was obtained. The calibration curve for these analytes was linear in the range of 1-5000 microg/l with r(2)>0.998. The intraday and interday RSD% were below 6.5% and the limits of detection (LODs) for both analytes were 0.2 microg/l (based on S/N=3). The proposed technique is a low cost, simple and sensitive method with highly clean-up effect. Finally, this technique was successfully utilized for the detection of target analytes in human urine, serum and plasma.  相似文献   

13.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantification of donepezil, a centrally and selectively acting acetyleholinesterase inhibitor, in human plasma. After sample alkalinization with 0.5 ml of NaOH (0.1 M), the test compound was extracted from I ml of plasma using isopropanol-hexane (3:97, v/v). The organic phase was back-extracted with 75 microl of HCl (0.1 M) and 50 microl of the acid solution was injected into a C18 STR ODS-II analytical column (5 microm, 150x4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.02 M, pH 4.6), perchloric acid (6 M) and acetonitrile (59.5:0.5:40, v/v) and was delivered at a flow-rate of 1.0 ml/min at 40 degrees C. The peak was detected using a UV detector set at 315 nm, and the total time for a chromatographic separation was approximately 8 min. The method was validated for the concentration range 3-90 ng/ml. Mean recoveries were 89-98%. Intra- and inter-day relative standard deviations were less than 7.3 and 7.6%, respectively, at the concentrations ranging from 3 to 90 ng/ml. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it could be successfully applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

14.
Asymmetric dimethylarginine (ADMA; N(G),N(G)-dimethyl-L-arginine) is the most important endogenous inhibitor of nitric oxide synthase and a potential risk factor for cardiovascular diseases. This article describes a gas chromatographic-tandem mass spectrometric (GC-tandem MS) method for the accurate quantification of ADMA in human plasma or serum and urine using de novo synthesized [2H(3)]-methyl ester ADMA (d(3)Me-ADMA) as the internal standard. Aliquots (100 microl) of plasma/serum ultrafiltrate or native urine and of aqueous solutions of synthetic ADMA (1 microM for plasma and serum; 20 microM for urine) are evaporated to dryness. The residue from plasma/serum ultrafiltrate or urine is treated with a 100 microl aliquot of 2M HCl in methanol, whereas the residue of the ADMA solution is treated with a 100 microl aliquot of 2M HCl in tetradeuterated methanol. Methyl esters are prepared by heating for 60 min at 80 degrees C. After cooling to room temperature, the plasma or urine sample is combined with the d(3)Me-ADMA sample, the mixture is evaporated to dryness, the residue treated with a solution of pentafluoropropionic (PFP) anhydride in ethyl acetate (1:4, v/v) and the sample is incubated for 30 min at 65 degrees C. Solvent and reagents are evaporated under a stream of nitrogen gas, the residue is treated with a 200 microl aliquot of 0.4M borate buffer, pH 8.5, and toluene (0.2 ml for plasma, 1 ml for urine). Reaction products are extracted by vortexing for 1 min, the toluene phase is decanted, and a 1 microl aliquot is injected into the GC-tandem MS instrument. Quantitation is performed by selected reaction monitoring (SRM) of the common product ion at m/z 378 which is produced by collision-induced dissociation of the ions at m/z 634 for endogenous ADMA and m/z 637 for d(3)Me-ADMA. In plasma and urine of healthy humans ADMA was measured at concentrations of 0.39+/-0.06 microM (n=12) and 3.4+/-1.1 micromol/mmol creatinine (n=9), respectively. The limits of detection and quantitation of the method are approximately 10 amol and 320 pM of d(3)Me-ADMA, respectively.  相似文献   

15.
The aim of this study was to develop a rapid and sensitive HPLC method with UV detection for the estimation of imatinib from the plasma of patients with chronic myeloid leukemia (CML). The robustness of the method was checked by conducting first dose pharmacokinetics on blood samples from four patients who had been administered Gleevec (100 mg) in an oral dose. Samples were prepared in a simple and single step by precipitating the plasma proteins with methanol and injecting 50 microl aliquot from supernatant was subjected for analysis. Assay was conducted using a C8 column (250 mm x 4.6 mm, 5 microm particle size) under isocratic elution with 0.02 M potassium dihydrogen phosphate-acetonitrile (7:3, v/v) at a flow rate of 1 ml/min and detected using photodiode array at 265 nm. Calibration plots in spiked plasma were linear in a concentration range of 0.05-25 microg/ml. The inter and intra-day variation of standard curve was <4% (R.S.D.). This method could be a simple and quick method for the estimation of imatinib from the patient's plasma.  相似文献   

16.
Tadalafil is a potent reversible phosphodiesterase-5 inhibitor used for the treatment of erectile dysfunction. This study describes a simple and sensitive high-performance liquid chromatographic (HPLC) method for the determination of tadalafil in 50 microl of rat plasma. Tadalafil and the internal standard lamotrigine were extracted with 0.5 ml of tert-butyl methyl ether, after the samples alkalinized with 20 microl of sodium hydroxide solution (1N). Chromatographic separation was achieved on a C18 column with the mobile phase of acetonitrile-water containing 20 mM phosphate buffer (pH 7) (35/65, v/v), at a flow rate of 1 ml/min. The eluant was detected at 290 nm. The retention time was about 4.5 min for lamotrigine and 15 min for tadalafil. No endogenous substances were found to interfere. Calibration curves were linear from 10 to 2000 ng/ml. The recovery of tadalafil from plasma was greater than 77%. The limit of quantitation was 10 ng/ml. The intra- and inter-day imprecision (expressed as coefficient of variation, C.V.) did not exceed 10.7%, and the accuracy was within 5.9% deviation of the nominal concentration. The method is suitable in pharmacokinetic investigation and monitoring tadalafil concentration.  相似文献   

17.
A simple, rapid HPLC method for quantification of mitoxantrone in mouse plasma and tissue homogenates in the presence of a liposome entrapped mitoxantrone formulation (LEM-ETU) is described. Sample preparation is achieved by protein precipitation of 100 microl plasma or 200 microl tissue homogenate with an equal volume of methanol containing 0.5 M hydrochloric acid:acetonitrile (90:10, v/v). Ametantrone is used as the internal standard (i.s.). Mitoxantrone and i.s. are separated on a C18 reversed phase HPLC column, and quantified by their absorbance at 655 nm. In plasma, the standard curve is linear from 5 to 1000 ng/ml, and the precision (%CV) and accuracy (percentage of nominal concentration) are within 10%. In mouse tissue (heart, kidney, liver, lung, and spleen) homogenates (5%, w/v), the standard curve is linear from 25 to 2000 ng/ml, with acceptable precision and accuracy. The method was used to successfully quantify mitoxantrone in mouse plasma and tissue samples to support a pharmacokinetic study of LEM-ETU in mice.  相似文献   

18.
A simple high-performance liquid chromatographic (HPLC) method has been developed for the determination of epimedin C in rat plasma and applied to a pharmacokinetic study in rats after administration of Herba Epimedii extract. After addition of carbamazepine as an internal standard plasma samples were extracted with ethyl acetate. HPLC analysis of the extracts was performed on a Hypersil ODS2 analytical column using acetonitrile -0.4% acetic acid (25:75, v/v) as the mobile phase. The UV detector was set at 260 nm. The standard curve was linear over the range 0.05-4.0 microg/mL. The lower limit of quantification was 0.05 microg/mL. The HPLC method developed could be easily applied to the determination and pharmacokinetic study of epimedin C in rat plasma after giving the animals Herba Epimedii extract.  相似文献   

19.
Daidzin, a soy-derived biologically active natural product, has been reported to inhibit mitochondrial aldehyde dehydrogenase and suppress ethanol intake. This paper describes a method for the determination of daidzin in rat blood. After administration of daidzin, blood samples were periodically collected from awake, freely moving animals by a Culex automated blood sampler. Daidzin was extracted from 50 microl of diluted blood (blood and saline at a ratio of 1:1) with ethyl acetate. Chromatographic separation was achieved within 12 min using a microbore C(18) (100 x 1.0 mm) 3 microm column with a mobile phase containing 20 mM sodium acetate, 0.25 mM EDTA, pH 4.3, 4% methanol and 11% acetonitrile at a flow-rate of 90 microl/min. Detection was attained using a four-channel electrochemical detector with glassy carbon electrodes using oxidation potentials of +1100, 950, 850, 750 mV vs. Ag/AgCl. The limit of detection for daidzin in rat plasma was 5 ng/ml at a signal-to-noise ratio of 3:1. The extraction recovery of daidzin from rat plasma was over 74%. Linearity was obtained for the range of 25-1000 ng/ml. The intra- and inter-assay precisions were in the ranges of 2.7-6.6 and 1.9-3.7%, respectively. This method is suitable to routine in vivo monitoring of daidzin in rat plasma.  相似文献   

20.
The objective of this study was to establish a hepatic lipase (HL) assay method that can be applied to automatic clinical analyzers. Seventy-four hyperlipidemic subjects (men/women 45/29) were recruited. Lipase activity was assayed measuring the increase in absorbance at 546 nm due to quinonediimine dye production. Reaction mixture R-1 contained 50 mM Tris-HCl (pH 9.5), 0.5 mM glycerol-1,2-dioleate, 0.4% (unless otherwise noted) polyoxyethylene-nonylphenylether, 3 mM ATP, 3 mM MgCl(2), 1.5 mM CaCl(2), monoacylglycerol-specific lipase, glycerol kinase, glycerol-3-phosphate oxidase, 0.075% N,N-bis-(4-sulfobutyl)-3-methylaniline-2 Na, peroxidase, ascorbic acid oxidase. Reaction mixture R-2 contained 50 mM Tris-HCl (pH9.5), 0.15% 4-aminoantypirine. Automated assay for activity was performed with a Model 7080 Hitachi analyzer. In the lipase assay, 160 microl of R-1 was incubated at 37 degrees C with 3 microl of samples for 5 min, and 80 microl of R-2 was added. Within-run coefficient of variations was 0.9-1.0%. Calibration curve of lipase activity was linear (r = 0.999) between 0 and 320 U/l. Analytical recoveries of purified HL added to plasma were 96.6-99.8%. HL activity in postheparin plasma measured in this method had a closer correlation with HL mass by a sandwich ELISA (r = 0.888, P < 0.0001) than those in the conventional method using [(14)C-]triolein (r = 0.730, P < 0.0001). This assay method for HL activity can be applied to an automatic clinical analyzer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号