首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitogen-activated protein (MAP) kinases (p44mapk and p42mapk), also known as extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), are activated in response to a variety of extracellular signals, including growth factors, hormones and, neurotransmitters. We have investigated MAP kinase signal transduction pathways in normal human osteoblastic cells. Normal human bone marrow stromal (HBMS), osteoblastic (HOB), and human (TE85, MG-63, SaOS-2), rat (ROS 17/2.8, UMR-106) and mouse (MC3T3-E1) osteoblastic cell lines contained immunodetectable p44mapk/ERK1 and p42mapk/ERK2. MAP kinase activity was measured by 'in-gel' assay myelin basic protein as the substrate. Mainly ERK2 was rapidly activated (within 10 min) by bFGF, IGF-I and PDGF-BB in normal HOB, HBMS and human osteosarcoma cells, whereas both ERK1 and ERK2 were activated by growth factors in rat osteoblast-like cell lines, ROS 17/2.8 and UMR-106. The ERK1 activation was greater than the ERK2 in ROS 17/2.8 cells. Furthermore, ERK2 was also activated by bFGF and PDGF-BB in the mouse osteoblastic cell line, MC3T3-E1. This is the first demonstration of inter-species differences in the activation of MAP kinases in osteoblastic cells. Cyclic AMP derivatives or cAMP generating agents such as PTH and forskolin inhibited ERK2 activation by bFGF and PDGF-BB suggesting a 'cross-talk' between the two different signalling pathways activated by receptor tyrosine kinases and cAMP-dependent protein kinase. The accumulated results also suggest that the MAP kinases may be involved in mediating mitogenic and other biological actions of bFGF, IGF-I and PDGF-BB in normal human osteoblastic and bone marrow stromal cells.  相似文献   

2.
Monocyte chemoattractant protein-1 (MCP-1) is a potential therapeutic target for the treatment of several inflammatory conditions, including rheumatoid arthritis and chronic obstructive pulmonary disease. Current cell-based assays for MCP-1 use monocyte chemotaxis or calcium flux as a readout. Here, we describe an alternative bioassay based on MCP-1-induced phosphorylation of the mitogen-activated protein kinases (MAPK) p44 (ERK1) and p42 (ERK2). Adherent cells expressing the MCP-1 receptor CCR2B are treated with MCP-1 in 96-well plates in the presence or absence of inhibitors, fixed and permeabilized with methanol, and then probed with a monoclonal antibody that selectively recognizes the doubly phosphorylated form of p44/42 MAPK. Bound antibody is detected with a secondary antibody-peroxidase conjugate and a chromogenic substrate. The phosphorylation of p44/42 MAPK as detected in this assay peaks after 3-5 min of MCP-1 treatment, and the concentration of MCP-1 required for half-maximal p44/42 MAPK phosphorylation is 1-3 nM. MCP-1-induced phosphorylation of p44/42 MAPK is dependent upon the expression of CCR2B. The assay can be used for screening and characterization of small molecule inhibitors and antibodies blocking the binding of MCP-1 to its receptor. Since the assay is rapid and simple, it may represent a useful alternative to chemotaxis or calcium mobilization assays for the analysis of MCP-1 inhibitors.  相似文献   

3.
Effect of several vanadium salts, sodium orthovanadate, vanadyl sulfate and sodium metavanadate on protein tyrosine phosphorylation and serine/threonine kinases in chinese hamster ovary (CHO) cells overexpressing a normal human insulin receptor was examined. All the compounds stimulated protein tyrosine phosphorylation of two major proteins with molecular masses of 42 kDa (p42) and 44 kDa (p44). The phosphorylation of p42 and p44 was associated with an activation of mitogen activated protein (MAP) kinase as well as increased protein tyrosine phosphorylation of p42mapk and p44mapk. Vanadinm salts also activated the 90 kDa ribosomal s6 kinase (p90rsk) and 70 kDa ribosomal s6 kinase (p70s6k). Among the three vanadium salts tested, vanadyl sulfate appeared to be slightly more potent than others in stimulating MAP kinases and p70s6k activity. It is suggested that vanadium-induced activation of MAP kinases and ribosomal s6 kinases may be one of the mechanisms by which insulin like effects of this trace element are mediated.Abbreviations eIF-4 eukaryotic protein synthesis initiation factor-4 - GRB-2 growth factor receptor bound protein-2 - GSK-3 Glycogen Synthase Kinase-3 - IRS-1 insulin receptor substrate-1 - ISPK insulin stimulated protein kinase - MAPK mitogen activated protein kinase, also known as - ERK extracellular signal regulated kinase - MAPKK mitogen activated protein kinase kinase, also known as-MEK, MAPK or ERK kinase - PHAS-1 phosphorylated heat and acid stable protein regulated by insulin - PI3K phosphatidyl inositol 3-kinase - PP1-G protein phosphatase-glycogen bound form - PTK protein tyrosine kinase - PTPase protein tyrosine phosphatase - rsk ribosomal s6 kinases - shc src homology domain containing protein - SOS son of sevenless  相似文献   

4.
We previously found that addition of cAMP and a Ca(2+)/PKC-dependent agonist causes synergism or potentiation of protein secretion from rat lacrimal gland acini. In the present study we determined whether cAMP decreases p44/p42 mitogen-activated protein kinase (MAPK) activity in the lacrimal gland. Since we know that activation of MAPK attenuates protein secretion stimulated by Ca(2+)- and PKC-dependent agonists, we also determined whether this activation causes potentiation of secretion. Freshly prepared rat lacrimal gland acinar cells were incubated with dibutyryl cAMP (DBcAMP), carbachol (a cholinergic agonist), phenylephrine (an alpha(1)-adrenergic agonist), or epidermal growth factor (EGF). The latter three agonists are known to activate p44/p42 MAPK. p44/p42 MAPK activity and protein secretion were measured. As measured by Western blot analysis, DBcAMP inhibited both basal and agonist-stimulated p44/p42 MAPK activity. Cellular cAMP levels were increased by 1) using two different cell-permeant cAMP analogs, 2) activating adenylyl cyclase (L-858051), or 3) activation of G(s)-coupled receptors (VIP). The cell-permeant cAMP analogs, L-858051, and VIP inhibited basal p44/p42 MAPK activity by 50, 40, and 40%, respectively. DBcAMP and VIP inhibited carbachol- and EGF-stimulated MAPK activity. cAMP, but not VIP, inhibited phenylephrine-stimulated MAPK activity. Potentiation of secretion was detected when carbachol, phenylephrine, or EGF was simultaneously added with DBcAMP. We conclude that increasing cellular cAMP levels inhibits p44/p42 MAPK activity and that this could account for potentiation of secretion obtained when cAMP was elevated and Ca(2+) and PKC were increased by agonists.  相似文献   

5.
The G protein specificity of multiple signaling pathways of the dopamine-D2S (short form) receptor was investigated in GH4ZR7 lactotroph cells. Activation of the dopamine-D2S receptor inhibited forskolin-induced cAMP production, reduced BayK8644- activated calcium influx, and blocked TRH-mediated p42/p44 MAPK phosphorylation. These actions were blocked by pretreatment with pertussis toxin (PTX), indicating mediation by G(i/o) proteins. D2S stimulation also decreased TRH-induced MAPK/ERK kinase phosphorylation. TRH induced c-Raf but not B-Raf activation, and the D2S receptor inhibited both TRH-induced c-Raf and basal B-Raf kinase activity. After PTX treatment, D2S receptor signaling was rescued in cells stably transfected with individual PTX-insensitive Galpha mutants. Inhibition of adenylyl cyclase was partly rescued by Galpha(i)2 or Galpha(i)3, but Galpha(o) alone completely reconstituted D2S-mediated inhibition of BayK8644-induced L-type calcium channel activation. Galpha(o) and Galpha(i)3 were the main components involved in D2S-mediated p42/44 MAPK inhibition. In cells transfected with the carboxyl-terminal domain of G protein receptor kinase to inhibit Gbetagamma signaling, only D2S-mediated inhibition of calcium influx was blocked, but not inhibition of adenylyl cyclase or MAPK. These results indicate that the dopamine-D2S receptor couples to distinct G(i/o) proteins, depending on the pathway addressed, and suggest a novel Galpha(i)3/Galpha(o)-dependent inhibition of MAPK mediated by c-Raf and B-Raf-dependent inhibition of MAPK/ERK kinase.  相似文献   

6.
The extracellular regulated kinases (ERK) 1 and ERK2 are members of mitogen-activated protein (MAP) kinase family that play an important role in transducing extracellular signals to the nucleus and have been implicated in a broad spectrum of biological responses. To test the hypothesis that MAP kinases may be involved in depression, we examined the activation of p44/42 MAP kinase and expression of ERK1 and ERK2 in the post-mortem brain tissue obtained from non-psychiatric control subjects (n = 11) and age- and the post-mortem interval-matched depressed suicide subjects (n = 11). We observed that p44/42 MAP kinase activity was significantly decreased in the prefrontal cortical areas (Brodmann's areas 8, 9 and 10) and the hippocampus of depressed suicide subjects without any change in the cerebellum. This decrease was associated with a decrease in mRNA and protein levels of ERK1 and ERK2. In addition, the expression of MAP kinase phosphatase (MKP)2, a 'dual function' ERK1/2 phosphatase, was increased in the prefrontal cortex and hippocampus. These studies suggest that p44/42 MAP kinases are less activated in the post-mortem brain of depressed suicide subjects and this may be because of reduced expression of ERK1/2 and increased expression of MKP2. Given the role of MAP kinases in various physiological functions and gene expression, alterations in p44/42 MAP kinase activation and expression of ERK1/2 may contribute significantly to the pathophysiology of depressive disorders.  相似文献   

7.
The granulocyte colony-stimulating factor receptor (G-CSFR) regulates the proliferation, differentiation and survival of neutrophilic progenitor cells. In these studies, we introduced mutant G-CSFRs with cytoplasmic domains truncated approximately every 30 amino acids from the C-terminus into interleukin-3 (IL-3)-dependent myeloid LGM-1 cells. The G-CSFR membrane proximal region containing the Box 2 homology sequence was determined to be critical for proliferative signaling, as well as for activation of Janus kinase (JAK2) and p44/42 mitogen-activated protein kinase (MAPK) following G-CSF stimulation. In the presence of increasing concentrations of JAK2 or p44/42 MAPK inhibitors, LGM-1 cells expressing the full-length G-CSFR exhibited a decreased capacity to proliferate in response to G-CSF. These results demonstrate that JAK2 and p44/42 MAPK activation is involved in proliferative signaling through the G-CSFR membrane proximal region containing the Box 2 homology sequence.  相似文献   

8.
The present study investigated the role of the progestin receptor (PR) and the mitogen-activated protein kinase (MAPK) pathway in the facilitation of lordosis behavior by the delta opioid receptor agonist [D-Pen(2), D-Pen(5)]-enkephalin (DPDPE). Ovariectomized, estrogen-primed rats were treated with the PR antagonist RU486 or the MAPK inhibitor PD98059 prior to intraventricular (icv) infusion of DPDPE. Both RU486 and PD98059 blocked receptive and proceptive behaviors induced by DPDPE at 60 min, and RU486 continued to inhibit estrous behavior at 90 min. Because delta opioid receptors can activate the p42/44 MAPKs, extracellular signal regulated kinases (ERK), we determined the effects of DPDPE on ERK phosphorylation. Icv infusion of DPDPE increased the levels of phosphorylated ERK in the hypothalamus and preoptic area of female rats, assessed by immunoblotting. These results support the participation of the PR and the MAPK pathway in the facilitation of lordosis behavior by delta opioid receptors.  相似文献   

9.
Extracellular signal-regulated kinases such as ERK1 [p44 mitogen-activated protein kinase (MAPK)] and ERK2 (p42 MAPK) are activated in the CNS under physiological and pathological conditions such as ischemia and epilepsy. Here, we studied the activation state of ERK1/2 in rat hippocampal slices during application of the K(+) channel blocker 4-aminopyridine (4AP, 50 micro m), a procedure that enhances synaptic transmission and leads to the appearance of epileptiform activity. Hippocampal slices superfused with 4AP-containing medium exhibited a marked activation of ERK1/2 phosphorylation that peaked within about 20 min. These effects were not accompanied by changes in the activation state of c-Jun N-terminal kinase (JNK), another member of the MAP kinase superfamily. 4AP-induced ERK1/2 activation was inhibited by the voltage-gated Na(+) channel blocker tetrodotoxin (1 micro m). We also found that application of the ERK pathway inhibitors U0126 (50 micro m) or PD98059 (100 micro m) markedly reduced 4AP-induced epileptiform synchronization, thus abolishing ictal discharges in the CA3 area. The effects induced by U0126 or PD98059 were not associated with changes in the amplitude and latency of the field potentials recorded in the CA3 area following electrical stimuli delivered in the dentate hylus. These data demonstrate that activation of ERK1/2 accompanies the appearance of epileptiform activity induced by 4AP and suggest a cause-effect relationship between the ERK pathway and epileptiform synchronization.  相似文献   

10.
Oxidized low-density lipoprotein (OX-LDL) contributes significantly to the development of atherosclerosis. However, the mechanisms of OX-LDL-induced vascular smooth muscle cell (VSMC) proliferation are not completely understood. Therefore, we investigated the effect of OX-LDL on cell proliferation associated with a specific pattern of mitogen-activated protein kinase (MAPK) by [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in canine cultured VSMCs. OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in a time- and concentration-dependent manner in VSMCs. Pretreatment of these cells with pertussis toxin (PTX) for 24 hours attenuated the OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation, indicating that these responses were mediated through a receptor coupled to a PTX-sensitive G protein. In cells pretreated with PMA for 24 h and with either the PKC inhibitor staurosporine or the tyrosine kinase inhibitor genistein for 1h, substantially reduced the [3H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to OX-LDL. Removal of Ca(2+) by addition of BAPTA/AM plus EGTA significantly inhibited OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation, indicating the requirement of Ca(2+) for these responses. OX-LDL-induced [3H]thymidine incorporation and p42/p44 MAPK phosphorylation was completely inhibited by PD98059 (an inhibitor of MEK1/2) and SB203580 (an inhibitor of p38 MAPK). Furthermore, we also showed that overexpression of dominant negative mutants of Ras (RasN17) and Raf (Raf-301) completely suppressed MEK1/2 and p42/p44 MAPK activation induced by OX-LDL and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. Taken together, these results suggest that the mitogenic effect of OX-LDL is mediated through a PTX-sensitive G-protein-coupled receptor that involves the activation o Ras/Raf/MEK/MAPK pathway similar to those of PDGF-BB in canine cultured VSMCs.  相似文献   

11.
12.
In addition to its well known stimulation of cAMP production, the human melanocortin type 4 (hMC4) receptor recently has been shown to mediate p44/42 MAPK activation. This finding opens new questions about the structural and signaling mechanisms that connect the receptor to this alternate cell signaling pathway. Point mutants in the hMC4 receptor that have been associated with obesity were constructed and transfected into HEK 293 cells. Functional analyses then were done to determine if these mutations would similarly impact cAMP formation and p44/42 MAPK signaling. Whereas a D90N mutation in the second transmembrane domain and a D298A mutation in the seventh transmembrane domain impaired both cAMP formation and p44/42 MAPK activation, a more conservative D298N mutation retained cAMP formation but abolished p44/42 MAPK activation. The D298N mutation identified, for the first time, differential structural requirements of the hMC4 receptor for activation of the cAMP and p44/42 MAPK pathways. Furthermore, functional characterizations of a series of chimeric receptors combining the hMC4 receptor and the hMC3 subtype, a receptor that does not couple to p44/42 MAPK activation despite stimulating adenylyl cyclase, indicate that the hMC4 cytoplasmic tail is a necessary structural element for p44/42 MAPK signaling. Subsequent investigation of the signaling requirements for p44/42 MAPK activation demonstrated that the adenylyl cyclase inhibitor 2', 5'-dideoxyadenosine blocked agonist-induced p44/42 MAPK activation, but the PKA inhibitor Rp cAMPS did not. Taken together, these data indicate that cAMP is required, but not sufficient for p44/42 MAPK activation and suggest structural elements required for hMC4 receptor signaling.  相似文献   

13.
The mitogen activated protein (MAP) kinase module: (Raf -->MEK-->ERKs) is central to the control of cell growth, cell differentiation and cell survival. The fidelity of signalling and the spatio-temporal activation are key determinants in generating precise biological responses. The fidelity is ensured by scaffold proteins - protein kinase 'insulators' - and by specific docking sites. The duration and the intensity of the response are in part controlled by the compartmentalization of the signalling molecules. Growth factors promote rapid nuclear translocation and persistent activation of p42/p44 MAP kinases, respectively and ERK2/ERK1, during the entire G1 period with an extinction during the S-phase. These features are exquisitely controlled by the temporal induction of the MAP kinase phosphatases, MKP1-3. MKP1 and 2 induction is strictly controlled by the activation of the MAP kinase module providing evidence for an auto-regulatory mechanism. This negative regulatory loop is further enhanced by the capacity of p42/p44 MAPK to phosphorylate MKP1 and 2. This action reduces the degradation rate of MKPs through the ubiquitin-proteasomal system. Whereas the two upstream kinases of the module (Raf and MEK) remain cytoplasmic, ERKs (anchored to MEK in the cytoplasm of resting cells) rapidly translocate to the nucleus upon mitogenic stimulation. This latter process is rapid, reversible and controlled by the strict activation of the MAPK cascade. Following long-term MAPK stimulation, p42/p44 MAPKs progressively accumulate in the nucleus in an inactive form. Therefore we propose that the nucleus represents a site for ERK action, sequestration and signal termination. With the generation of knockdown mice for each of the ERK isoforms, we will illustrate that besides controlling cell proliferation the ERK cascade also controls cell differentiation and cell behaviour.  相似文献   

14.
The mechanism by which distinct stimuli activate the same mitogen-activated protein kinases (MAPKs) is unclear. We examined compartmentalized MAPK signaling and altered redox state as possible mechanisms. Adult rat cardiomyocytes were exposed to the adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA; 500 nM) or H(2)O(2) (100 microM) for 15 min. Nuclear/myofilament, cytosolic, Triton-soluble membrane, and Triton-insoluble membrane fractions were generated. CCPA and H(2)O(2) activated p38 MAPK and p44/p42 ERKs in cytosolic fractions. In Triton-soluble membrane fractions, H(2)O(2) activated p38 MAPK and p42 ERK, whereas CCPA had no effect on MAPK activation in this fraction. The greatest difference between H(2)O(2) and CCPA was in the Triton-insoluble membrane fraction, where H(2)O(2) increased p38 and p42 activation and CCPA reduced MAPK activation. CCPA also increased protein phosphatase 2A activity in the Triton-insoluble membrane fraction, suggesting that the activation of this phosphatase may mediate CCPA effects in this fraction. The Triton-insoluble membrane fraction was enriched in the caveolae marker caveolin-3, and >85% of p38 MAPK and p42 ERK was bound to this scaffolding protein in these membranes, suggesting that caveolae may play a role in the divergence of MAPK signals from different stimuli. The antioxidant N-2-mercaptopropionyl glycine (300 microM) reduced H(2)O(2)-mediated MAPK activation but failed to attenuate CCPA-induced MAPK activation. H(2)O(2) but not CCPA increased reactive oxygen species (ROS). Thus the adenosine A(1) receptor and oxidative stress differentially modulate subcellular MAPKs, with the main site of divergence being the Triton-insoluble membrane fraction. However, the adenosine A(1) receptor-mediated MAPK activation does not involve ROS formation.  相似文献   

15.
Ha H  Kim MS  Park J  Huh JY  Huh KH  Ahn HJ  Kim YS 《Life sciences》2006,79(16):1561-1567
Mesangial cell (MC) proliferation and extracellular matrix (ECM) accumulation are major pathologic features of chronic renal disease including chronic allograft nephropathy (CAN). Mycophenolic acid (MPA), a potent immunosuppressant, has emerged as a treatment to prevent CAN because it inhibits MC proliferation and ECM synthesis, but the mechanism involved has not been clarified. The present study examined relative role of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK) activation in inhibitory effect of MPA on MC activation. Growth arrested and synchronized primary rat MC (passages 7-11) were stimulated by PDGF 10 ng/ml in the presence and absence of clinically attainable dose of MPA (0-10 microM). Cell proliferation was assessed by [(3)H]thymidine incorporation, fibronectin and the activation of ERK and p38 MAPK by Western blot analysis, and total collagen by [(3)H]proline incorporation. PDGF increased cell proliferation by 4.6-fold, fibronectin secretion by 3.2-fold, total collagen synthesis by 1.8-fold, and the activation of ERK and 38 MAPK by 5.6-fold and 3.1-fold, respectively, compared to control. MPA, at doses inhibiting PDGF-induced MC proliferation and ECM synthesis, effectively blocked p38 MAPK activation but reduced ERK activation by 23% at maximal concentration tested (10 microM). Exogenous guanosine partially reversed the inhibition of MPA on p38 MAPK activation. Inhibitor of ERK or p38 MAPK suppressed PDGF-induced MC proliferation and ECM synthesis. In conclusion, MPA inhibits p38 MAPK activation leading to inhibiting proliferation and ECM synthesis in MC. Guanosine reduction is partially responsible for inhibitory effect of MPA on p38 MAPK activation in MC.  相似文献   

16.
17.
The G protein-coupled receptor encoded by Kaposi's sarcoma-associated herpesvirus, also referred to as ORF74, has been shown to stimulate oncogenic and angiogenic signaling pathways in a constitutively active manner. The biochemical routes linking ORF74 to these signaling pathways are poorly defined. In this study, we show that ORF74 constitutively activates p44/p42 mitogen-activated protein kinase (MAPK) and Akt via G(i)- and phospholipase C (PLC)-mediated signaling pathways. Activation of Akt by ORF74 appears to be phosphatidylinositol 3-kinase (PI3-K) dependent but, interestingly, is also mediated by activation of protein kinase C (PKC) and p44/p42 MAPK. ORF74 may signal to Akt via p44/p42 MAPK, which can be activated by G(i), through activation of PI3-K or through PKC via the PLC pathway. Signaling of ORF74 to these proliferative and antiapoptotic signaling pathways can be further modulated positively by growth-related oncogene (GROalpha/CXCL1) and negatively by human gamma interferon-inducible protein 10 (IP-10/CXCL10), thus acting as an agonist and an inverse agonist, respectively. Despite the ability of the cytomegalovirus-encoded chemokine receptor US28 to constitutively activate PLC, this receptor does not increase phosphorylation of p44/p42 MAPK or Akt in COS-7 cells. Hence, ORF74 appears to signal through a larger diversity of G proteins than US28, allowing it to couple to proliferative and antiapoptotic signaling pathways. ORF74 can therefore be envisioned as an attractive target for novel treatment of Kaposi's sarcoma.  相似文献   

18.
Glucocorticoid hormones and p44/42 mitogen-activated protein kinase (MAPK) inactivation are considered to be important in small-intestinal differentiation/maturation. In this study, we found that co-treatment with glucocorticoid hormone agonist dexamethasone and p44/42 MAPK inhibitor PD98059 in intestinal cell line Caco-2 strongly induced GLUT5 gene expression. Glucocorticoid hormone receptor (GR) was translocated from the cytoplasm to the nucleus and de-phosphorylated at serine residue 203 in the nucleus, by combined treatment with dexamethasone and PD98059. The binding of GR, as well as acetylated histones H3 and H4, to the promoter/enhancer region of GLUT5 gene was enhanced by combined treatment with dexamethasone and PD98059. These results suggest that the inactivation of p44/42 MAP kinase enhances glucocorticoid hormone-induced GLUT5 gene expression, probably through controlling the phosphorylation at serine 203 and nuclear transport of GR, as well as histone acetylation on the promoter/enhancer region of GLUT5 gene.  相似文献   

19.
We report here a novel role for the constitutively active lysophosphatidic acid receptor-1 (LPA(1)) receptor in providing Gbetagamma subunits for use by the Trk A receptor. This enhances the ability of nerve growth factor (NGF) to promote signalling and cell response. These conclusions were based on three lines of evidence. Firstly, the LPA(1) receptor was co-immunoprecipitated with the Trk A receptor from lysates, suggesting that these proteins form a complex. Secondly, Ki16425, a selective protean agonist of the LPA(1) receptor, decreased constitutive basal and LPA-induced LPA(1) receptor-stimulated GTPgammaS binding. Ki16425 reduced the LPA-induced activation of p42/p44 mitogen activated protein kinase (MAPK), while acting as a weak stimulator of p42/p44 MAPK on its own, properties typical of a protean agonist. Significantly, Ki16425 also reduced the NGF-induced stimulation of p42/p44 MAPK and inhibited NGF-stimulated neurite outgrowth. Thirdly, the over-expression of the C-terminal GRK-2 peptide, which sequesters Gbetagamma subunits, reduced the NGF-induced activation of p42/p44 MAPK. In contrast, the stimulation of PC12 cells with LPA leads to a predominant G(i)alpha2-mediated Trk A-independent activation of p42/p44 MAPK, where Gbetagamma subunits play a diminished role. These findings suggest a novel role for the constitutively active LPA(1) receptor in regulating NGF-induced neuronal differentiation.  相似文献   

20.
Gender is an important determinant of clinical outcome across a broad spectrum of kidney diseases, but the mechanism(s) responsible for the protective effect of female gender have not been fully elucidated. Remnant kidney glomerular injury is limited in female rats compared with male rats despite similar elevations in glomerular capillary pressure. In vitro, mechanical strain leads to the activation of p44/42 mitogen-activated kinase (p44/42 MAPK) and Jun N-terminal kinase/stress-activated protein kinase (SAPK) in glomerular mesangial cells (MC). Accordingly, we studied the effect of 17beta-estradiol on mechanical strain-induced signal transduction in MC. Exposure of MC to mechanical strain increased p44/42 MAPK activation (3-fold) and SAPK activation (2.5-fold), and kinase activation was inhibited by pretreatment with 17beta-estradiol (10(minus sign8) to 10(minus sign11) m) for 24 h in a dose-dependent manner. Mechanical strain-induced nuclear translocation of p44/42 MAPK and SAPK and nuclear protein binding to AP-1 were also attenuated by 17beta-estradiol. The inhibitory effects of 17beta-estradiol were not reproduced by the cell-impermeable estrogen, BSA/17beta-estradiol, nor did preincubation with 17beta-estradiol lead to actin cytoskeleton disassembly or impaired stress fiber formation. However, 17beta-estradiol did increase base-line levels of the dual specificity phosphatase MKP-1. The inhibitory effects of 17beta-estradiol on p44/42 MAPK activation and SAPK activation, translocation, and AP-1 binding were all abrogated by the estrogen receptor antagonist, ICI-182,780. We conclude that attenuation of mechanical strain-induced MAPK activation by 17beta-estradiol is dependent on intracellular estrogen receptor. The attenuation of stretch-induced kinase activation may be due, at least in part, to an effect of 17beta-estradiol on MKP-1 expression. Together, these findings add insight into the protective effect of gender on renal disease progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号