首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A few phytophagous hemipteran species such as the glassy-winged sharpshooter, Homalodisca vitripennis, (Germar), subsist entirely on xylem fluid. Although poorly understood, aspects of the insect's salivary physiology may facilitate both xylem-feeding and transmission of plant pathogens. Xylella fastidiosa is a xylem-limited bacterium that causes Pierce's disease of grape and other scorch diseases in many important crops. X. fastidiosa colonizes the anterior foregut (precibarium and cibarium) of H. vitripennis and other xylem-feeding vectors. Bacteria form a dense biofilm anchored in part by an exopolysaccharide (EPS) matrix that is reported to have a β-1,4-glucan backbone. Recently published evidence supports the following, salivation-egestion hypothesis for the inoculation of X. fastidiosa during vector feeding. The insect secretes saliva into the plant and then rapidly takes up a mixture of saliva and plant constituents. During turbulent fluid movements in the precibarium, the bacteria may become mechanically and enzymatically dislodged; the mixture is then egested back out through the stylets into plant cells, possibly including xylem vessels. The present study found that proteins extracted from dissected H. vitripennis salivary glands contain several enzyme activities capable of hydrolyzing glycosidic linkages in polysaccharides such as those found in EPS and plant cell walls, based on current information about the structures of those polysaccharides. One of these enzymes, a β-1,4-endoglucanase (EGase) was enriched in the salivary gland protein extract by subjecting the extract to a few, simple purification steps. The EGase-enriched extract was then used to generate a polyclonal antiserum that was used for immunohistochemical imaging of enzymes in sharpshooter salivary sheaths in grape. Results showed that enzyme-containing gelling saliva is injected into xylem vessels during sharpshooter feeding, in one case being carried by the transpiration stream away from the injection site. Thus, the present study provides support for the salivation-egestion hypothesis.  相似文献   

2.
AIMS: Detection of Xylella fastidiosa in citrus plants and insect vectors. METHODS AND RESULTS: Chelex 100 resin matrix was successfully standardized allowing a fast DNA extraction of X. fastidiosa. An amplicon of 500 bp was observed in samples of citrus leaf and citrus xylem extract, with and without symptoms of citrus variegated chlorosis, using PCR with a specific primer set indicating the presence of X. fastidiosa. The addition of insoluble acid-washed polyvinylpyrrolidone (PVPP) prior to DNA extraction of insect samples using Chelex 100 resin together with nested-PCR permitted the detection of X. fastidiosa within sharpshooter heads with great sensitivity. It was possible to detect up to two bacteria per reaction. From 250 sharpshooter samples comprising four species (Dilobopterus costalimai, Oncometopia facialis, Bucephalogonia xanthopis and Acrogonia sp.), 87 individuals showed positive results for X. fastidiosa in a nested-PCR assay. CONCLUSIONS: The use of Chelex 100 resin allowed a fast and efficient DNA extraction to be used in the detection of X. fastidiosa in citrus plants and insect vectors by PCR and nested-PCR assays, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY: The employment of efficient and sensitive methods to detect X. fastidiosa in citrus plants and insect vectors will greatly assist epidemiological studies.  相似文献   

3.
4.
The glassy‐winged sharpshooter (GWSS), Homalodisca vitripennis, is an important vector of various strains of Xylella fastidiosa, which cause disease in a variety of economically important plants. These diseases include citrus variegated chlorosis, oleander leaf scorch and Pierce's Disease of grapevines. Symbiotic control (SC) is a new strategy that uses symbiotic endophytes as biological control agents to antagonize or displace the pathogenic strains of X. fastidiosa. Candidate endophytes for use in SC must occupy the xylem of host plants and attach to the pre‐cibarium and cibarium of sharpshooter insects in order to have access to the pathogen. The study of the bacterial community of GWSS heads by isolation and denaturing gradient gel electrophoresis (DGGE) revealed the presence of species that may be suitable for use in SC. In addition, the results indicated that two important factors, insect age and choice of host plant, affect the composition of the bacterial community in GWSS heads. The main bacterial genera isolated as colonizers of GWSS heads were identified, using partial 16S rRNA gene sequencing, as Bacillus, Pseudomonas, Pedobacter and Methylobacterium, as well as the species Curtobacterium flaccumfaciens. DGGE patterns revealed a diversity of endophytic species able to colonize the GWSS head. The main genera isolated in culture were also identified using this technique. Principal component analysis (PCA) from polymerase chain reaction (PCR)‐DGGE patterns indicated that the bacteria inhabiting the GWSS head are similar to those found as endophytes inside the host plants, and that insect developmental stage and preferential feeding on one host plant species over another are important factors in determining the composition of the bacterial community in the GWSS head. However, a shift in host plants for a small period of time did not cause changes in the compositions of these communities.  相似文献   

5.
The bacterium Xylella fastidiosa causes a number of plant diseases of significant economic impact. To date, progress determining mechanisms of host-plant susceptibility, tolerance, or resistance has been slow, due in large part to the long generation time and limited available genetic resources for grape, almond, and other known hosts of X. fastidiosa. To overcome many of these limitations, Arabidopsis thaliana has been evaluated as a host for X. fastidiosa. A pin-prick inoculation method has been developed to infect Arabidopsis with X. fastidiosa. Following infection, X. fastidiosa multiplies and can be detected by microscopy, polymerase chain reaction, and isolation. The ecotypes Van-0, LL-0, and Tsu-1 all allow more growth of strain X. fastidiosa Temecula than the reference ecotype Col-0. Affymetrix ATH1 microarray analysis of inoculated vs. noninoculated Tsu-1 reveals gene expression changes that differ greatly from changes seen after infection with apoplast-colonizing bacteria such as Psuedomonas syringae pvs. tomato or syringae. Many genes responsive to oxidative stress are differentially regulated, while classic pathogenesis-related genes are not induced by X. fastidiosa infection.  相似文献   

6.
Xylella fastidiosa was isolated from sweet orange plants (Citrus sinensis) grown in two orchards in the northwest region of the Brazilian state of São Paulo. One orchard was part of a germ plasm field plot used for studies of citrus variegated chlorosis resistance, while the other was an orchard of C. sinensis cv. Pêra clones. These two collections of strains were genotypically characterized by using random amplified polymorphic DNA (RAPD) and variable number of tandem repeat (VNTR) markers. The genetic diversity (HT) values of X. fastidiosa were similar for both sets of strains; however, HTRAPD values were substantially lower than HTVNTR values. The analysis of six strains per plant allowed us to identify up to three RAPD and five VNTR multilocus haplotypes colonizing one plant. Molecular analysis of variance was used to determine the extent to which population structure explained the genetic variation observed. The genetic variation observed in the X. fastidiosa strains was not related to or dependent on the different sweet orange varieties from which they had been obtained. A significant amount of the observed genetic variation could be explained by the variation between strains from different plants within the orchards and by the variation between strains within each plant. It appears, therefore, that the existence of different sweet orange varieties does not play a role in the population structure of X. fastidiosa. The consequences of these results for the management of sweet orange breeding strategies for citrus variegate chlorosis resistance are also discussed.  相似文献   

7.
Xylella fastidiosa was isolated from sweet orange plants (Citrus sinensis) grown in two orchards in the northwest region of the Brazilian state of S?o Paulo. One orchard was part of a germ plasm field plot used for studies of citrus variegated chlorosis resistance, while the other was an orchard of C. sinensis cv. Pêra clones. These two collections of strains were genotypically characterized by using random amplified polymorphic DNA (RAPD) and variable number of tandem repeat (VNTR) markers. The genetic diversity (H(T)) values of X. fastidiosa were similar for both sets of strains; however, H(T)(RAPD) values were substantially lower than H(T)(VNTR) values. The analysis of six strains per plant allowed us to identify up to three RAPD and five VNTR multilocus haplotypes colonizing one plant. Molecular analysis of variance was used to determine the extent to which population structure explained the genetic variation observed. The genetic variation observed in the X. fastidiosa strains was not related to or dependent on the different sweet orange varieties from which they had been obtained. A significant amount of the observed genetic variation could be explained by the variation between strains from different plants within the orchards and by the variation between strains within each plant. It appears, therefore, that the existence of different sweet orange varieties does not play a role in the population structure of X. fastidiosa. The consequences of these results for the management of sweet orange breeding strategies for citrus variegate chlorosis resistance are also discussed.  相似文献   

8.
9.
For the first time, growth curves are shown for the phytopathogen Xylella fastidiosa on traditional growth media such as PW (periwinkle wilt), BCYE (buffered charcoal yeast extract), and on new ones such as GYE (glutamate yeast extract) and PYE (phosphate yeast extract) that were developed in this work. The optimal growth conditions on solid and liquid media as well as their measurements are presented, by using total protein content and turbidity determinations. The results demonstrated that yeast extract provided sufficient nutrients for X. fastidiosa, since the cells grew well on PYE medium.  相似文献   

10.
A cosmid library was made of the 2.7 Mb genome of the Gram-negative plant pathogenic bacterium Xylella fastidiosa and analysed by hybridisation mapping. Clones taken from the library as well as genomic restriction fragments of rarely cutting enzymes were used as probes. The latter served as a backbone for ordering the initial map contigs and thus facilitated gap closure. Also, the co-linearity of the cosmid map, and thus the eventual sequence, could be confirmed by this process. A subset of the eventual clone coverage was distributed to the Brazilian X.fastidiosa sequencing network. Data from this effort confirmed more quantitatively initial results from the hybridisation mapping that the redundancy of clone coverage ranged between 0 and 45-fold across the genome, while the average was 15-fold by experimental design. Reasons for this not unexpected fluctuation and the actual gaps are being discussed, as is the use of this effect for functional studies.  相似文献   

11.
We report an inexpensive, high-throughput method for isolating DNA from insect and plant samples for the purpose of detecting Xylella fastidiosa infection. Existing methods often copurify inhibitors of DNA polymerases, limiting their usefulness for PCR-based detection assays. When compared to commercially available kits, the method provides enhanced pathogen detection at a fraction of the cost.  相似文献   

12.
Genetic relationships among 11 Xylella fastidiosa strains isolated from mulberry, almond, ragweed, grape, plum, elm, and citrus were determined by random amplified polymorphic DNA (RAPD). Twenty-two 10-base primers amplified a total of 77 discrete polymorphic bands. Phenetic analysis based on a similarity matrix corresponded well with previous reports on X. fastidiosa RFLP-based similarity relationships, indicating that RAPD-PCR amplification products can be used as a reliable indicator of genetic distance in X. fastidiosa. Cladistic analysis suggests the existence of five groups of X. fastidiosa: the citrus group, the plum-elm group, the grape-ragweed group, the almond group, and the mulberry group.  相似文献   

13.
Xylella fastidiosa is a xylem-limited bacterium that causes various diseases, among them Pierce's disease of grapevine (PD) and almond leaf scorch (ALS). PD and ALS have long been considered to be caused by the same strain of this pathogen, but recent genetic studies have revealed differences among X. fastidiosa isolated from these host plants. We tested the hypothesis that ALS is caused by PD and ALS strains in the field and found that both groups of X. fastidiosa caused ALS and overwintered within almonds after mechanical inoculation. Under greenhouse conditions, all isolates caused ALS and all isolates from grapes caused PD. However, isolates belonging to almond genetic groupings did not cause PD in inoculated grapes but systemically infected grapes with lower frequency and populations than those belonging to grape strains. Isolates able to cause both PD and ALS developed 10-fold-higher concentrations of X. fastidiosa in grapes than in almonds. In the laboratory, isolates from grapes overwintered with higher efficiency in grapes than in almonds and isolates from almonds overwintered better in almonds than in grapes. We assigned strains from almonds into groups I and II on the basis of their genetic characteristics, growth on PD3 solid medium, and bacterial populations within inoculated grapevines. Our results show that genetically distinct strains from grapes and almonds differ in population behavior and pathogenicity in grapes and in the ability to grow on two different media.  相似文献   

14.
Xylella fastidiosa is a xylem-limited bacterium that causes various diseases, among them Pierce's disease of grapevine (PD) and almond leaf scorch (ALS). PD and ALS have long been considered to be caused by the same strain of this pathogen, but recent genetic studies have revealed differences among X. fastidiosa isolated from these host plants. We tested the hypothesis that ALS is caused by PD and ALS strains in the field and found that both groups of X. fastidiosa caused ALS and overwintered within almonds after mechanical inoculation. Under greenhouse conditions, all isolates caused ALS and all isolates from grapes caused PD. However, isolates belonging to almond genetic groupings did not cause PD in inoculated grapes but systemically infected grapes with lower frequency and populations than those belonging to grape strains. Isolates able to cause both PD and ALS developed 10-fold-higher concentrations of X. fastidiosa in grapes than in almonds. In the laboratory, isolates from grapes overwintered with higher efficiency in grapes than in almonds and isolates from almonds overwintered better in almonds than in grapes. We assigned strains from almonds into groups I and II on the basis of their genetic characteristics, growth on PD3 solid medium, and bacterial populations within inoculated grapevines. Our results show that genetically distinct strains from grapes and almonds differ in population behavior and pathogenicity in grapes and in the ability to grow on two different media.  相似文献   

15.
Horizontally transferred DNA acquired through transformation and recombination has the potential to contribute to the diversity and evolution of naturally competent bacteria. However, many different factors affect the efficiency with which DNA can be transformed and recombined. In this study, we determined how the size of both homologous and nonhomologous regions affects transformation and recombination efficiencies in Xylella fastidiosa, a naturally competent generalist pathogen responsible for many emerging plant diseases. Our experimental data indicate that 96 bp of flanking homology is sufficient to initiate recombination, with recombination efficiencies increasing exponentially with the size of the homologous flanking region up to 1 kb. Recombination efficiencies also decreased with the size of the nonhomologous insert, with no recombination detected when 6 kb of nonhomologous DNA was flanked on either side by 1 kb of homologous sequences. Upon analyzing sequenced X. fastidiosa subsp. fastidiosa genomes for evidence of allele conversion, we estimated the mean size of recombination events to be 1,906 bp, with each event modifying, on average, 1.79% of the nucleotides in the recombined region. There is increasing evidence that horizontally acquired genes significantly affect the genetic diversity of X. fastidiosa, and DNA acquired through natural transformation could be a prominent mode of this horizontal transfer.  相似文献   

16.
The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants. In order to pave the way for structural and functional efforts towards antimicrobial agent development, here we describe the molecular modeling of seven enzymes of the shikimate pathway of X. fastidiosa. The structural models of shikimate pathway enzymes, complexed with inhibitors, strongly indicate that the previously identified inhibitors may also inhibit the X. fastidiosa enzymes.  相似文献   

17.
18.
The epidemiology of Pierce's disease of grape (Vitis spp.) in California has changed over the past 10 yr due to the introduction of an exotic vector, Homalodisca vitripennis (Germar), the glassy-winged sharpshooter. Although this insect is highly polyphagous, citrus (Citrus spp.) is considered a preferred host and proximity to citrus has been implicated as a significant risk factor in recent epidemics of Pierce's disease in southern California. Consequently, a detailed knowledge of the distribution and management of citrus in relation to grape is needed to improve insect and disease management. Analysis of data on the area planted to these two commodities indicates that only five counties in California concomitantly grow >1,000 ha of grape and >1,000 ha of citrus: Riverside, Kern, Tulare, Fresno, and Madera counties. Comparison of the distribution of grape and citrus within each of these counties indicates that the percentage of grape that is in proximity to citrus is greatest for Riverside County, but the total area of grape that is in proximity to citrus is greater for Fresno, Kern, and Tulare counties. The use of carbamates, neonicotinoids, organophosphates, and pyrethroids as part of the citrus pest management program for control of key insect pests was compared among the same five counties plus Ventura County from 1995 to 2006. Ventura County was included in this analysis as this county grows >10,000 ha of citrus and has established glassy-winged sharpshooter populations. The use of these broad-spectrum insecticides was lowest in Riverside and Ventura counties compared with the other four counties. Analysis of historical trapping data at the county scale indicates a negative association of broad-spectrum insecticide use with glassy-winged sharpshooter abundance. These results are used to retrospectively analyze the Pierce's disease outbreaks in Kern and Riverside counties.  相似文献   

19.
20.
The average protein (E+K)/(Q+H) ratio in organisms has already been demonstrated to have a strong correlation with their optimal growth temperature. Employing the Thermo-Search web tool, we used this ratio as a basis to look for thermostable proteins in a mesophile, Xylella fastidiosa. Nine proteins were chosen to have their three-dimensional structures modeled by homology, using mainly proteins from mesophiles as templates. Resulting models featured a high number of hydrophobic interactions, a property that has been previously associated with thermostability. These results demonstrate the interesting possibility of using the (E+K)/(Q+H) ratio to find individual thermostable proteins in mesophilic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号