首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endangered Galápagos Cormorant, Phalacrocorax harrisi, is unique among the species of the Phalacrocoracidae in being flightless and sequentially polyandrous. It has had a vexed taxonomic history, variously being lumped with all the species in Phalacrocorax, being accorded its own genus, Nannopterum, or being included in Leucocarbo or Compsohalieus. Different authorities have similarly suggested a number of different species as being its closest relative. Here we use novel mitochondrial DNA sequence data to show that the Galápagos Cormorant is related to the sister pair of the mainland Americas, the Double-crested Cormorant, P. auritus, and the Neotropic Cormorant, P. brasilianus. This trio of species has high statistical support (Bayesian posterior probability of 1.00; NJ bootstrap 98%; MP bootstrap 91%). The Galápagos Cormorant is thus a relatively recent offshoot of the mainland form, which has subsequently evolved flightlessness. Until the phylogeny of the cormorants is more clearly resolved, we recommend the continued use of Phalacrocorax for all species.  相似文献   

2.
Ceutorhynchus assimilis has been selected as a potential biological control agent of Lepidium draba, which is a Eurasian invasive weed in North America. Preliminary studies indicated specificity of this weevil collected in southern France on L. draba. This result was in discord with the pest status of C. assimilis found in the literature. Host-specificity tests based both on field and laboratory experiments showed heterogeneity in the host spectrum of the weevils reared from different host-plants as determined by larval development. However, no distinguishable morphological differences could be visually detected between the populations feeding on different host-plants. All sampled populations of weevils were polyphagous as adults. Weevils reared from L. draba were specific to this plant for their complete larval development. Conversely, populations living on other wild and cultivated Brassicaceae species were not able to use L. draba as a host plant. Such differentiation is further highlighted by other biological aspects such as plant infestation rates, sex-ratio, duration of larval development, and differences in the timing of their life cycles. These results demonstrate that C. assimilis, an insect species formerly considered as a pest of Brassicaceae, is characterized by its host-range variability, with one population being potentially useful in the biological control of L. draba. Moreover, this example points to the need to test multiple populations of biological control agents in assessing risk.  相似文献   

3.
Primers were developed for the amplification and sequencing of the mitochondrial control region of Galápagos land (Conolophus) and marine (Amblyrhynchus) iguanas. Sequences were obtained for four land iguana samples from two islands and for 28 marine iguana samples from three islands. A series of 70–80 bp tandem repeats adjacent to the control region are described and preliminary quantification of intra‐ and interspecific sequence divergence is included.  相似文献   

4.
Five microsatellite loci were isolated from the Galápagos weevil Gerstaeckeria galapagoensis. Polymorphism ranged from two to seven alleles, and observed and expected heterozygosities ranged from 0.286 to 0.917 and 0.254 to 0.683, respectively.  相似文献   

5.
The Madagascan endemic, Bryophyllum delagoense (Crassulaceae), is a major weed in Queensland, Australia. Despite having first been recorded in Australia in the 1940s, it is far more invasive there than on the African mainland where it was introduced more than 170 years ago. This may be due to a number of factors, one of which could be the occurrence of new natural enemy associations in southern Africa. Among the insects of crassulaceous plants that have extended their host ranges, a stem-boring weevil, Alcidodes sedi, was studied to elucidate its status as a natural enemy of B. delagoense in southern Africa and as a candidate biological control agent for introduction to Australia. Laboratory studies indicated that damage inflicted by adult and larval feeding caused significant reductions in stem length and number of leaves. Preliminary host-range trials revealed that A. sedi can complete its development on other species in the Crassulaceae, including most of the introduced Bryophyllum species and some Kalanchoe species native to South Africa. Despite the oligophagous nature of A. sedi and the fact that it can complete its development on a number of ornamental species in the Crassulaceae, it should be considered a potential biological control agent in Australia. All of the native Crassulaceae in Australia are in the genus Crassula, most of which are very small and therefore unlikely to support the development of a large weevil like A. sedi. However, additional host-range trials will have to be undertaken in Australia to determine whether the weevil can be considered safe for release.  相似文献   

6.
Human activity has facilitated the introduction of a number of alien mammal species to the Galápagos Archipelago. Understanding the phylogeographic history and population genetics of invasive species on the Archipelago is an important step in predicting future spread and designing effective management strategies. In this study, we describe the invasion pathway of Rattus rattus across the Galápagos using microsatellite data, coupled with historical knowledge. Microsatellite genotypes were generated for 581 R. rattus sampled from 15 islands in the archipelago. The genetic data suggest that there are at least three genetic lineages of R. rattus present on the Galápagos Islands. The spatial distributions of these lineages correspond to the main centers of human settlement in the archipelago. There was limited admixture among these three lineages, and these finding coupled with low rates of gene flow among island populations suggests that interisland movement of R. rattus is rare. The low migration among islands recorded for the species will have a positive impact on future eradication efforts.  相似文献   

7.
8.
Visceral leishmaniasis is a zoonosis whose primary vector in Brazil is the sandfly Lutzomyia longipalpis Lutz & Neiva. Presently, efforts to control the vector have not been effective in reducing the prevalence of disease. A possible alternative to current strategies is the biological control of the vector using entomopathogenic fungi. This study evaluates the effects of the fungus, Beauveria bassiana (Bals.) Vuilleman, in different developmental stages of L. longipalpis. Five concentrations of the fungus were utilized ranging from 104 to 108 conidia/ml, with appropriate controls. The unhatched eggs, larvae and dead adults exposed to B. bassiana were sown to reisolate the fungus. The fungus was subsequently identified by polymerase chain reaction (PCR) and DNA sequencing. Exposure to B. bassiana reduced the number of eggs that hatched by 59% (< 0.01). The longevity of infected adults was 5 days, significantly lower than that of the negative control which was 7 days (< 0.001). The longevity of the adult sandfly exposed to the positive chemical (pyrethroid, cypermetherin) control was less than 1 day. The effects of fungal infection on the hatching of eggs laid by infected females were also significant and dose-dependent (< 0.05). With respect to fungal post-infection growth parameters, only germination and sporulation were significantly higher than the fungi before infection (< 0.001). The identity of the reisolated fungus was confirmed by automated DNA sequencing post-passage in all insect stages. These data show that B. bassiana has good pathogenic potential, primarily on L. longipalpis larvae and adults. Consequently, the use of this fungus in sandfly control programs has potential in reducing the use of chemical insecticides, resulting in benefits to humans and the environment.  相似文献   

9.
We propose a method for using the literature to evaluate host ranges of parasitoids that are candidates for biological control introductions. Data on the parasitoids that attack a given host species can be used as negative evidence concerning the candidate whose host range is being evaluated. By compiling studies for a variety of host species, one can delineate those taxa unlikely to be attacked by the candidate. Using a retrospective case study of a parasitoid introduced into North America, we describe (1) this approach to using the literature to evaluate host range and (2) how well predictions based on such an evaluation match actual host range. Based on the host range of Macrocentrus grandii in Eurasia as reported in the literature, we predicted that the species in the genus Ostrinia are the most likely hosts. Of native North American species, Ostrinia obumbratalis is the only non-target species likely to be attacked by M. grandii. The predicted host range for North America matched the actual host range found in the field. This suggests that a careful literature review could be used as an important source of data on host range of parasitoid species proposed for introduction into a new environment.  相似文献   

10.
The biological control program for saltcedar (Tamarix spp.) has led to open releases of a specialist beetle (Chrysomelidae: Diorhabda elongata) in several research locations, but the controversy over potential impacts to native, nontarget plants of the genus Frankenia remains unresolved. To assess the potential for nontarget impacts under field conditions, we installed cultivated Frankenia spp. (primarily two forms of Frankenia salina but also including Frankenia jamesii) at locations in Nevada and Wyoming where D. elongata densities and saltcedar defoliation were expected to be very high, so insects would be near starvation with high probability of attacking nontargets if these were suitable hosts. Subsequent insect abundance was high, and only minor impact (<4% foliar damage) was observed on both forms of F. salina under these ‘worst case’ conditions; there was no impact to F. jamesii. No oviposition nor larval development were observed on any plants, there was no dieback of damaged F. salina stems, and plants continued growing once insect populations subsided. These results under ‘natural’ field conditions contrast with caged host-range tests in which feeding, development and minor oviposition occurred on the nontarget plant. Other ecological factors, such as distance from target plants to natural Frankenia spp. populations, inhospitable conditions for agent survival in such sites, and intrinsic insect behavior that makes colonization and/or genetic adaptation highly unlikely, lead us to conclude that nontarget impacts following program implementation will be insignificant or absent. Host range testing of new agents, while necessary to ensure safety, must put greater attention on assessing the ecological context where agents will be establishing, and on balancing speculated risks against potential benefits of biological control.  相似文献   

11.
Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross, is an invasive annual vine of Asian origin that has developed extensive monocultures, especially in disturbed open areas in the Mid-Atlantic region of the United States. A host-specific Asian weevil, Rhinoncomimus latipes Korotyaev, was approved for release in North America in 2004, and weevils have been reared at the New Jersey Department of Agriculture Beneficial Insect Laboratory since then. By the end of 2007 more than 53,000 weevils had been reared and released, mostly in New Jersey, but also in Delaware, Maryland, Pennsylvania, and West Virginia. The beetles established at 63 out of 65 sites (96.9%) where they were released between 2004 and 2007, with successful releases consisting of as few as 200 weevils. Weevils were recorded at 30 additional non-release sites in New Jersey, where they had dispersed at an average rate of 4.3 km/year. Standardized monitoring of fixed quadrats was conducted in paired release and control sites at eight locations. Significant differences in mile-a-minute weed populations in the presence and absence of weevils were found at three locations, with reduction in spring densities to 25% or less of what they had been at the start within 2–3 years at release sites, while weed densities at control sites were largely unchanged. Mile-a-minute weed populations at a fourth site were similarly reduced at the release site, but without control data for comparison due to rapid colonization of the paired control site. At the other four locations, all on islands, mile-a-minute weed populations were reduced at both release and control sites without large weevil populations developing, apparently due to environmental conditions such as late frost and extreme drought.  相似文献   

12.
The ornamental hybrid shrub, Lantana camara L. (lantana), is a serious environmental weed and has been targeted for biological control in South Africa since 1961. The established biocontrol agents cause insufficient levels of damage and additional natural enemies are required to reduce the invasiveness of this weed. The lantana mirid, Falconia intermedia (Distant), is a promising new agent that was imported from the Caribbean for life history and host-range studies. The nymphs and adults are leaf-suckers that cause chlorotic speckling, which reduces the photosynthetic capacity of the plant. Biological studies indicate that F. intermedia has considerable biocontrol potential, in that it has a high intrinsic rate of increase, the potential for multiple generations a year, highly mobile adults, and a high level of damage per individual. Host-specificity trials indicated that the lantana mirid has a narrow host range, with L. camara being the most suitable host, but several indigenous African species in the closely related genus Lippia are suitable alternative host plants. Under multiple-choice conditions, adults showed a significant and strong oviposition preference for L. camara over the Lippia species. A risk assessment of potential nontarget effects indicated that three Lippia species could sustain damage levels in the field. The relatively low probability of damage to indigenous species was considered a justified trade-off for the potentially marked impact on L. camara. The regulatory authorities accepted the results of this study and F. intermedia was released against L. camara in South Africa in April 1999.  相似文献   

13.
Due to the long-standing emphasis on only releasing host-specific agents, classical biological control of weeds has an enviable track record of few direct impacts to nontargets. However, even an agent whose host-range is restricted solely to the target weed can have indirect impacts. Such indirect impacts are most likely if, after release, the populations of the agent build up to high numbers without causing accompanying declines in the populations of the target weed. Therefore, it is advisable, prior to release, to demonstrate that the candidate agent is not only host-specific, but that it has clear potential to depress populations of the target weed. Prerelease efficacy assessments (PREA) of potential weed biocontrol agents are not yet common, and are most easily done in the region where both the target and the potential agent are native. We present an example of a PREA performed under strict containment conditions of an approved quarantine facility. A gall-forming fly, Parafreutreta regalis, from South Africa is being considered for release in California to control Cape-ivy, Delairea odorata. We conducted two trials exposing test Cape-ivy plants to two different densities of this fly, and, after approximately two months, comparing the growth of the galled vines to similar vines that had not been exposed to flies. Under both the high density (10 pairs of flies/plant) and low density (2 pairs/plant) treatments, the galled vines exhibited visible stunting, and the ungalled stems were longer, and had more nodes and larger leaves. These trials confirmed that relatively subtle, sublethal impacts on the target can be quantified, even under strict containment conditions, and this should encourage others to assess, prior to release, the potential impact of prospective agents on their proposed target.  相似文献   

14.
The cost of rearing the root-feeding weevil, Mogulones cruciger Herbst, to control the invasive weed houndstongue (Cynoglossum officinale L.) was determined for two managed production methods. Production in an insectary setting provides control over rearing and all adult weevils that emerge can be collected, but required facility investment and high labor input. Mass-rearing in a managed ‘field crop’ setting required less facilities and labor while the insects were multiplying, but capture of the emerged adults was challenging and labor intensive. Estimated per adult weevil production costs were $CDN 2.65 for the insectary approach, and from $CDN 0.10 to $CDN 0.14 for mass-rearing in the managed field crop setting. Even though collection of adult weevils in the field crop production system was challenging, commercial production of M. cruciger should consider use of this mass-rearing method because of its lower cost.  相似文献   

15.
Wolbachia is an endosymbiotic bacterium that infects a large percentage of arthropods and can affect the fitness of its host. Here we verified for the first time that the biological control agent Aphytis melinus DeBach is infected with a Wolbachia that causes complete cytoplasmic incompatibility, and conducted an insectary and field survey to determine the infection frequency. A. melinus appears to suffer fitness costs associated with infection based on measurements of longevity and fecundity. We also quantified the Wolbachia titers of A. melinus reared at different temperatures and found that, although not completely cured, increased temperature resulted in a significant reduction in the number of Wolbachia copies found in an individual wasp. Implications of our results for biological control are discussed.  相似文献   

16.
The New Zealand red admiral butterfly, Bassaris gonerilla (F.) (Lepidoptera: Nymphalidae), has been known as a non-target host for the introduced biological control agent Pteromalus puparum (L.) (Hymenoptera: Pteromalidae) for at least 35 years, but the level of parasitism has never been quantified. Pre-imaginal mortality in B. gonerilla was assessed over the southern summer of 2000/01 at six field sites in the Christchurch area of the South Island, New Zealand. Individual eggs and larvae were identified by tagging the stem of the Urtica ferox Forst.f. plant on which they were found and the fate of these individuals was checked weekly. These data were used to construct a partial life table for B. gonerilla. Egg mortality was very high (95%), with parasitism by an unidentified Telenomus sp. Haliday (Hymenoptera: Scelionidae) causing 57% mortality. Mortality in the larval and pupal stages increased at a constant rate with age and the major mortality factor was disappearance, which was assumed to be a result of predation and dispersal of larvae. The introduced biological control agent P. puparum parasitized 14% of B. gonerilla pupae sampled. However, parasitism by another exotic parasitoid, the self-introduced Echthromorpha intricatoria (F.) (Hymenoptera: Ichneumonidae), was even higher at 26%. A survey of pupal parasitism in three regions of New Zealand (Wellington, Christchurch, and Dunedin) revealed overall parasitism levels of 67% by E. intricatoria and 8% by P. puparum, but due to the difference in emergence times of B. gonerilla and its parasitoids, these are likely to be overestimates of percent parasitism. It is concluded that P. puparum has permanently enhanced mortality in B. gonerilla, but the level of mortality is low relative to egg parasitism by Telenomus sp., larval disappearance mortality, and pupal mortality due to E. intricatoria parasitism. To determine if this level of pupal parasitism has had population effects will require more data and the development of a population model for B. gonerilla.  相似文献   

17.
Xubida infusella (Walker) (Lepidoptera: Pyralidae) is potentially a useful biological control agent targeting Eichhornia crassipes (waterhyacinth) in the USA but many regions infested with waterhyacinth are also inhabited by an alternative native host, Pontederia cordata (pickerelweed). Experiments were conducted in Australia to assess the impact of X. infusella on pickerelweed compared to waterhyacinth where both these plants were available and X. infusella had already been released. Overall X. infusella had a greater impact on pickerelweed than on waterhyacinth. More than one larva per plant was required to reduce the total shoot dry weight of waterhyacinth but only one larva per plant reduced the total shoot dry weight of pickerelweed. Insect feeding caused the number of secondary shoots (daughter plants) of pickerelweed to double whereas the number of daughter plants produced by waterhyacinth remained unchanged. We suggest this indicates a considerable impact on pickerelweed rather than effective compensation for insect damage because the shoots produced were very small. Waterhyacinth produced a constant number of daughter plants when fed on by up to three larvae per plant. Higher nitrogen status of both species of host plant increased the rate of larval development and pupal weight of X. infusella. The weight and fecundity of X. infusella reared on pickerelweed were lower than those reared on waterhyacinth but large numbers of progeny were produced on both plant species. This experiment demonstrates a considerable impact of X. infusella on pickerelweed suggesting this plant is at risk from this agent if released in the USA where pickerelweed is present. The considerable impact on waterhyacinth demonstrates the potential for this insect to contribute to waterhyacinth control in countries where risk assessment favours release.  相似文献   

18.
We have cloned fourNeurospora crassagenes by complementation analysis. Cloned genes include thearginine-1(arg-1),methionine-6(met-6),unknown-7(un-7), andribosome production-1(rip-1) loci. Chromosome walks were initiated in ordered cosmid libraries from the cloned loci. A total of about 700 kb of theNeurosporagenome is covered in these walks.  相似文献   

19.
The nematode Phasmarhabditis hermaphrodita is used as a commercial biological control agent of slugs in the UK. Although it is known to affect other terrestrial mollusc species, its effects on freshwater molluscs are not known. The present study investigated the effects of P. hermaphrodita on the survival of juvenile Lymnaea stagnalis and Physa fontinalis, two common freshwater snails, at 'spray tank' concentration and a 50% diluted 'spray tank' concentration over a 14-day period. Survival of L. stagnalis was significantly reduced at both application levels but P. fontinalis suffered no mortalities over the experimental period. The possible differential mechanisms of pathology between the two host species are discussed.  相似文献   

20.
The potential of the leaf beetle Charidotis auroguttata as a biocontrol agent for cat’s claw creeper Macfadyena unguis-cati (Bignoniaceae), an environmental weed in Australia, and risk to non-target plants was evaluated under quarantine conditions. In no-choice tests, C. auroguttata adults and larvae fed on many plant species across different families, but egg to adult development occurred only on the target weed. However, when neonate larvae from the target weed were transferred onto Myoporum boninense australe (Myoporaceae), a non-target native plant, 11.7% completed development, as compared to 95% of larvae that completed development on the target weed. Larval development on this non-target species also took twice as long as on the target weed. No larvae completed development on other test plants. In choice tests, leaf area consumption by adults and larvae was significantly more on the target weed than on other plants, and oviposition occurred only on the target weed. In the no-choice demography trials, adults laid eggs from the second week after emergence on the target weed, with an average of 0.286 eggs/female/day, resulting in an 18-fold increase in the adult population over 16 weeks. On My. boninense australe adult survival remained high, but oviposition commenced only from the 10th week after emergence with an average of 0.023 eggs/female/day, and none of the eggs developed into adults. In the choice demography trials, oviposition on the target weed was evident from the fourth week onwards, while on the non-target plant oviposition commenced only from the 14th week. Only 10% of total adults and 11.3% of total eggs were found on the non-target plant, and none of these eggs developed into adults. Although the biocontrol agent can ‘spill-over’ from the target weed to the non-target native plant and cause adult feeding damage, the non-target plant could not sustain a viable insect population on its own. This agent was not approved for field release in Australia due to perceived risk to non-target species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号