首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the mammalian faunas of 24 landbridge islands in the Gulf of Maine (0.003–279 km2 in size), area accounts for 86% of variance in species richness. The slope, z , of the species-area curve is 0.247. For the seven largest islands (>10km2), the non-equilibrium hypothesis of relaxation following saturation in the post-Pleistocene is suggested by (1) elevated slope of the species-area curve (0.353), (2) correlation of species richness with island age ( r =- 0.81) and water depth to mainland ( r = -0.70), (3) highly non-random nested subsets of species ranked by island area, and (4) discontinuity with the extremely depauperate faunas of oceanic islands of the eastern North Atlantic. The alternative hypothesis of a dynamic equilibrium determined by recurrent immigration and extinction is supported by (1) documented turnover in 16 species, (2) correlation of species-area residuals with distance ( r = - 0.90), (3) distribution dependent upon vagility with reduction or absence of hibernators and other poor dispersers, (4) low levels of endemism, and (5) congruence of community structure with that of mainland fauna for both trophic level and body size.
I conclude that while some insular populations may be relictual, the faunal composition of most of these islands is dependent on recurrent colonization, much of which takes place over ice bridges. However, true equilibrium is perturbed by climatic shifts, range expansions, and human disturbance.  相似文献   

2.
Mark V. Lomolino 《Oecologia》1984,61(3):376-382
Summary In this paper I reviewed mammalian biogeography for 19 archipelagoes and tested the applicability of the equilibrium theory of island biogeography to mammalian faunas in general. The species-area and species-isolation relationships of terrestrial mammals were consistent with the basic predictions of the equilibrium theory. The z-values for the species-area relationship did not differ significantly from Preston's canonical value of 0.26 (P>0.50), and the modal z-value for non-volant mammals was 0.25. Moreover, z-values increased with isolation and decreased with vagility of the fauna in question. Furthermore, the strength of the species-isolation correlation was negatively correlated with island area and vagility (P<0.001).  相似文献   

3.
Several hypotheses attempt to explain the latitudinal gradient of species diversity, but some basic aspects of the pattern remain insufficiently explored, including the effect of scales and the role of beta diversity. To explore such components of the latitudinal gradient, we tested the hypothesis of covariation, which states that the gradient of species diversity should show the same pattern regardless of the scale of analysis. The hypothesis implies that there should be no gradients of beta diversity, of regional range size within regions, and of the slope of the species-area curve. For the fauna of North American mammals, we found contrasting results for bats and non-volant species. We could reject the hypothesis of covariation for non-volant mammals, for which the number of species increases towards lower latitudes, but at different rates depending on the scale. Also, for this group, beta diversity is higher at lower latitudes, the regional range size within regions is smaller at lower latitudes, and z, the slope of the species-area relationship is higher at lower latitudes. Contrarily bats did not show significant deviations from the predictions of the hypothesis of covariation: at two different scales, species richness shows similar trends of increase at lower latitudes, and no gradient can be demonstrated for beta diversity, for regional range size, or for the slopes of the species-area curve. Our results show that the higher diversity of non-volant mammals in tropical areas of North America is a consequence of the increase in beta diversity and not of higher diversity at smaller scales. In contrast, the diversity of bats at both scales is higher at lower latitudes. These contrasting patterns suggest different causes for the latitudinal gradient of species diversity in the two groups that are ultimately determined by differences in the patterns of geographic distribution of the species.  相似文献   

4.
As part of the International Kuril Island Project, we collected data on the distribution patterns of native terrestrial, non-volant mammals inhabiting the Kuril archipelago in the northwest Pacific. The Kurils have a complex physical geography, featuring both landbridge and oceanic islands in which small mammal-occupied islands are near mainlands, whereas larger islands are more isolated. This geography, in combination with the Kurils' cold climate, causes the mammalian fauna to deviate from traditional island biogeographic patterns. We examined these patterns and the mechanisms influencing them using both nestedness analyses and measures of compositional disharmony. We found, as island isolation increases, carnivores constitute an increasing fraction of the mammalian fauna. We suggest that this intriguing pattern of carnivore dominance occurs because species' dispersal abilities increase with increasing body size in the Kurils' cold climate. Substantial energy reserves and cold tolerance of large-bodied carnivores may have been a major factor in determining mam- malian colonization patterns, patterns which are perhaps indicative of the complex manners in which challenging climates impact mammalian community assemblages.  相似文献   

5.
The present study compares the bat faunas of the islands of the Gulf of Guinea. Species composition. endemism and hypothetical origins are discussed. All families present in the mainland region are found in Bioko, a typical landbridge island. Foliage gleaning guild species (Nycteridae) show limited colonization abilities. This is also true of the family Rhinolophidae, but not for the closely related family Hipposideridae. The majority of the oceanic island species are African bats which show a widespread distribution and, therefore, have a high ecological plasticity. The continental relatives of the two endemic species Myonycteris brachycephala and Chaerephon tomensis are restricted to relatively small forested areas. Bioko's bat fauna is the result of the recent isolation from a formerly land-connected community. The oceanic bat faunas originated from the establishment of incomers from other areas. Nevertheless, extinction appears in both vicariant and dispersal processes, as an important factor in modelling the current bat communities of the Gulf of Guinea islands.  相似文献   

6.
Mammals of Australian islands: factors influencing species richness   总被引:1,自引:0,他引:1  
Distribution patterns of indigenous non-volant terrestrial mammals on 257 Australian islands were examined in relation to environmental parameters and the effects of human-induced disturbance during prehistoric and historic times on island species numbers. Species occurrence for individual species, for taxonomic and trophic groups, and for all species together was related to environmental parameters using regression analysis and the extreme-value function model. Patterns of occurrence were examined separately within three major biogeographic regions derived by pattern analysis. The number of species known to have occurred on these islands during historic times was adequately predicted from area alone. No statistically significant improvement in predicted species number was gained by including island elevation, mean annual rainfall, isolation from the mainland or the number of potentially competing species present on the island. Similarly, no single factor other than area was found to influence consistently the presence of individual species. We conclude that the occurrence of indigenous non-volant terrestrial mammal species on these islands indicates a relictual rather than equilibrial fauna. Visitation by Aboriginal people during prehistoric times did not significantly increase mammal extinctions on islands. Examination of patterns of species richness for a given area on a regional basis showed that islands in and around Bass Strait and Tasmania (Bass Region) were the most species-rich, islands off the northern coasts were slightly less rich, and islands off the south western coasts had fewest species. This is in contrast to the usual latitudinal gradient in species richness patterns. However, islands off the northern and eastern coasts had an overall greater number of different species. When considered in relation to the number of different species of mammals occurring within each region, islands of a given size in Bass Region typically bore a higher proportion of this species pool than other regions. The Bass Region was found to be particularly rich in macropoid herbivores and dasyurid carnivores and insectivores. Analyses indicated that there is a very strong relationship between the presence of exotics as a whole and the local extinction of native mammals. Many mammal species formerly widespread on the Australian mainland are now restricted totally to islands (nine species) or are threatened with extinction on the mainland and have island populations of conservation significance (ten species). In all, thirty-five islands protect eighteen taxa of Australian threatened mammals. The land-use and management of these islands is of considerable importance to nature conservation. The introduction of exotic mammals to these islands should be prevented; any introductions that occur should be eradicated immediately.  相似文献   

7.
The extent of extinctions of mammals on islands   总被引:2,自引:0,他引:2  
Many of the world's oceanic and oceanic-like islands possessed endemic mammal faunas before they were colonized by humans. These faunas, unbalanced and impoverished compared to continental faunas, usually lacked large mammalian carnivores. In virtually all cases, the arrival of humans and their domesticants and commensals on these islands is related to the extirpation of large numbers of endemic insular mammals. These extinction events affected at least 27% of autochthonous mammal species on the world's oceanic and oceanic-like islands. This percentage rises the 35% when volant mammals are excluded. This reduction in the natural biodiversity brought about the disappearance of several unique biological types that apparently never existed on the continents.  相似文献   

8.
Ten diurnal raptor communities (Falconiformes) were studied in continental and peninsular situations, and on landbridge and oceanic islands of various sizes, from Southern India to Southern Vietnam and from Sri Lanka to Java. An index of abundance was derived from 1-km2 sample plots. A consistent decrease of species richness occurred from continent to peninsulas and to large landbridge islands, then more abruptly to oceanic islands. The impoverishment process was much faster for open habitat raptors than for forest species, and for rarest and most specialized raptors than for common and more generalist species. Large taxa survived on islands as well as smaller species. Specific habitat requirements, historical factors and forest fragmentation were probably more important determinants of community composition than land area itself. An insular syndrome was documented in forest species on islands, including significant examples of habitat niche expansion, interspecific segregation and density compensation. Some cases suggested that interspecific competition was involved. Such relaxation of habitat and density constraints may enhance the survival probability of these species on islands.  相似文献   

9.
10.

Aim

We documented how the similarity of mammal assemblages on continental and oceanic islands has changed since initial human colonization, since European arrival and overall. We investigated how levels of similarity might change in the future.

Location

Continental and oceanic islands worldwide.

Time period

Human settlement of islands to the present, as well as projections for the future.

Major taxa studied

Mammals.

Methods

We used mammal occurrence data on islands to calculate the change in similarity using a pairwise approach based on Jaccard's index and a multisite approach based on Jaccard's and Sørensen's measures. We divided the mammal assemblages into two time periods, before and after island colonization or trade began with Europeans. We unpacked the mechanisms driving changes in similarity, exploring how initial similarity interacts with seven types of species turnover events to determine overall change. Finally, we calculated how future similarity levels will change if past trends in introductions and extinctions continue.

Results

Mammals, on both continental and oceanic islands, show one of the most pronounced cases of homogenization ever observed, and on oceanic islands mammals show the largest increase in homogenization ever observed for a terrestrial group. Most of the homogenization observed to date has been driven by recent historical changes, not by changes that occurred before European arrival. If current patterns of species introductions and extinctions continue, then oceanic islands will experience little additional homogenization, whereas continental islands will homogenize greatly beyond current levels.

Main conclusions

Mammal assemblages on oceanic islands show nearly an order of magnitude greater change in similarity than plant and bird assemblages. Projections of future similarity indicate that continental and oceanic islands are on different trajectories of change. These trajectories could be altered by management actions, but in some cases those actions that would be impactful run counter to current conservation norms.  相似文献   

11.
History and taxonomy: their roles in the core-satellite hypothesis   总被引:2,自引:0,他引:2  
Metapopulation models are important in explaining the distribution and abundance of species through time and space. These models combine population dynamics with stochastic variation in extinction and immigration parameters associated with local populations. One of the predictions of metapopulation models is a bimodal distribution of species frequency of occurrence, a pattern that led to the development of the core-satellite species hypothesis. The spatial scale and taxonomic classification of past core-satellite studies has often been undefined. In our study, we have integrated metapopulation dynamics with the roles that differential dispersal ability and history play in the shaping of communities. The differences in distribution patterns between landbridge islands and oceanic islands, and among various taxa (birds, mammals, herptiles, arthropods, fish, and plants) are analyzed. The majority of landbridge islands comprised locally and regionally abundant species (core species), whereas the majority of oceanic islands had a uniform distribution (or no end-peak in their distribution). The patterns of distribution among the taxonomic groups also showed differences. Birds (good dispersers) consistently showed bimodal- and core-distribution patterns. The bimodal prediction of species distribution is best exemplified in the landbridge islands and in birds, and least in oceanic islands and in organisms other than birds. These results illustrate the importance of testing models with various taxonomic groups and at different spatial scales and defining these scales before formally testing the predictions of the models.  相似文献   

12.
We examine the relation between population size and geographic range size for British breeding birds and mammals. As for most other assemblages studied, a strong positive interspecific correlation is found in both taxa. The relation is also recovered once the phylogenetic relatedness of species has been controlled for using an evolutionary comparative method. The slope of the relation is steeper for birds than for mammals, but this is due in large part to two species of mammals that have much higher population sizes than expected from their small geographic ranges. These outlying mammal species are the only ones in Britain to be found only on small offshore islands, and so may be exhibiting density compensation effects. With them excluded, the slope of the abundance–range size relation for mammals is not significantly different to that for birds. However, the elevation of the relation is higher for mammals than for birds, indicating that mammals are approximately 30 times more abundant than birds of equivalent geographic range size. An earlier study of these assemblages showed that, for a given body mass, bats had abundances more similar to birds than to non-volant mammals, suggesting that the difference in abundance between mammals and birds might be due to constraints of flight. Our analyses show that the abundance–range size relation for bats is not different for that from other mammals, and that the anomalously low abundance of bats for their body mass may result because they have smaller than expected geographic extents for their size. Other reasons why birds and mammals might have different elevations for the relation between population size and geographic range size are discussed, together with possible reasons for why the slopes of these relations might be similar.  相似文献   

13.
1  Distribution data were assembled for non-volant small mammals along elevational gradients on mountain ranges in the western U.S.A. Elevational distributions in the species-rich Uinta Mountains were compared to those on smaller mountain ranges with varying degrees of historical isolation from the Uintas.
2  For mountain ranges supporting the richest faunas, species richness is highest over a broad low- to mid-elevation zone and declines at both lower and higher elevations. Patterns on other mountain ranges are similar but reflect lower overall species richness.
3  A basic relationship between elevational and geographical distribution is apparent in the occurrence patterns of mammals on regional mountains. Faunas on mountains that have had low levels of historical isolation appear to be influenced by immigration rather than extinction. Species restricted to high elevations in the Uintas are poorly represented on historically isolated mountains and form a portion of local faunas shaped by extinction. Species occurring at lower elevations in the Uintas have better representation on isolated mountains and apparently maintain populations through immigration.
4  Several widespread species show substantial variation in maximum elevation records on different mountain ranges. This involves (1) an upward shift in habitat zones on small, isolated mountain ranges, allowing greater access by low-elevation species, and (2) expansion of certain low- and mid-elevation species into habitats normally occupied by absent high-elevation taxa.
5  Results indicate that montane mammal faunas of the intermountain region have been shaped by broad-scale historical processes, unique regional geography and local ecological dynamics. Parallel examples among mammals of the Philippine Islands suggest that such patterns may characterize many insular faunas.  相似文献   

14.
West Indian land mammals have suffered the most severe extinctions of any Holocene mammal faunas. However, 'last-occurrence' dates based on radiometric or robust stratigraphic data remain unavailable for most West Indian species, making it impossible to identify factors responsible for these extinctions. Here, we present new radiometric dates from archaeological and palaeontological sites on Puerto Rico, the only Greater Antillean island to have lost all native land mammals. Although it has been suggested that these species died out earlier than other West Indian mammals, we demonstrate that Puerto Rican mammal last-occurrence dates are in close agreement with those from other Antillean islands, as several species in fact persisted for millennia following Amerindian arrival. Echimyid rodents and nesophontid 'island-shrews' were still present on Puerto Rico approximately 1000 years BP, and probably became extinct following European arrival. The large (13kg) heptaxodontid rodent Elasmodontomys obliquus also appears to have survived for over 2000 years after Amerindian colonization, suggesting that at least some large West Indian mammals became extinct in protracted pre-European 'sitzkrieg'-style events rather than 'blitzkrieg'-style overkill.  相似文献   

15.
Summary The acarine fauna of two abundant species of cushion plant on the high, short-grass prairie of S.E. Wyoming were used to test The MacArthur-Wilson Theory of Island Biogeography. Multiple regression analysis using area, distance and percent moisture as independent variables and number of mite species and number of mite individuals were run for the two sampling dates. Results showed area alone to be consistently and highly correlated (r=0.84–0.94) with both species and individuals for one cushion species. The slopes of the species-area and individuals-area curves are among the highest recorded and were significantly higher on the second sampling date. Selective seasonal changes in the fauna were shown by increases both in numbers of species and individuals, mainly on larger cushions, for the later sampling period. It is hypothesized that seasonal changes are due to an increase in the number of predator species in response to an increase in the number of prey items. The slopes of the species-area curves are compared with those in the literature and it is argued that slope values are more dependent upon the taxonomic group being studied than on whether the island is insular or oceanic. Finally, we suggest that The MacArthur-Wilson Theory is not applicable to islands which 1) exhibit continuous growth, 2) lack a discrete species source, and 3) are relatively transitory.  相似文献   

16.
Aim Conservation of species is an ongoing concern. Location Worldwide. Methods We examined historical extinction rates for birds and mammals and contrasted island and continental extinctions. Australia was included as an island because of its isolation. Results Only six continental birds and three continental mammals were recorded in standard databases as going extinct since 1500 compared to 123 bird species and 58 mammal species on islands. Of the extinctions, 95% were on islands. On a per unit area basis, the extinction rate on islands was 177 times higher for mammals and 187 times higher for birds than on continents. The continental mammal extinction rate was between 0.89 and 7.4 times the background rate, whereas the island mammal extinction rate was between 82 and 702 times background. The continental bird extinction rate was between 0.69 and 5.9 times the background rate, whereas for islands it was between 98 and 844 times the background rate. Undocumented prehistoric extinctions, particularly on islands, amplify these trends. Island extinction rates are much higher than continental rates largely because of introductions of alien predators (including man) and diseases. Main conclusions Our analysis suggests that conservation strategies for birds and mammals on continents should not be based on island extinction rates and that on islands the key factor to enhance conservation is to alleviate pressures from uncontrolled hunting and predation.  相似文献   

17.
Patterns of species-richness and endemism in the Gulf of Guinea reflect the region's biogeographic history. Bioko is a continental-shelf island that was recently connected to the African mainland, whereas Príncipe, São Tomé and Annobón are truly oceanic and have never been connected with each other or with the mainland. As a result, Bioko supports a much more diverse flora and fauna but with relatively low levels of endemism at the species level, whereas the oceanic islands are relatively depauperate because of their isolation but rich in endemic taxa. Species endemism is 0–3% on Bioko for angiosperms, bats, birds, reptiles and amphibians, compared with much higher values on Principe for these same taxa of 8% (plants) to 100% (amphibians), on São Tomé between 14% (plants) and 100% (amphibians), and on Annobón 0% (bats) to 71% (reptiles). On a global scale, for their size both Príncipe and São Tomé support unusually high numbers of single-island endemic species of birds, reptiles and amphibia. For its tiny size, Annobón is also notable for its endemic birds and reptiles. Among terrestrial molluscs the rates of endemism are in general higher than for plants and vertebrates, from ca 50% on Bioko to ca 80% on the oceanic islands. In contrast and as might be expected, only Bioko supports a rich freshwater fish fauna and it contains many endemic taxa, whereas the oceanic islands support only a few salt-tolerant species. The Gulf of Guinea islands are also important for their marine organisms, amongst which coral reef fish and marginellid molluscs show high levels of endemism, though they are not especially species-rich. The Gulf of Guinea islands are of great interest to conservationists and evolutionary biologists. Each island, of greatly differing size and degree of isolation, has acquired its unique sub-set of plants and animals separately from the neighbouring mainland, followed by adaptive radiations in situ. For this reason the conservation value of the archipelago as a whole is greater than the sum of the biodiversity contained in its individual islands. Conservation initiatives in the Gulf of Guinea should therefore ensure that representative terrestrial, freshwater and marine habitats and groups of organisms are targeted in a co-ordinated manner among the islands.  相似文献   

18.
Anthropogenically driven changes in bird communities on oceanic islands exemplify the biotic upheaval experienced by island floras and faunas. While the influence of invasions and extinctions on species richness and beta‐diversity of island bird assemblages has been explored, little is known about the impact of these invasions and extinctions on phylogenetic diversity. Here we quantify phylogenetic diversity of island bird assemblages resulting from extinctions alone, invasions alone, and the combination of extinctions and invasions in the historic time period (1500 CE to the current), and compare it to the expected phylogenetic diversity that would result if these processes involved randomly selected island bird species. We assessed phylogenetic diversity and structure at the scale of the island (n = 152), the archipelago containing the islands (n = 22), and the four oceans containing the archipelagos using three measures. We found that extinction, invasion, and the combination of invasion and extinction generally resulted in lower phylogenetic diversity than expected, regardless of the spatial scale examined. We conclude that extinction and invasion of birds on islands are non‐random with respect to phylogeny and that these processes generally leave bird assemblages with lower phylogenetic diversity than we would expect under random invasion or extinction.  相似文献   

19.
Many bird species were extirpated or became extinct when prehistoric man reached oceanic islands We list > 200 species of extinct island birds only recorded as sub-fossils and which probably vanished due to prehistoric man In addition we list c 160 cases where an extant species has been found as subfossil on islands where it no longer occurs Several species today considered endemic to single islands of island groups had a much wider distribution in the past Biogeographic analyses of insular avifaunas are almost meaningless it the extensive prehistoric extinctions are not taken into account
Most extinct species belong to Anatidae Rallidae and Drcpanididae while local extirpations are numerous among doves and seabirds Smaller birds are rare mainly due to sampling bias and taphonomic factors The bird populations were depleted mainly by overhunting predation by introduced vertebrates and alteration of the original vegetation
Prehistoric humans on islands although dependent on limited animal resources regularly failed to exploit these in a sustainable way Several cases where human populations disappeared from islands in the Pacific may have been due to over-exploitation of native animals
Prehistoric man reached most tropical and temperate islands and most of the few remaining island faunas have been severely depleted in historic times The prehistoric extinctions emphasize the extreme vulnerability and value of the very few pristine island faunas that still remain  相似文献   

20.
Summary Butterfly species lists were assembled for 18 Great Basin mountain ranges for which distributional data on mammals and birds have been analysed previously by other workers. The ranges represent remnant islands of the boreal habitat that once was continuous across the Great Basin but is now restricted to higher elevations as a result of climatic change at the close of the Pleistocene. The effects of biogeographic factors (area, distance, elevation) and habitat diversity on butterfly species number were examined. The Great Basin boreal butterfly faunas were found to be depauperate overall relative that of the principal mainland source, the Rocky Mountains, and were found to have fewer species than predicted by the mainland species-area data. However, only a weak area effect, and no distance effect, was detected by bivariate and multivariate analysis. Furthermore, the habitat diversity score found to explain virtually all the variation in bird species number in the same ranges in previous studies is only marginally significantly correlated with butterflies. When the butterflies are subdivided according to their vagility, the relative differences in the species-area correlation and slope (z-value) between the vagility categories were consistent with those found previously for mammals and birds, and, as predicted by theory, less vagile taxa exhibit higher species-area correlations and z-values. Overall, differences in the insular biogeography of buttterflies and vertebrates seem to reflect fundamental ecological differences between the taxa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号