首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined the intracellular compartmentalization and trafficking of fluorescein labeled (F) phosphodiester (PO) and phosphorothioate (PS) oligodeoxynucleotides (oligos) in HL60 cells. A series of F-oligos (PO and PS) were incubated for 6 hrs. with HL60 cells and the mean intracellular fluorescence determined by flow cytometry. The F signal was normalized by the addition of the ionophore monensin. An increase in signal intensity following addition of monensin indicated that the oligo was resident in an acidic intracellular environment. F-PS, but not F-PO oligos were found to reside in an acidic environment. An exception was a PO homopolymer of 15 cytidine bases (FOdC15) which was acidified. Using two different methods, the average resident intracellular pH of F-PS oligos and F-OdC15 was shown to be approximately 1 pH unit lower than that of F-PO oligos. Acidification of F-PS oligos could be blocked by the antibiotic bafilomycin, indicating that acidification was occurring in endosomes or vacuoles. F-PO and F-PS oligos were effluxed from HL60 cells from two intracellular compartments. However, approximately 60% of internalized F-PO oligo resided in a 'shallow' compartment that was turned over rapidly (t1/2 = 5-10 min.) whereas only 20% of F-PS oligo resided in this compartment. Conversely, approximately 80% of the internalized F-PS oligo but only 40% of F-PO oligo resided in a 'deep' compartment that turned over with t1/2 = 2-5 hrs. This report is the first quantitative demonstration that PO and PS oligos, and PO oligos of different sequences are trafficked differently by HL60 cells.  相似文献   

2.
The intracellular transport and fate of nucleic acids is poorly understood. To study this process, we injected fluorescent oligodeoxyribonucleotides (oligos) into the cytoplasm of CV-1 epithelial cells and primary human fibroblasts. Rapid nuclear accumulation was found with the phosphodiester (PD), phosphorothioate (PT), and methylphosphonate (MP) forms of a 28-mer oligo complimentary to the rev mRNA of the human immunodeficiency virus type 1. Migration of the oligos in the cytoplasm was slower than diffusion of a coinjected dextran, but the oligos freely diffused into the nucleus. Nuclear incorporation was temperature but not energy dependent. The intranuclear distribution of the oligos was influenced by the chemistry of internucleoside linkages. The PD oligos and, to a lesser extent, the PT oligos colocalized with small nuclear ribonucleoproteins (snRNPs), whereas the MP oligos colocalized with concentrated regions of genomic DNA. These data have important implications for our understanding of the transport and accumulation of exogenous nucleic acids in mammalian nuclei, and the assay described could potentially be used for testing the efficacy of oligos designed as therapeutic agents.  相似文献   

3.
Recombination with single-strand DNA oligonucleotides (oligos) in Escherichia coli is an efficient and rapid way to modify replicons in vivo. The generation of nucleotide alteration by oligo recombination provides novel assays for studying cellular processes. Single-strand exonucleases inhibit oligo recombination, and recombination is increased by mutating all four known exonucleases. Increasing oligo concentration or adding nonspecific carrier oligo titrates out the exonucleases. In a model for oligo recombination, λ Beta protein anneals the oligo to complementary single-strand DNA at the replication fork. Mismatches are created, and the methyl-directed mismatch repair (MMR) system acts to eliminate the mismatches inhibiting recombination. Three ways to evade MMR through oligo design include, in addition to the desired change (1) a C·C mismatch  6 bp from that change; (2) four or more adjacent mismatches; or (3) mismatches at four or more consecutive wobble positions. The latter proves useful for making high-frequency changes that alter only the target amino acid sequence and even allows modification of essential genes. Efficient uptake of DNA is important for oligo-mediated recombination. Uptake of oligos or plasmids is dependent on media and is 10,000-fold reduced for cells grown in minimal versus rich medium. Genomewide engineering technologies utilizing recombineering will benefit from both optimized recombination frequencies and a greater understanding of how biological processes such as DNA replication and cell division impact recombinants formed at multiple chromosomal loci. Recombination events at multiple loci in individual cells are described here.  相似文献   

4.
C Baker  D Holland  M Edge    A Colman 《Nucleic acids research》1990,18(12):3537-3543
Using the endogenous histone H4 mRNA of Xenopus oocytes as a target, we have previously shown that 20mer oligos complementary to different parts of this sequence vary in their effectiveness at causing mRNA cleavage in vivo, and that some of the RNA can never be cleaved. In this paper we show that the resistant RNA is not localised within one part of the oocyte, and that the relative resistance in vivo of endogenous or synthetic H4 mRNA to the different oligos is preserved in an in vitro assay system using deproteinised RNA. If an prior annealing step is included in vitro, all resistance is abolished. Chemical modification of one oligo by end substitution with methylphosphonate or phosphorothioate residues did not improve cleavage efficiency. Oligos with complete phosphorothioate substitution cause slower cleavage in vivo but persist for longer. Consequently phosphorothioate oligos are effective at lower doses than phosphodiester ones, provided that the incubation time is long enough (24 hours). Increasing oligo length from 20nt to 30nt increases phosphorothioate oligo efficiency over long reaction times in vivo, but decreases efficiency during short in vitro assays. Similar increases in length did not affect phosphodiester oligo performance in vivo, but caused a decrease in efficiency in vitro which was overcome by an annealing step.  相似文献   

5.
Genome engineering using single-stranded oligonucleotides is an efficient method for generating small chromosomal and episomal modifications in a variety of host organisms. The efficiency of this allelic replacement strategy is highly dependent on avoidance of the endogenous mismatch repair (MMR) machinery. However, global MMR inactivation generally results in significant accumulation of undesired background mutations. Here, we present a novel strategy using oligos containing chemically modified bases (2'-Fluoro-Uridine, 5-Methyl-deoxyCytidine, 2,6-Diaminopurine or Iso-deoxyGuanosine) in place of the standard T, C, A or G to avoid mismatch detection and repair, which we tested in Escherichia coli. This strategy increases transient allelic-replacement efficiencies by up to 20-fold, while maintaining a 100-fold lower background mutation level. We further show that the mismatched bases between the full length oligo and the chromosome are often not incorporated at the target site, probably due to nuclease activity at the 5' and 3' termini of the oligo. These results further elucidate the mechanism of oligo-mediated allelic replacement (OMAR) and enable improved methodologies for efficient, large-scale engineering of genomes.  相似文献   

6.
The aim of this study was to localise hyaluronan (HA)-binding proteins (HABPs) in ovine vertebral tissues using biotinylated HA oligosaccharides (bHA oligos) as novel affinity probes and to compare this with the distribution of tissue HA visualised using biotinylated aggrecan G1 domain-link protein complex. The bHA oligos, with a size of 6-18 disaccharides were prepared by partial digestion of HA with ovine testicular hyaluronidase, labelled with biotin hydrazide and purified by a combination of aggrecan G1 domain and avidin affinity chromatography. Hyaluronan and HABPs were both prominent pericellular components of hypertrophic cells of the vertebral epiphyseal growth plate and enlarged cells in the cartilaginous end plate of the disc. The bHA oligo probe also visualised HABPs intracellularly in hypertrophic cells, which also contained intracellular HA. Monolayer cultures of ovine annulus fibrosus and nucleus pulposus cells rapidly internalised the bHA oligo affinity probe which was subsequently visualised by indirect fluorescence using avidin-FITC, to cytoplasm and discrete nuclear regions. The results indicate that the abundant pericellular and intracellular HA associated with cartilaginous cells in the vertebral tissues is colocalised with HABPs. The bHA oligo affinity probe may have further applications in investigations of intracellular HABPs, HA endocytosis and the roles they play in cellular regulatory processes.  相似文献   

7.
8.
An approach was sought to increase the half-life and target cell specificity of antisense oligodeoxynucleotides (oligos). A monoclonal antibody (MAb) was derived from mice immunised with an oligo complementary to a region (1-20) of the HIV genome. This MAb exerts a protective effect on the oligo from the degradation induced by plasma exonucleases in vitro and in vivo. Moreover the anti-oligo MAb dissociates from the oligo in the presence of its complementary sequence to allow hybridization of the two complementary strands. To direct the oligo to CD4+ cells the anti-oligo MAb was cross-linked to an anti-CD4 MAb. The heteroaggregate determines a 5-fold increase in the cellular membrane binding of the oligo to CD4+ lymphocytes. These findings suggest a new approach to enhancing the therapeutic action and the target specificity of antisense oligodeoxynucleotides useful for the selective inhibition of HIV replication in vivo.  相似文献   

9.
Chemically modified siRNAs are expected to have resistance toward nuclease degradation and good thermal stability in duplex formation for in vivo applications. We have recently found that 2'-OMe-4'-thioRNA, a hybrid chemical modification based on 2'-OMeRNA and 4'-thioRNA, has high hybridization affinity for complementary RNA and significant resistance toward degradation in human plasma. These results prompted us to develop chemically modified siRNAs using 2'-OMe-4'-thioribonucleosides for therapeutic application. Effective modification patterns were screened with a luciferase reporter assay. The best modification pattern of siRNA, which conferred duration of the gene-silencing effect without loss of RNAi activity, was identified. Quantification of the remaining siRNA in HeLa-luc cells using a Heat-in-Triton (HIT) qRT-PCR revealed that the intracellular stability of the siRNA modified with 2'-OMe-4'-thioribonucleosides contributed significantly to the duration of its RNAi activity.  相似文献   

10.
Synthetic single‐strand oligonucleotides (oligos) with homology to genomic DNA have proved to be highly effective for constructing designed mutations in targeted genomes, a process referred to as recombineering. The cellular functions important for this type of homologous recombination have yet to be determined. Towards this end, we have identified Escherichia coli functions that process the recombining oligo and affect bacteriophage λ Red‐mediated oligo recombination. To determine the nature of oligo processing during recombination, each oligo contained multiple nucleotide changes: a single base change allowing recombinant selection, and silent changes serving as genetic markers to determine the extent of oligo processing during the recombination. Such oligos were often not incorporated into the host chromosome intact; many were partially degraded in the process of recombination. The position and number of these silent nucleotide changes within the oligo strongly affect both oligo processing and recombination frequency. Exonucleases, especially those associated with DNA Polymerases I and III, affect inheritance of the silent nucleotide changes in the oligos. We demonstrate for the first time that the major DNA polymerases (Pol I and Pol III) and DNA ligase are directly involved with oligo recombination.  相似文献   

11.
《Seminars in Virology》1994,5(5):381-389
The polyomaviruses, members of the papovavirus group of DNA tumor viruses, encode in the 'early' region of the genome, three proteins involved in transformation, the tumor (or T) antigens, called large (LT), middle (mT) and small (sT) T. LT is required for establishment of primary fibroblasts, and sT promotes the efficiency of transformation both in vivo and in vitro, but it is mT that carries the transforming ability. The mTs of the two known polyomaviruses, from mouse and hamster, possess no intrinsic catalytic activity, but rather interact with and change the activity of several cellular proteins, including Src family protein tyrosine kinases, protein phosphatase 2A, phosphatidylinositol 3-kinase and Shc. Some of these proteins are also involved in signal transduction events elicited by growth factors. Like activated growth factor receptors, mT brings its associated proteins to a membranous environment. Transformation by mT might result not only from allosteric effects of mT on its interacting proteins but also as a result of their subcellular relocalization.  相似文献   

12.
13.
14.
Chemical modification of double-stranded (ds) DNA with alkylating oligodeoxynucleotide (oligo) derivatives, 5'-p(N-2-chloroethyl-N-methylamino) benzylamides of oligos, has been investigated. In contrast to relaxed plasmid DNAs, the superhelical molecules interact with the oligo derivatives and specific alkylation of the DNAs occurs at the regions complementary to the oligo reagents. Alkylating derivatives of oligocytidylates and pT(pCpT)6 react with corresponding homopyrimidine-homopurine tracts within ds DNA fragments due to triple helix formation.  相似文献   

15.
Qiao  Hongyan  Gao  Yanmin  Liu  Qian  Wei  Yanan  Li  Jiaojiao  Wang  Zhaoguan  Qi  Hao 《Biotechnology letters》2022,44(10):1189-1199

Large scale DNA oligo pools are emerging as a novel material in a variety of advanced applications. However, GC content and length cause significant bias in amplification of oligos. We systematically explored the amplification of one oligo pool comprising of over ten thousand distinct strands with moderate GC content in the range of 35–65%. Uniqual amplification of oligos result to the increased Gini index of the oligo distribution while a few oligos greatly increased their proportion after 60 cycles of PCR. However, the significantly enriched oligos all have relatively high GC content. Further thermodynamic analysis demonstrated that a high value of both GC content and Gibbs free energy could improve the replication of specific oligos during biased amplification. Therefore, this double-G (GC content and Gibbs free energy) driven replication advantage can be used as a guiding principle for the sequence design for a variety of applications, particularly for data storage.

  相似文献   

16.
Previously, we have developed a genetically structured mathematical model to describe the inhibition of Escherichia coli lac operon gene expression by antigene oligos. Our model predicted that antigene oligos targeted to the operator region of the lac operon would have a significant inhibitory effect on beta-galactosidase production. In this investigation, the E. coli lac operon gene expression in the presence of antigene oligos was studied experimentally. A 21-mer oligo, which was designed to form a triplex with the operator, was found to be able to specifically inhibit beta-galactosidase production in a dose-dependent manner. In contrast to the 21-mer triplex-forming oligonucleotide (TFO), several control oligos showed no inhibitory effect. The ineffectiveness of the various control oligos, along with the fact that the 21-mer oligo has no homology sequence with lacZYA, and no mRNA is transcribed from the operator, suggests that the 21-mer oligo inhibits target gene expression by an antigene mechanism. To simulate the kinetics of lac operon gene expression in the presence of antigene oligos, a genetically structured kinetic model, which includes transport of oligo into the cell, growth of bacteria cells, and lac operon gene expression, was developed. Predictions of the kinetic model fit the experimental data quite well after adjustment of the value of the oligonucleotide transport rate constant (9.0 x 10(-)(3) min(-)(1)) and oligo binding affinity constant (1.05 x 10(6) M(-)(1)). Our values for these two adjusted parameters are in the range of reported literature values.  相似文献   

17.
Specificity of the nick-closing activity of bacteriophage T4 DNA ligase   总被引:14,自引:0,他引:14  
D Y Wu  R B Wallace 《Gene》1989,76(2):245-254
Bacteriophage T4 DNA ligase effectively joins two adjacent, short synthetic oligodeoxyribonucleotides (oligos), as guided by complementary oligo, plasmid and genomic DNA templates. When a single bp mismatch exists at either side of the ligation junction, the efficiency of the enzyme to ligate the two oligos decreases. Mismatch ligation is approximately five-fold greater if the mismatch occurs at the 3' side rather than at the 5' side of the junction. During mismatch ligation the 5' adenylate of the 3' oligo accumulates in the reaction. The level of the adenylate formation correlates closely with the level of the mismatch ligation. Both mismatch ligation and adenylate formation are suppressed at elevated temperatures and in the presence of 200 mM NaCl or 2-5 mM spermidine. The apparent Km for the oligo template in the absence of salt is 0.05 microM, whereas the Km increases to 0.2 microM in the presence of 200 mM of NaCl. In this report, we demonstrate these properties of T4 DNA ligase for oligo pairs complementary to the beta-globin gene at the sequence surrounding the single bp mutation responsible for sickle-cell anemia. Because of the highly specific nature of the nick-closing reaction, ligation of short oligos with DNA ligase can be used to distinguish two DNA templates differing by a single nucleotide.  相似文献   

18.
We have designed and studied antisense oligodeoxynucleotides (oligonucleotides; oligos) which we call ‘pseudo-cyclic oligonucleotides’ (PCOs). PCOs contain two oligonucleotide segments attached through their 3′-3′- or 5′-5′-ends. One of the segments of the PCO is an antisense oligo complementary to a target mRNA, and the other is a short protective oligo that is 5–8 nucleotides long and complementary to the 3′- or 5′-end of the antisense oligo. As a result of complementarity between the antisense and protective oligo segments, PCOs form intramolecular pseudo-cyclic structures in the absence of the target RNA. The antisense oligo segment of PCOs used for the studies described here is complementary to an 18-nucleotide-long site on the mRNA of the protein kinase A regulatory subunit RI (PKA-RI). Thermal melting studies of PCOs in the absence and presence of the complementary RNA suggest that the pseudo-cyclic structures formed in the absence of the target RNA dissociate, bind to the target RNA, and form heteroduplexes. The results of RNase H cleavage assays suggest that PCOs bind to complementary RNA and activate RNase H in a manner similar to that of an 18-mer conventional antisense PS-oligo. In snake venom (a 3′-exonuclease) or spleen (a 5′-exonuclease) phosphodiesterase digestion studies, PCOs are more stable than conventional antisense oligos because of the presence of 3′-3′- or 5′-5′-linkages and the formation of intramolecular pseudo-cyclic structures. PCOs with a phosphorothioate antisense oligo segment inhibited cell growth of MDA-MB-468 and GEO cancer cell lines similar to that of the conventional antisense PS-oligo, suggesting efficient cellular uptake and target binding. The nuclease stability studies in mice suggest that PCOs have higher in vivo stability than antisense PS-oligos. The studies in mice showed similar pharmacokinetic and tissue distribution profiles for PCOs to those of antisense PS-oligos in general, but rapid elimination from selected tissues.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号