首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of retroviral vectors for human gene therapy requires the production of large quantities of high titer vector stocks. Maintaining high titers during the prolonged culture of packaging cells will require that critical parameters be controlled. The aim of this study was to determine which culture parameters critically affect the production/decay of retroviral vectors produced by the human packaging cell line FLYRD18/LNC-hB7. The stability of retroviral vectors released by this cell line was found to be temperature dependent (half-life of 6.9, 11.0, and 64.3 h when incubated at 37, 32, and 0 degrees C, respectively). Titers increased up to 10-fold when the packaging cells were cultured at 32 degrees C, compared to 37 degrees C, despite a decrease in cell yield (cell-specific titers were 20-fold higher). Virus titers were also over 10-fold higher when the packaging cells were cultured in a reduced serum concentration (1%) compared to 5%. Retrovirus production at a range of pH levels revealed a significant decrease in virus titer at pH levels below 6.8 and above 7.2, optimum titers being achieved in cultures at pH 7.2. Dissolved oxygen levels in the range 20-80% did not significantly affect titers under the conditions tested. Finally, a packed bed system containing the packaging cells immobilized on porous microcarriers was shown to sustain the production of active retroviral vectors for over 1 month, in relatively large volumes.  相似文献   

2.
Shen BQ  Clarke MF  Palsson BO 《Cytotechnology》1996,22(1-3):185-195
Rapidly expanding development and practice of gene therapy requires the availability of large quantities of high titer retroviral supernatants. One way to achieve high retroviral titers is through improved understanding of the kinetics of retroviral production and decay, and the subsequent development of improved cell culture methods. In the present study we investigated the effects of different operational modes on the retroviral production of the NIH 3T3 fibroblast derived amphotropic murine retroviral producing cell line pMFG/CRIP. Semi-continuous culture (exchange of 50% of medium volume daily) was found to promote cell growth and enhance retroviral production. The rapid medium exchange resulted in significantly larger amounts of high titer supernatants and an extended production phase as compared to the batch control cultures. The specific viral productivity of the pMFG/CRIP cells was in the range of 10 to 40 infectious viruses produced per thousand producer cells per day. The CV-1 African Green Monkey kidney cell line was used as the infection target. Lowering the serum level form 20% to 10% improved retroviral production slightly. However, at lower serum levels (1%, 5% and 10% (v/v)) growth of the producer cell line, and thus retroviral production, was directly proportional to the serum level. The half-life of the virus at 37°C was found to be 5.5 hours. Promoting the growth of producer cell lines can improve retroviral vectors titers and viral production. High cell density systems that allow for rapid cell growth and waste product removal are likely to be used to generate high-titer retroviral supernatants.  相似文献   

3.
4.
Currently, amphotropic retroviral vectors are widely used for gene transfer into CD34+ hematopoietic progenitor cells. The relatively low levels of transduction efficiency associated with these vectors in human cells is due to low viral titers and limitations in concentrating the virus because of the inherent fragility of retroviral envelopes. Here we show that a human immunodeficiency virus type 1 (HIV-1)-based retroviral vector containing the firefly luciferase reporter gene can be pseudotyped with a broad-host-range vesicular stomatitis virus envelope glycoprotein G (VSV-G). Higher-efficiency gene transfer into CD34+ cells was achieved with a VSV-G-pseudotyped HIV-1 vector than with a vector packaged in an amphotropic envelope. Concentration of virus without loss of viral infectivity permitted a higher multiplicity of infection, with a consequent higher efficiency of gene transfer, reaching 2.8 copies per cell. These vectors also showed remarkable stability during storage at 4 degrees C for a week. In addition, there was no significant loss of titer after freezing and thawing of the stock virus. The ability of VSV-G-pseudotyped retroviral vectors to achieve a severalfold increase in levels of transduction into CD34+ cells will allow high-efficiency gene transfer into hematopoietic progenitor cells for gene therapy purposes. Furthermore, since it has now become possible to infect CD34+ cells with pseudotyped HIV-1 with a high level of efficiency in vitro, many important questions regarding the effect of HIV-1 on lineage-specific differentiation of hematopoietic progenitors can now be addressed.  相似文献   

5.
The titer of retroviral vectors can be increased by cocultivation of retrovirus packaging cells that produce a vector with packaging cells having a different host range. Multiple rounds of infection occur in such cultures, producing an amplification of vector copy number and titer. Production of a vector with a very high titer of over 10(10) CFU per ml of conditioned medium has been reported, although replication-competent helper virus was also present. Since helper-free virus is a requirement for many applications of retroviral vectors, we repeated this procedure with a modified vector and achieved a 2- to 10-fold amplification of vector titer in the absence of helper virus, up to 2 x 10(7) CFU/ml. We have also repeated these experiments with the same vector and methods described previously or have assayed virus from the high-titer vector-producing cell line reported previously and observed maximum titers of 10(8) CFU/ml, invariably accompanied by helper virus. Thus, while amplification of vector titer in the absence of helper virus is possible, some unexplained difference in the assays for virus titer must account for our inability to obtain the exceptionally high vector titers that were reported previously.  相似文献   

6.
Retroviral vectors usually contain drug resistance genes, which are used to select for infected cells and to determine the viral titers. The viral titer is referred to as colony-forming units (CFUs). Color reporter genes, such as thelacZ gene and the green fluorescent protein gene(gfp), have been widely used as markers in retroviral vectors. In this report, a simple and rapid method for the determination of retroviral titers has been developed. The number of viral particles capable of forming individual green cells per unit volume is defined as marker-forming units (MFUs). The MFUs determined by usinggfp as a marker were found to be proportional to the CFUs obtained by using drug selection for five different drug resistance genes. In addition, after adjusting the time factor, the MFUs are higher than CFUs in viruses released from 30 stable helper cell lines. The lower titers determined by CFUs are likely due to the toxicity on transduced cells.  相似文献   

7.
Improved, human-based packaging cell lines allow the production of high-titer, RCR-free retroviral vectors. The utility of these cell lines for the production of clinical grade vectors critically depends on the definition of optimal conditions for scaled-up cultures. In this work, a clone derived from the TE Fly GALV packaging cell (Duisit et al. Hum. Gene Ther. 1999, 10, 189) that produces high titers of a lacZ containing retroviral vector with a Gibbon Ape Leukemia Virus envelope glycoprotein was used. This clone can produce (2-5) x 10(6) PFU cm(-3) in small scale cultures and has been evaluated for growth and vector production in different reactor systems. The performances of fixed bed reactors [CellCube (Costar) and Celligen (New Brunswick)] and stirred tank reactors [microcarriers and clump cultures] were compared. The cells showed a higher apparent growth rate in the fixed bed reactor systems than in the suspension systems, probably as a result of the fact that aggregation and/or formation of clumps led to a reduced viability and reduced growth of cells in the interior of the clumps. As a consequence, the final cell density and number were in average 3- to 7-fold higher in the fixed bed systems in comparison to the suspension culture systems. The average titers obtained ranged from 0.5 to 2.1 x 10(7) PFU cm(-3) for the fixed bed and microcarrier systems, while the clump cultures produced only (2-5) x 10(5) PFU cm(-3). The differences in titers reflect cell densities as well as specific viral vector production rates, with the immobilization and microcarrier systems exhibiting an at least 10-fold higher production rate in comparison to the clump cultures. A partial optimization of the culture conditions in the Celligen fixed bed reactor, consisting of a 9-fold reduction of the seeding cell density, led to a 5-fold increased vector production rate accompanied by an average titer of 3 x 10(7) PFU cm(-3) (maximum titer (4-5) x 10(7) PFU cm(-3)) in the fixed bed reactor. The performance evaluation results using mathematical models indicated that the fixed bed bioreactor has a higher potential for retroviral vector production because of both the higher reactor productivity and the lower sensitivity of productivity in relation to the changes in final retrovirus titer in the range of 3 x 10(6) to 15 x 10(6) PFU cm(-3).  相似文献   

8.

Objectives

To develop a method for reliable quantification of viral vectors, which is necessary for determining the optimal dose of vector particles in clinical trials to obtain the desired effects without severe unwanted immune responses.

Results

A significant level of vector plasmid remained in retroviral and lentiviral vector samples, which led to overestimation of viral titers when using the conventional RT-qPCR-based genomic titration method. To address this problem, we developed a new method in which the residual plasmid was quantified by an additional RT-qPCR step, and standard molecules and primer sets were optimized. The obtained counts were then used to correct the conventionally measured genomic titers of viral samples. While the conventional method produced significantly higher genomic titers for mutant retroviral vectors than for wild-type vectors, our method produced slightly higher or equivalent titers, corresponding with the general idea that mutation of viral components mostly results in reduced or, at best, retained titers.

Conclusion

Subtraction of the number of residual vector plasmid molecules from the conventionally measured genomic titer can yield reliable quantification of retroviral and lentiviral vector samples, a prerequisite to advancing the safety of gene therapy applications.
  相似文献   

9.
The retroviral titer obtained from the pMFG/ψCRIP producer cell line is determined by a dynamic interplay of vector production and deactivation rates. Both these rates are influenced by temperature. It was determined that; (i) the retroviral half-lives are strongly influenced by temperature and the temperature dependency can be described by the Arrhenius equation with an activation energy of 39 kcal/gmol; (ii) the actual retroviral vector productivity per cell is highest at 37?°C with retroviral production rate of 24.4(±7.0; ±?standard deviation) colony forming unit (CFU)/cell/day; (iii) the dynamic interplay of these two factors produces an optimal temperature of 34?°C for pMFG/ψCRIP cells under the culture conditions used; and (iv) the cellular growth rate is highest at 37?°C at 26.8 hr doubling time. Taken together, these parameters can be used to optimize a two-step retroviral production protocol, where the cells are first grown under optimal growth conditions (37?°C) and second, the virus is produced at 34?°C to yield the highest titer. These results have significant implications for optimal retroviral production protocols.  相似文献   

10.
Ye K  Jin S  Ataai MM  Schultz JS  Ibeh J 《Journal of virology》2004,78(18):9820-9827
Retroviral vectors produced from packaging cells are invariably contaminated by protein, nucleic acid, and other substances introduced in the manufacturing process. Elimination of these contaminants from retroviral vector preparations is helpful to reduce unwanted side effects, and purified vector preparations are desirable to improve reproducibility of therapeutic effect. Here we report a novel approach to engineer a metal binding peptide (MBP)-tagged murine leukemia virus (MuLV), allowing for one-step purification of retroviral vectors by immobilized metal affinity chromatography (IMAC). We inserted a His6 peptide into an ecotropic envelope protein (Env) by replacing part of its hypervariable region sequence with a sequence encoding the His6 peptide. Display of the His6 tag on the surface of Env endowed the vectors with a high affinity for immobilized metal ions, such as nickel. We demonstrated that the His6-tagged MuLV could be produced to high titers and could be highly purified by one-step IMAC. The protein and DNA contaminants in the purified vector supernatants were below 7 microg/ml and 25 pg/ml, respectively, indicating a 1,229-fold reduction in protein contaminant level and a 6,800-fold reduction in DNA contaminant level. About 56% of the viral vectors were recovered in the IMAC purification. The purified vectors retained their functionality and infectivity. These results establish that an MBP can be functionally displayed on the surface of ecotropic retroviruses without interfering with their integrity, and MBP-tagged retroviral vectors can be highly purified by one-step IMAC.  相似文献   

11.
Retroviral gene transfer and bone marrow transplantation has been used by many investigators to study the role of macrophage proteins in different mouse models of human disease. While this approach is faster and less expensive than generating transgenic mice with macrophage-specific promoters and applicable to a wider array of mouse models, it has been hampered by two major drawbacks: labor-intensive cloning procedures involved in generating retroviral vectors for each gene of interest and low viral titers. Here we describe the construction of a MSCV-based retroviral vector that can serve as an acceptor vector for commercially available Cre-lox-compatible donor vectors. Using this new retroviral vector in combination with a FACS approach to enhance viral titers, we generated high-titer retroviruses carrying either EGFP-tagged cytosolic or EGFP-tagged mitochondria-targeted glutathione reductase. We show that the introduction of these constructs via retroviral gene transfer and bone marrow transplantation into atherosclerosis-prone LDL receptor-null mice results in the long-term increase in macrophage glutathione reductase activity.  相似文献   

12.
The effects of pH, carbon dioxide vapor pressure, pCO(2), and temperature on E1 and E3 deleted recombinant adenovirus vector (rAV) production with HEK293S cells have been studied in the ranges of pH = 6.7-7.7, pCO(2) = 0.05-0.20 atm, and T = 32-39 degrees C, respectively. The experiments were performed in four 500-mL bioreactors in parallel, which make possible the reduction of inter-run variability. Cell concentration and viability, relative oxygen uptake rate (OUR), fluorescence, and viral titer were measured. It was found that, although pH and pCO(2) did not affect significantly cell viability in the range studied, they had an important effect on virus titer. pCO(2) allowed the maximum production of rAV at 0.05 atm, and pH showed a very sharp optimum at 7.2. Temperature had an effect on both cell metabolism and virus titer. Low temperature prolonged cell viability and high OUR. Most of all, a 3-fold increase in virus yield was found at 35 degrees C compared to that at 37 degrees C, while 32 degrees C was not as beneficial (1.5-fold increase). This finding could have an important impact on large-scale production. This phenomenon was modeled using a simple 3-parameter synthesis-decay model. This model shows how the optimum gain in virus production at 35 degrees C is due to a balance between the production and decay processes at that temperature.  相似文献   

13.
The production of retroviral vectors by human cell lines is still hampered by low titers making it relatively difficult to produce very large quantities of this vector of high interest for clinical gene therapy applications. Thus, to improve vector production, we studied the influence of different sugars alone or combinations of sugars on cell growth, vector titers, and metabolism of the producer cell. The use of fructose at 140 mM or a mixed medium (with glucose at 25 mM and fructose at 140 mM) improved the virus titer three- to fourfold, respectively, and the producer cell productivity by fivefold. The increase in the cell productivity was due to a 1.5-fold increase in the vector stability, the remaining increase being due to higher cell specific productivity. The increase in the productivity was associated with lower glucose oxidation and an increase in the lactate and alanine yield. In the mixed medium, an increase in fatty acids derived from the glucose was observed in parallel with a reduction of glutamate and glutamine synthesis via the tricarboxylic acid (TCA) cycle acetyl-CoA and α-ketoglutarate, respectively. Although the higher productivities were associated with severe changes in the glycolysis, TCA cycle, and glutaminolysis, the cell energetic status monitored by phosphocreatine and adenosine triphosphate levels was not significantly affected. The synthesis of fatty acids and phospholipids were enhanced in the fructose or mixed media and are possibly key parameters in retroviral vector production.  相似文献   

14.
Our work uses replication-defective genomic herpes simplex virus type-1 (HSV-1)-based vectors to transfer therapeutic genes into cells of the central nervous system and other tissues. Obtaining highly purified high-titer vector stocks is one of the major obstacles remaining in the use of these vectors in gene therapy applications. We have examined the effects of temperature and media conditions on the half-life of HSV-1 vectors. The results reveal that HSV stability is 2.5-fold greater at 33 degrees C than at 37 degrees C and is further stabilized at 4 degrees C. Additionally, a significantly higher half-life was measured for the vector in infection culture conditioned serum medium compared to fresh medium with or without serum. Synchronous infections incubated at 33 degrees C produced 2-fold higher amounts of vector than infected cells incubated at 37 degrees C, but with a lag of 16-24 h. Vector production yielded 3-fold higher titers and remained stable at peak levels for a longer period of time in cultures incubated at 33 degrees C than 37 degrees C. A pronounced negative effect of increased cell passage number on vector yield was observed. Vector production at 33 degrees C yielded similar levels regardless of passage number but was reduced at 37 degrees C as passage number increased. Together, these results contribute to improved methods for high-titer HSV vector production.  相似文献   

15.
16.
Retroviral vectors have been invaluable tools for studies of development in vertebrates. Their use has been somewhat constrained, however, by the low viral titers typically obtained with replication-incompetent vectors, particularly of the avian type. We have addressed this problem in several ways. We optimized the transient production of avian replication-incompetent viruses in a series of cell lines. One of the optimal cell lines was the mammalian line 293T, which was surprising in light of previous reports that avian viral replication was not supported by mammalian cells. We also greatly increased the efficiency of viral infection. Pseudotyping with the vesicular stomatitus virus G (VSV-G) protein led to an over 350-fold increase in the efficiency of infection in ovo relative to infection with virus particles bearing an avian retroviral envelope protein. To further increase the utility of the system, we developed new Rous sarcoma virus (RSV)-based replication-incompetent vectors, designed to express a histochemical marker gene, human placental alkaline phosphatase, as well as an additional gene. These modified retroviral vectors and the VSV-G pseudotyping technique constitute significant improvements that allow for expanded use of avian replication-incompetent viral vectors in ovo.  相似文献   

17.
18.
T.S. Castelo 《Theriogenology》2010,74(6):1060-1089
The objective was to evaluate the influence of the thawing rate on the quality of frozen-thawed (cryopreserved in Tris-based extenders) semen obtained from collared peccaries (Tayassu tajacu). Semen from 13 sexually mature collared peccaries males were collected by electroejaculation, and evaluated for motility, vigor, sperm viability, membrane integrity, and sperm morphology. Semen was divided in two equal portions: the first was diluted in Tris-fructose and the other in Tris-glucose, with egg yolk (20%) and glycerol (3%) added to each portion. Extended semen was frozen in liquid nitrogen and thawed using two thawing protocols (37 °C for 1 min or 55 °C for 7 s, followed by an additional 30 s at 37 °C). There were no significant differences between the two extenders after extension, chilling, or glycerol addition. After thawing at 37 °C, there were 37.9 ± 4.2% and 28.5 ± 5.1% motile spermatozoa for samples extended in Tris-fructose and Tris-glucose, respectively, with 33.8 ± 3.7% and 28.2 ± 3.5% motile spermatozoa after thawing at 55 °C (no significant differences). Furthermore, there were no significant interactions between extenders and thawing protocols for any semen end point. In conclusion, semen from collared peccaries was successfully cryopreserved in Tris-based extenders and thawed with two protocols (37 °C for 1 min or 55 °C for 7 s).  相似文献   

19.
The use of Moloney murine leukaemia virus (MoMLV) derived retroviral vectors in gene therapy requires the production of high titer preparations. However, obtaining high titers of infective MoMLV retroviral vectors is difficult due to the vector inherent instability. In this work the effect of the cell culture medium osmotic pressure upon the virus stability was studied. The osmolality of standard medium was raised from 335 up to 500 mOsm/kg using either ionic (sodium chloride) or non-ionic osmotic agents (sorbitol and fructose). It was observed that, independently of the osmotic agent used, the infectious vector inactivation rate was inversely correlated with the osmolality used in the production media; therefore, the use of high medium osmolalities enhanced vector stability. For production purposes a balance must be struck between cell yield, cell productivity and retroviral stability. From the conditions tested herein sorbitol addition, ensuring osmolalities between 410 and 450 mOsm/kg, yields the best production conditions; NaCl hampered the viral infectious production while fructose originates lower cell yields. Lipid extractions were performed for cholesterol and phospholipid analyses showing that more stable viral vectors had a 10% reduction in the cholesterol content. A similar reduction in cholesterol was observed in the producer cells. A detailed analysis of the major phospholipids composition, type and fatty acid content, by mass spectrometry did not show significant changes, confirming the decrease in the cholesterol to phospholipids ratio in the viral membrane as the major reason for the increased vector stability.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号