首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unlike Rhodospirillum rubrum, the highly purified preparations of NADP-reductase Thiocapsa roseopersicina are capable of reduction of cytochrome c though they do not catalyse diaphorase reaction in the presence of methyl viologen or benzyl viologen and NADH. T. roseopersicina reductase has more high temperature optimum (50-65 degrees) and more high thermal stability (65 degrees) and it is capable to catalyse diaphorase and menadione-reductase reactions under more high pH values (11.0-12.0) than NADP-reductase of R. rubrum. NADP-reductase of T. roseopersicina is more stable under storing than the enzyme from R. rubrum: the semi-inactivation period of the enzyme when storing in Ar or the air is about 10 and 4 days, respectively, and it takes about three days for R. rubrum.  相似文献   

2.
Reduction of nitrate to nitrite by particulate preparationsof Anabaena cylindrica was investigated. Preparations whichshowed high activity of nitrate reductase were obtained by sonication(preparation A) or acetone treatment (preparation B). The preparationA also showed a high activity of DPIP-ascorbate photooxidation.The nitrate reductase system accepted electrons from eitherreduced ferredoxin (preparation A & B) or NADH (preparationB), but not directly from NADPH. Ferredoxin was active whenreduced either by action of photochemical system I or by NADPHand NADP-reductase, but dithionite-reduced ferredoxin was completelyinactive. Ferredoxin could be replaced with methyl viologen,benzyl viologen and diquat. Reduced FMN and FAD could serveas electron donors, but the affinity of the reductase towardthese flavin compounds was very low. 1 This work was supported by grants from the Ministry of Education(4093 and 95612) and from the National Institutes of Health,U.S. (GM-11300).  相似文献   

3.
1. NADH-benzyl viologen reductase, solubilized by acetone extraction, was purified about 10-fold from small particles of Azotobacter vinelandii.

2. The purified enzyme preparation was free from hydrogenase activity. Either NADH or NADPH served as an electron donor for the reduction of benzyl viologen. This reaction is reversible.

3. The essential thiol groups of the enzyme are protected since they do not react with N-ethylmaleimide and p-chloromercuribenzoate inhibits only after it has been preincubated with the enzyme.  相似文献   


4.
It was found that the cytoplasm of light-grown cells of Rhodospirillum rubrum could catalyze the reduction of methyl viologen (MV) (Em, 7 = -0.44 V) by NADH and NADPH. In the present study, the enzyme capable of catalyzing MV reduction by NADH (NADH-MV reductase) was purified 1,500-fold from an extract of cells with a yield of 4.4%. The purification procedure comprised (NH4)2SO4 fractionation, and chromatographies on Sepharose CL-6B, DEAE-Sepharose CL-6B, phenyl-Sepharose CL-4B, Blue-Cellulofine, and TSK-Gel G3000SW. Two NADPH-MV reductases were separated during the purification. The NADH-MV reductase obtained was nearly homogeneous, as judged on polyacrylamide gel electrophoresis both in the presence and absence of sodium dodecyl sulfate. The enzyme has a molecular weight of 220,000 and an isoelectric point of 4.8; it is composed of four subunits with a molecular weight of 57,000, and is bound with about 1 mol FAD/mol subunit. The activity is optimum at pH 8. The Km values for NADH and MV are 115 microM and 1.3 mM, respectively, with a molecular activity of 13,000 min-1. The activity was stimulated 2.4-fold in the presence of 20-100 mM ammonium ions. The enzyme also catalyzed the reduction of benzyl viologen, methylene blue and 2,6-dichlorophenol-indophenol (Em, 7 = -0.36, +0.011, and +0.217 V, respectively) at comparable rates. The ratios of the activity with NADH to that with NADPH were 80, 133, 41, and 5.5 with MV, benzyl viologen, methylene blue and 2,6-dichlorophenolindophenol, respectively. The enzyme was significantly stable in the presence of both 5mM 2-mercaptoethanol and 20% (w/v) glycerol. The activity was not appreciably influenced by the presence of 2 M urea, although the reagent caused dissociation to the subunits.  相似文献   

5.
1. Enzyme systems from Cucurbita pepo have been shown to catalyse the reduction of nitrite and hydroxylamine to ammonia in yields about 90–100%. 2. Reduced benzyl viologen serves as an efficient electron donor for both systems. Activity of the nitrite-reductase system is directly related to degree of dye reduction when expressed in terms of the function for oxidation–reduction potentials, but appears to decrease to negligible activity below about 9% dye reduction. 3. NADH and NADPH alone produce negligible nitrite loss, but NADPH can be linked to an endogenous diaphorase system to reduce nitrite to ammonia in the presence of catalytic amounts of benzyl viologen. 4. The NADH– or NADPH–nitrate-reductase system that is also present can accept electrons from reduced benzyl viologen, but shows relationships opposite to that for the nitrite-reductase system with regard to effect of degree of dye reduction on activity. The product of nitrate reduction may be nitrite alone, or nitrite and ammonia, or ammonia alone, according only to the degree of dye reduction. 5. The relative activities of nitrite-reductase and hydroxylamine-reductase systems show different relationships with degree of dye reduction and may become reversed in magnitude when effects of degree of dye reduction are tested over a suitable range. 6. Nitrite severely inhibits the rate of reduction of hydroxylamine without affecting the yield of ammonia as a percentage of total substrate loss, but hydroxylamine has a negligible effect on the activity of the nitrite-reductase system. 7. The apparent Km for nitrite (1 μm) is substantially less than that for hydroxylamine, for which variable values between 0·05 and 0·9mm (mean 0·51 mm) have been observed. 8. The apparent Km values for reduced benzyl viologen differ for the nitrite-reductase and hydroxylamine-reductase systems: 60 and 7·5 μm respectively. 9. It is concluded that free hydroxylamine may not be an intermediate in the reduction of nitrite to ammonia by plants, and a possible mechanism for reduction of both compounds by the same enzyme system is discussed in the light of current ideas relating to other organisms.  相似文献   

6.
Reduction of nitrite by cell-free preparations of Anabaena cylindrica in the dark has been investigated. Nitrite-reducing activity was recovered in a supernatant fraction. The nitrite reductase system was partially purified by column chromatography on Sephadex G-75. NADPH could serve as an H-donor. NADH was completely inactive. The reduction required ferredoxin which mediated the transfer of electrons from NADPH to nitrite. Ferredoxin was successfully replaced with methyl viologen, benzyl viologen and diquat. The nitrite-reducing activity was inhibited by KCN, and by 2,4-dinitrophenol and arsenate at higher concentrations. The extent of nitrite reduction by NADPH was dependent on the oxidation-reduction states of NADP and ferredoxin.  相似文献   

7.
Nitrite reductase was purified between 760- and 1300-fold from vegetable marrow (Cucurbita pepo L.) and residual hydroxylamine reductase activity was low or negligible by comparison. With ferredoxin as electron donor, nitrite loss and ammonia formation at pH7.5 were stoicheiometrically equivalent. Crude nitrite reductase preparations showed negligible activity with NADPH as electron donor maintained in the reduced state by glucose 6-phosphate, whereas by comparison, activity was high when either ferredoxin or benzyl viologen were also present and reduced by the NADPH-glucose 6-phosphate system, whereas FMNH(2) produced variable and relatively low activity under the same conditions. At pH values below 7, non-enzymic reactions occurred between reduced benzyl viologen and nitrite, and intermediate reduction products were inferred to be produced instead of ammonia. Activity with ferredoxin (0.1mm), reduced by chloroplast grana in the light, was 25 times that produced with ferredoxin (40mum) reduced with NADPH and glucose 6-phosphate. For an approximate molecular weight 61000-63000 derived by chromatography on Sephadex G-100 and G-200, and a specific activity of 46mumol of nitrite reduced/min per mg of protein with light and chloroplast grana, a minimum turnover number of 3x10(3)mol of nitrite reduced/min per mol of enzyme was found. Two hydroxylamine reductases were separated on Sephadex gels. One (HR1) was initially associated with nitrite reductase during gel filtration but disappeared during later fractionation. This HR1 fraction showed nearly comparable activity with reduced benzyl viologen, ferredoxin or FMNH(2). The other (HR2), of molecular weight approx. 35000, reacted with reduced benzyl viologen but showed negligible activity with ferredoxin or NADPH. Activity with FMNH(2) was associated with an irregular trailing boundary during gel filtration, with much diminished activity in the HR2 region. Activity with NADPH was about 30% of that with FMNH(2), reduced benzyl viologen or ferredoxin and was considered to reside in fraction HR1. Hydroxylamine yielded ammonia under all assay conditions. No activity with hyponitrite or sulphite was observed with reduced benzyl viologen as electron donor in either the nitrite reductase or the hydroxylamine reductase systems, but pyruvic oxime produced about 4% of the activity of hydroxylamine.  相似文献   

8.
Some similarity is inferred between the reaction or reduced benzyl viologen with undissociated nitrous acid, which is significant at pH values below 7 and that with the undissociated product of nitrite ion and ammonium sulphate; presumably ammonium nitrite. This would explain why the presence of ammonium sulphate appreciably offsets the effects of decreasing pH and also the exponential relationship between rate of nitrite loss and ammonium sulphate concentration. There are other features of the reaction which cannot be explained at present, especially with regard to the degree of reduction of benzyl viologen. It is nevertheless apparent that a complex non-enzymic reaction yielding several products occurs when ammonium sulphate is present and that the presence of likely residual quantities after its use in enzyme purification may cause serious errors in enzyme assay.  相似文献   

9.
Pyruvate:NADP+ oxidoreductase was homogeneously purified from crude extract of Euglena gracilis. The Mr of the enzyme was estimated to be 309,000 by gel filtration. The enzyme migrated as a single protein band with Mr of 166,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that the enzyme consists of two identical polypeptides. The absorption spectrum of the native enzyme exhibited maxima at 278, 380, and 430 nm, and a broad shoulder was observed around 480 nm; the maximum at 430 nm was eliminated by reduction of the enzyme with dithionite. Reduction of the enzyme with pyruvate and CoA and reoxidation with NADP+ were proved from changes of absorption spectra. The enzyme contained 2 molecules of FAD and 8 molecules of iron. It was also indicated that the enzyme was thiamine pyrophosphate-dependent. The enzyme was oxygen-sensitive, and the reaction was affected by the presence of oxygen. Pyruvate was the most active substrate, but the enzyme was slightly active for 2-oxobutyrate, 3-hydroxypyruvate, and oxalacetate, but not for glyoxylate and 2-oxoglutarate. The native electron acceptor was NADP+, whereas NAD+ was completely inactive. Methyl viologen, benzyl viologen, FAD, and FMN were utilized as artificial electron acceptors, whereas spinach and Clostridium ferredoxins were inactive. Pyruvate synthesis by reductive carboxylation of acetyl-CoA with NADPH as the electron donor occurred by the reverse reaction of the enzyme. The enzyme also catalyzed a pyruvate-CO2 exchange reaction and electron-transfer reaction from NADPH to other electron acceptors like methyl viologen. These results indicate that pyruvate:NADP+ oxidoreductase in E. gracilis is clearly distinct from either the pyruvate dehydrogenase multienzyme complex or pyruvate:ferredoxin oxidoreductase.  相似文献   

10.
Enzymology of butyrate formation by Butyrivibrio fibrisolvens.   总被引:2,自引:0,他引:2       下载免费PDF全文
Butyrivibrio fibrisolvens is a major butyrate-forming species in the bovine and ovine rumen. The enzymology of butyrate formation from pyruvate was investigated in cell-free extracts of B. fibrisolvens D1. Pyruvate owas oxidized to acetylcoenzyme A (CoA) in the presence of CoA.SH and benzyl viologen or flavin nucleotides. The bacterium uses thiolase, beta-hydroxybutyryl-CoA dehydrogenase, crotonase, and crotonyl-CoA reductase to form butyryl-CoA from acetyl-CoA. Reduction of acetoacetyl-CoA to beta-hydroxybutyryl-CoA was faster with NADH than with NADPH. Crotonyl-CoA was reduced to butyryl-CoA by NADH, but not by NADPH, only in the presence of flavin nucleotides. Reduction of flavin nucleotides by NADH was much slower than the flavin-dependent reduction of crotonyl-CoA. This indicates that flavoproteins rather than free flavin participated in the reduction of crotonyl-CoA. Butyryl-CoA was converted to butyrate by phosphate butyryl transferase and butyrate kinase.  相似文献   

11.
《Inorganica chimica acta》1986,122(2):169-173
Photoreduction of viologens by the irradiation of the system containing NADPH, zinc mesotetraphenylporphyrintrisulfonate (Zn-TPPS33−), viologen and colloidal platinum has been investigated in the presence of surfactant micelles. In the presence of either cationic micelles or anionic micelles, a remarkable increase in the accumulation of the reduced form of viologen was observed. The existence of the micelles depressed both the quenching rate of the photoexcited Zn-TPPS33− by viologen and the back reaction rate, recombination rate of the oxidized Zn-TPPS33− and reduced viologen. Compared with both reactions, it was clarified that the recombination rate strongly influenced the viologen reduction rate. The effect of the micelles was explained by the electrostatic effect among the charges of the micellar surface, Zn-TPPS33− and viologen. By the addition of colloidal platinum to the system, photoinduced hydrogen evolution was also studied.  相似文献   

12.
Light-induced difference spectra between 400 and 640 nm of Rhodospirillum rubrum chromatophores were performed in the presence and absence of exogenous electron donor/acceptor systems and compared with the chemical oxidation spectrum. The results indicate that the component previously defined as P430 is not a unique entity but rather represents different species, or a mixture of species, under various conditions. Under all conditions in which the reaction center bacteriochlorophyll is reversibly photooxidized, as indicated by the bleaching around 600 nm, it is also contributing to the absorbance increase around 430 nm. In one case, in presence of reduced dichloroindophenol and in the absence of oxygen, the photooxidation of reaction center bacteriochlorophyll is fully supressed. Under these conditions an irreversible change around 430 nm is still observed and seems to be due to the Soret band of b-type cytochrome. In the presence of reduced dichloroindophenol and absence of oxygen there is a marked inhibition of photophosphorylation. This inhibition is apparently due to the complete reduction of the cyclic electron carriers. Addition of the low potential dye benzyl viologen facilitates an almost complete recovery of the reversible photooxidation of reaction center bacteriochlorophyll as well as of photophosphorylation. These results indicate that the apparent mid-point potential of the primary electron acceptor in Rhodospirillum rubrum chromatophores is probably in the range of that of benzyl viologen (E'o = - 340 mV).  相似文献   

13.
A benzyl viologen containing Si(OMe)3 groups was covalently attached to the surface of glass waveguides. The viologen-coated waveguides were then silanized and formate dehydrogenase was bound to pendant amino groups on the silane via glutaraldehyde. Successful linking of both the redox-sensitive viologen dye and the enzyme was demonstrated by reaction of the bound enzyme with formate ion in the presence of NAD. Production of NADH by the enzyme-catalyzed reaction resulted in a reduction of the positive charge on the bound viologen and a reversible color change that was detectable with the optical waveguide.  相似文献   

14.
Whole-cell and cell-extract experiments were performed to study the mechanism of oxalate metabolism in the acetogenic bacterium Moorella thermoacetica. In short-term, whole-cell assays, oxalate consumption was low unless cell suspensions were supplemented with CO(2), KNO(3), or Na(2)S(2)O(3). Cell extracts catalyzed the oxalate-dependent reduction of benzyl viologen. Oxalate consumption occurred concomitant to benzyl viologen reduction; when benzyl viologen was omitted, oxalate was not appreciably consumed. Based on benzyl viologen reduction, specific activities of extracts averaged 0.6 micromol oxalate oxidized min(-1) mg protein(-1). Extracts also catalyzed the formate-dependent reduction of NADP(+); however, oxalate-dependent reduction of NADP(+) was negligible. Oxalate- or formate-dependent reduction of NAD(+) was not observed. Addition of coenzyme A (CoA), acetyl-CoA, or succinyl-CoA to the assay had a minimal effect on the oxalate-dependent reduction of benzyl viologen. These results suggest that oxalate metabolism by M. thermoacetica requires a utilizable electron acceptor and that CoA-level intermediates are not involved.  相似文献   

15.
Heparin, an anionic polysaccharide, inhibited the ferredoxin-catalyzed reduction of NADP in spinach chloroplast thylakoid membranes. Under the same conditions of assay, heparin did not interfere markedly with photoreduction of methyl viologen, anthraquinone sulfonate, or ferredoxin. A kinetic analysis of the heparin-induced interference with NADP photoreduction showed partial competitive inhibition. Heparin also interfered with NADPH oxidation by membrane-bound ferredoxin-NADP reductase (with dichlorophenol-indophenol as the acceptor) by a mechanism that involves partial competitive inhibition. This reaction was sensitive to the presence of salts; increasing ionic strength increases the heparin Ki for inhibition of NADPH oxidation. These results show that heparin binds to ferredoxin-NADP reductase, and in doing so interferes with binding to the reductase by both ferredoxin and NADP(H). Since heparin is redox inactive and does not interfere with the photophosphorylation reaction, it is a useful inhibitor of thylakoid membrane reactions which require the catalytic activity of ferredoxin-NADP reductase.  相似文献   

16.
Escherichia coli grew anaerobically on a minimal medium with glycerol as the carbon and energy source and dimethyl sulfoxide (DMSO) as the terminal electron acceptor. DMSO reductase activity, measured with an artificial electron donor (reduced benzyl viologen), was preferentially associated with the membrane fraction (77 +/- 10% total cellular activity). A Km for DMSO reduction of 170 +/- 60 microM was determined for the membrane-bound activity. Methyl viologen, reduced flavin mononucleotide, and reduced flavin adenine dinucleotide also served as electron donors for DMSO reduction. Methionine sulfoxide, a DMSO analog, could substitute for DMSO in both the growth medium and in the benzyl viologen assay. DMSO reductase activity was present in cells grown anaerobically on DMSO but was repressed by the presence of nitrate or by aerobic growth. Anaerobic growth on DMSO coinduced nitrate, fumarate, and and trimethylamine-N-oxide reductase activities. The requirement of a molybdenum cofactor for DMSO reduction was suggested by the inhibition of growth and a 60% reduction in DMSO reductase activity in the presence of 10 mM sodium tungstate. Furthermore, chlorate-resistant mutants chlA, chlB, chlE, and chlG were unable to grow anaerobically on DMSO. DMSO reduction appears to be under the control of the fnr gene.  相似文献   

17.
Akira Kusai  Tateo Yamanaka 《BBA》1973,292(3):621-633
A highly purified preparation of an NAD(P) reductase was obtained from Chlorobium thiosulfatophilum and some of its properties were studied. The enzyme possesses FAD as the prosthetic group, and reduces benzyl viologen, 2,6-dichloro-phenolindophenol and cytochromes c, including cytochrome c-555 (C. thiosulfato-philum), with NADPH or NADH as the electron donor. It reduces NADP+ or NAD+ photosynthetically with spinach chloroplasts in the presence of added spinach ferredoxin. It reduces the pyridine nucleotides with reduced benzyl viologen. The enzyme also shows a pyridine nucleotide transhydrogenase activity. In these reactions, the type of pyridine nucleotide (NADP or NAD) which functions more efficiently with the enzyme varies with the concentration of the nucleotide used; at concentrations lower than approx. 1.0 mM, NADPH (or NADP+) is better electron donor (or acceptor), while NADH (or NAD+) is a better electron donor (or acceptor) at concentrations higher than approx. 1.0 mM. Reduction of dyes or cytochromes c catalysed by the enzyme is strongly inhibited by NADP+, 2′-AMP and and atebrin.  相似文献   

18.
Kinetic parameters of the selenium-containing, formate dehydrogenase component of the Escherichia coli formate-hydrogenlyase complex have been determined with purified enzyme. A ping-pong Bi Bi kinetic mechanism was observed. The Km for formate is 26 mM, and the Km for the electron-accepting dye, benzyl viologen, is in the range 1-5 mM. The maximal turnover rate for the formate-dependent catalysis of benzyl viologen reduction was calculated to be 1.7 x 10(5) min-1. Isotope exchange analysis showed that the enzyme catalyzes carbon exchange between carbon dioxide and formate in the absence of other electron acceptors, confirming the ping-pong reaction mechanism. Dissociation constants for formate (12.2 mM) and CO2 (8.3 mM) were derived from analysis of the isotope exchange data. The enzyme catalyzes oxidation of the alternative substrate deuterioformate with little change in the Vmax, but the Km for deuterioformate is approximately three times that of protioformate. This implies formate oxidation is not rate-limiting in the overall coupled reaction of formate oxidation and benzyl viologen reduction. The deuterium isotope effect on Vmax/Km was observed to be approximately 4.2-4.5. Sodium nitrate was found to inhibit enzyme activity in a competitive manner with respect to formate, with a Ki of 7.1 mM. Sodium azide is a noncompetitive inhibitor with a Ki of about 80 microM.  相似文献   

19.
Hydrogenase activity and the H2-fumarate electron transport system in a carbohydrate-fermenting obligate anaerobe, Bacteroides fragilis, were investigated. In both whole cells and cell extracts, hydrogenase activity was demonstrated with methylene blue, benzyl viologen, flavin mononucleotide, or flavin adenine dinucleotide as the electron acceptor. A catalytic quantity of benzyl viologen or ferredoxin from Clostridium pasteurianum was required to reduce nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate with H2. Much of the hydrogenase activity appeared to be associated with the soluble fraction of the cell. Fumarate reduction to succinate by H2 was demonstrable in cell extracts only in the presence of a catalytic quantity of benzyl viologen, flavin mononucleotide, flavin adenine dinucleotide, or ferredoxin from C. pasteurianum. Sulfhydryl compounds were not required for fumarate reduction by H2, but mercaptoethanol and dithiothreitol appeared to stimulate this activity by 59 and 61%, respectively. Inhibition of fumarate reduction by acriflavin, rotenone, 2-heptyl-4-hydroxyquinoline-N-oxide, and antimycin A suggest the involvement of a flavoprotein, a quinone, and cytochrome b in the reduction of fumarate to succinate. The involvement of a quinone in fumarate reduction is also apparent from the inhibition of fumarate reduction by H2 when cell extracts were irradiated with ultraviolet light. Based on the evidence obtained, a possible scheme for the flow of electrons from H2 to fumarate in B. fragilis is proposed.  相似文献   

20.
Desulfitobacterium chlororespirans Co23 is capable of using 3-chloro-4-hydroxybenzoate as terminal electron acceptor for growth. Membrane preparations from cells grown fermentatively on pyruvate in the presence of 3-chloro-4-hydroxybenzoate dechlorinated this compound at a rate of 3.9 nmol min(sup-1) mg of protein(sup-1). Fivefold-greater dechlorination rates were measured with reduced methyl viologen as the artificial electron donor. Reduced benzyl viologen, NADH, NADPH, reduced flavin adenine dinucleotide, and reduced flavin mononucleotide could not substitute for reduced methyl viologen. The maximal initial rate of catalysis was achieved at pH 6.5 and 60(deg)C. The membrane-bound dechlorinating enzyme system was not oxygen sensitive and was stable at 57(deg)C for at least 2 h. Sulfite inhibited dechlorination in cell-free assays, whereas sulfate did not. Several chlorophenols were dehalogenated exclusively in the ortho position by cell extracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号