首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The brown alga Sphacelaria rigidula Kützing synthesizes cellulose microfibrils as determined by CBH I-gold labeling. The cellulose microfibrils are thin, ribbon-like structures with a uniform thickness of about 2.6 nm and a variable width in the range of 2.6-30 nm. Some striations appear along the longitudinal axis of the microfibrils. The developed cell wall in Sphacelaria is composed of three to four layers, and cellulose micro-fibrils are deposited in the third layer from the outside of the wall. A freeze fracture investigation of this alga revealed cellulose-synthesizing terminal complexes (TCs), which are associated with the tip of microfibril impressions in the plasmatic fracture face of the plasma membrane. The TCs consist of subunits arranged in a single linear row. The average diameter of the sub-units is about 6 nm, and the intervals between the neighboring subunits, about 9 nm, are relatively constant. The number of subunits constituting the TC varies between 10 and 100, so that the length of the whole TC varies widely. A model that has been proposed for the assembly of thin, ribbon-like microfibrils was applied to microfibril assembly in Sphacelaria.  相似文献   

2.
Summary The formation and development of linear terminal complexes (TCs), the putative cellulose synthesizing units of the red algaErythrocladia subintegra Rosenv., were investigated by a freeze etching technique using both rotary and unidirectional shadowing. The ribbon-like cellulose fibrils ofE. subintegra are 27.6 ± 0.8 nm wide and only 1–1.5 nm thick. They are synthesized by TCs which are composed of repeating transverse rows formed of four particles, the TC subunits. About 50.4 ± 1.7 subunits constitute a TC. They are apparently more strongly interconnected in transverse than in longitudinal directions. Some TC subunits can be resolved as doublets by Fourier analysis. Large globular particles (globules) seem to function as precursor units in the assembly and maturation of the TCs. They are composed of a central hole (the core) with small subunits forming a peripheral ridge and seem to represent zymogenic precursors. TC assembly is initiated after two or three gobules come into close contact with each other, swell and unfold to a nucleation unit resembling the first 2–3 transverse rows of a TC. Longitudinal elongation of the TC occurs by the unfolding of globules attached to both ends of the TC nucleation unit until the TC is completed. The typical intramembranous particles observed inErythrocladia (unidirectional shadowing) are 9.15 ± 0.13 nm in diameter, whereas those of a TC have an average diameter of 8.77 ± 0.11 nm. During cell wall synthesis membranes of vesicles originating from the Golgi apparatus and which seem to fuse with the plasma membrane contain large globules, 15–22 nm in diameter, as well as tetrads with a particle diameter of about 8 nm. The latter are assumed to be involved in the synthesis of the amorphous extracellular matrix cell wall polysaccharides. The following working model for cellulose fibril assembly inE. subintegra is suggested: (1) the ribbon-like cellulose fibril is synthesized by a single linear TC; (2) the number of glucan chains per microfibril correlates with the number of TC subunits; (3) a single subunit synthesizes 3 glucan chains which appear to stack along the 0.6 nm lattice plane; (4) lateral aggregation of the 3-mer stacks leads to the crystalline microfibril.Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

3.
I. Tsekos  H. -D. Reiss 《Protoplasma》1992,169(1-2):57-67
Summary Cells of thalli at different developmental stages of the epiphytic marine red algaErythrocladia subintegra have been studied by freeze-etching. It was found that the plasma membrane exhibits linear microfibril-termnal synthesizing complexes (TCs), randomly distributed consisting of four rows of linearly-arranged particles (average diameter of particles 8.6 nm); each row of TCs consists of 5–33 particles (average 15). The TCs were observed on both fracture faces (PF and EF) but more clearly on the PF face. These structures appear to span both the outer and inner leaflets of the plasma membrane (transmembrane complexes)-The TCs have stable width (35 nm) and vary in length (41–311 nm, average 181 nm). The TCs subunits are highly ordered arrays forming a semicylinder. The average density of TCs on the PF face is 5.5TC/m2. The microfibrils are randomly distributed and have a mean width of 39.4 nm (ranging from 16 to 70 nm). Many TCs are associated with the ends of microfibrils and microfibril imprints. The structural characteristics of linear TCs in the red algaErythrocladia are compared with those of the so far investigated Chlorophyta spp. All results favour the suggestion that TCs in the plasma membrane ofErythrocladia cells are involved in the biosynthesis, assembly and orientation of microfibrils.  相似文献   

4.
S. Mizuta  R. M. Brown Jr. 《Protoplasma》1992,166(3-4):187-199
Summary Ultrastructure and assembly of cellulose terminal synthesizing complexes (terminal complexes, TCs) in the algaVaucheria hamata (Waltz) were investigated by high resolution analytical techniques for freeze-fracture replication.Vaucheria TCs consist of many diagonal rows of subunits located on the inner leaflet of the plasma membrane. Each row contains about 10–18 subunits. The subunits themselves are rectangular, approx. 7×3.5 nm, and each has a single elliptical hole which may be the site of a single glucan chain polymerization. The subunits are connected with extremely small filaments (0.3–0.5 nm). Connections are more extensive in a direction parallel to the subunit rows and less extensive perpendicular to them. Nascent TC subunits are found to be packed within globules (15–20 nm in diameter) which are larger than typical intramembranous particles (IMPS are 10–11 nm in diameter) distributed in the plasma membrane. The subunits in the globule, which may be a zymogenic precursor of the TC, are generally exhibited in the form of doublets. Approximately 6 doublets are connected to a center core with small filaments. The globules are inserted into the plasma membrane together with IMPS by the fusion of cytoplasmic (Golgi derived) vesicles. Two or three globules attach to each other, unfold, and expand to form the first subunit rows of the TC on the inner leaflet of the plasma membrane. More globules attach to the structure and unfold until the nascent TC consists of a few rows of subunits. These rows are arranged almost parallel to each other. Two formation centers of subunits appear at both ends of an elongating TC. New subunits carried by the globules are added at each of these centers to create new rows until the elongating TC structure is completed. On the basis of this study, a model of TC assembly and early initiation of microfibril formation inVaucheria is proposed.Abbreviations IMPS intramembranous particles - MF microfibril - TC terminal complex  相似文献   

5.
The assembly of cellulose microfibrils was investigated in artificially induced protoplasts of the alga, Valonia macrophysa (Siphonocladales). Primary-wall microfibrills, formed within 72 h of protoplast induction, are randomly oriented. Secondary-wall lamellae, which are produced within 96 h after protoplast induction, have more than three orientations of highly ordered microfibrils. The innermost, recently deposited micofibrils are not parallel with the cortical microtubules, thus indicating a more indirect role of microtubules in the orientation of microfibrils. Fine filamentous structures with a periodicity of 5.0–5.5 nm and the dimensions of actin were observed adjacent to the plasma membrane. Linear cellulose-terminal synthesizing complexes (TCs) consisting of three rows, each with 30–40 particles, were observed not only on the E fracture (EF) but also on P fracture (PF) faces of the plasma membrane. The TC appears to span both faces of the bimolecular leaflet. The average length of the TC is 350 nm, and the number of TCs per unit area during primary-wall synthesis is 1 per m2. Neither paired TCs nor granule bands characteristic of Oocystis were observed. Changes in TC structure and distribution during the conversion from primary- to secondary-wall formation have been described. Cellulose microfibril assembly in Valonia is discussed in relation to the process among other eukaryotic systems.Abbreviations TC terminal complex - EF E (outer leaflet) fracture face of the plasma membrane - PF P (inner leaflet) fracture face of the plasma membrane - MT microtubule - PS protoplasmic surface of the membrane  相似文献   

6.
Information on the sites of cellulose synthesis and the diversity and evolution of cellulose-synthesizing enzyme complexes (terminal complexes) in algae is reviewed. There is now ample evidence that cellulose synthesis occurs at the plasma membrane-bound cellulose synthase, with the exception of some algae that produce cellulosic scales in the Golgi apparatus. Freeze-fracture studies of the supramolecular organization of the plasma membrane support the view that the rosettes (a six-subunit complex) in higher plants and both the rosettes and the linear terminal complexes (TCs) in algae are the structures that synthesize cellulose and secrete cellulose microfibrils. In the Zygnemataceae, each single rosette forms a 5-nm or 3-nm single “elementary” microfibril (primary wall), whereas rosettes arranged in rows of hexagonal arrays synthesize criss-crossed bands of parallel cellulose microfibrils (secondary wall). In Spirogyra, it is proposed that each of the six subunits of a rosette might synthesize six β-1,4-glucan chains that cocrystallize into a 36-glucan chain “elementary” microfibril, as is the case in higher plants. One typical feature of the linear terminal complexes in red algae is the periodic arrangement of the particle rows transverse to the longitudinal axis of the TCs. In bangiophyte red algae and in Vaucheria hamata, cellulose microfibrils are thin, ribbon-shaped structures, 1–1.5 nm thick and 5–70 nm wide; details of their synthesis are reviewed. Terminal complexes appear to be made in the endoplasmic reticulum and are transferred to Golgi cisternae, where the cellulose synthases are activated and may be transported to the plasma membrane. In algae with linear TCs, deposition follows a precise pattern directed by the movement and the orientation of the TCs (membrane flow). A principal underlying theme is that the architecture of cellulose microfibrils (size, shape, crystallinity, and intramicrofibrillar associations) is directly related to the geometry of TCs. The effects of inhibitors on the structure of cellulose-synthetizing complexes and the relationship between the deposition of the cellulose microfibrils with cortical microtubules and with the membrane-embedded TCs is reviewed In Porphyra yezoensis, the frequency and distribution of TCs reflect polar tip growth in the apical shoot cell.The evolution of TCs in algae is reviewed. The evidence gathered to date illustrates the utility of terminal complex organization in addressing plant phylogenetic relationships.  相似文献   

7.
Summary Cells of the charophycean alga,Coleochaete scutata active in cell wall formation were freeze fractured in the search for cellulose synthesizing complexes (TCs) since this alga is considered to be among the most advanced and a progenitor to land plant evolution. We have found a new TC which consists of two geometrically distinctive particle complexes complementary to one another in the plasma membrane and occasionally associated with microfibril impressions. In the E-fracture face is found a cluster of 8–50 closely packed particles, each with a diameter of 5–17 nm. Most of these particles are confined within an 80 nm circle. In the P-fracture face is found an 8-fold symmetrical arrangement of 10 nm particles circumferentially arranged around a 28 nm central particle. The TCs ofC. scutata are quite distinctive from the rosette/globule TCs of land plants. The 5.5×3.1 nm microfibril inC. scutata is also distinctive from the 3.5×3.5 nm microfibril typical of land plants. The phylogenetic implications of this unique TC in land plant evolution are discussed.  相似文献   

8.
Summary Wounding cells ofBoergesenia forbesii (Harvey) Feldmann induces the synchronous formation of numerous protoplasts which synthesize large cellulose microfibrils within 2–3 hours after wounding. The microfibrils appear to be assembled by linear terminal synthesizing complexes (TCs). TC subunits appear on both E- and P-faces of the plasma membrane, thus suggesting the occurrence of a transmembrane complex. The direction of microfibril synthesis is random during primary wall assembly and becomes ordered during secondary wall assembly. The average density of TCs during secondary wall deposition is 1.7/m2, and the average length of the TC is 510 nm. TC organization is similar to that ofValonia macrophysa; however, the larger TCs ofBoergesenia (510 nm vs. 350 nm) produce correspondingly larger microfibrils (30 nm vs. 20 nm).The effects of a fluorescent brightening agent (FBA), Tinopal LPW, on cell wall regeneration ofBoergesenia protoplasts was investigated. The threshold level of Tinopal LPW for interfering with microfibril assembly is 1.5 M. At 95 M Tinopal (for short periods up to 15 minutes), microfibril impressions have atypical spherical impressions at their termini. At longer incubations (24 hours), TCs and microfibril impressions are absent. When washed free of Tinopal, the protoplasts eventually resume normal wall assembly; however, TCs do not reappear until at least 30 minutes after the removal of Tinopal. In consideration of the presence of ordered TCs before FBA treatment, their random distribution upon recovery implies an intermediate stage of assembly or possiblyde novo synthesis.  相似文献   

9.
The supramolecular organization of the plasma membrane of apical cells in shoot filaments of the marine red alga Porphyra yezoensis Ueda (conchocelis stage) was studied in replicas of rapidly frozen and fractured cells. The protoplasmic fracture (PF) face of the plasma membrane exhibited both randomly distributed single particles (with a mean diameter of 9.2 ± 0.2 nm) and distinct linear cellulose microfibril-synthesizing terminal complexes (TCs) consisting of two or three rows of linearly arranged particles (average diameter of TC particles 9.4 plusmn; 0.3 nm). The density of the single particles of the PF face of the plasma membrane was 3000 μm?2, whereas that of the exoplasmic fracture face was 325 μm?2. TCs were observed only on the PF face. The highest density of TCs was at the apex of the cell (mean density 23.0 plusmn; 7.4 TCs μm?2 within 5 μm from the tip) and decreased rapidly from the apex to the more basal regions of the cell, dropping to near zero at 20 μm. The number of particle subunits of TCs per μm2 of the plasma membrane also decreased from the tip to the basal regions following the same gradient as that of the TC density. The length of TCs increased gradually from the tip (mean length 46.0 plusmn; 1.4 nm in the area at 0–5 μm from the tip) to the cell base (mean length 60.0 plusmn; 7.0 μm in the area at 15–20 μm). In the very tip region (0–4 μm from the apex), randomly distributed TCs but no microfibril imprints were observed, while in the region 4–9 μm from the tip microfibril imprints and TCs, both randomly distributed, occurred. Many TCs involved in the synthesis of cellulose microfibrils were associated with the ends of microfibril imprints. Our results indicate that TCs are involved in the biosynthesis, assembly, and orientation of cellulose microfibrils and that the frequency and distribution of TCs reflect tip growth (polar growth) in the apical shoot cell of Porphyra yezoensis. Polar distribution of linear TCs as “cellulose synthase” complexes within the plasma membrane of a tip cell was recorded for the first time in plants.  相似文献   

10.
In maize (Zea mays L.) and pine (Pinus taeda L.) seedlings, cellulose microfibril impressions are present on freeze-fractured plasma membranes. It has been proposed that impressions of newly synthesized microfibrils are a record of the movement of terminal synthesizing complexes through the plasma membrane (Mueller and Brown, 1980, J. Cell Biol. 84, 315–326). The association of terminal complexes with the ends of microfibril impressions or with the ends of microfibrils torn through the membrane indicates the orientation of microfibril tips. Unidirectionally-oriented microfibril tips (all pointing in the same direction) are associated with the organized deposition of parallel arrays of microfibrils. Multidirectionally-oriented microfibril tips were observed in a cell in which microfibril deposition was unusually disorganized. Microfibril patterns around pit fields are asymmetric and resemble flow patterns. Unidirectionally-oriented tears are associated with these microfibrils. Although microfibril orientations are deflected around pit fields, the main axis of microfibril orientation is maintained across the surface of the cell. The hypothesis is proposed that the interaction of a flowing plasma membrane with microfibril synthesizing complexes in the plane of the membrane may result in unidirectional deposition and asymmetric microfibril impressions around pit fields.Some of this work has been published in preliminary form (Brown 1979)  相似文献   

11.
T. Itoh  R. M. Brown Jr. 《Protoplasma》1988,144(2-3):160-169
Summary The development of linear cellulose synthesizing complexes (=TCs) of two selected siphonocladalean algae,Boergesenia forbesii andValonia ventricosa was investigated by following the time course of the regeneration of cell walls with the freeze fracture technique after aplanospore induction. The following structural changes of TC development were examined: (1) TCs initiatede novo; (2) the first nucleation of TC subunits occurs within 2 hr inBoergesenia and 5 hr inValonia after aplanospore induction, immediately followed by the assembly of cellulose microfibrils; (3) TCs increase their length during the assembly of randomly oriented microfibrils; and, (4) TCs stop increasing in length after the assembly of ordered microfibrils begins, with some time lag. The data demonstrate that linear TCs are not artificial products but dynamic entities which are involved in the assembly of cellulose microfibrils.  相似文献   

12.
Summary Investigations on the mechanism of orientation of the cellulose microfibrils of the green algaOocystis solitaria have been carried out. This organism demonstrates easily observable and highly ordered microfibrils in its wall, which are arranged parallel to one another and regularly alternate at 90 from layer to layer of which there are approximately 30. During the entire wall development, and always parallel to one of the microfibril directions, are microtubules lying in the cortical cytoplasm. In the presence of 10–2 M colchicine, microtubules are no longer detected and the typical cell wall pattern is not developed. The possible role of microtubules in the orientation of cellulose microfibrils is briefly discussed.  相似文献   

13.
Cellulose microfibril deposition patterns define the direction of plant cell expansion. To better understand how microfibril alignment is controlled, we examined microfibril orientation during cortical microtubule disruption using the temperature-sensitive mutant of Arabidopsis thaliana, mor1-1. In a previous study, it was shown that at restrictive temperature for mor1-1, cortical microtubules lose transverse orientation and cells lose growth anisotropy without any change in the parallel arrangement of cellulose microfibrils. In this study, we investigated whether a pre-existing template of well-ordered microfibrils or the presence of well-organized cortical microtubules was essential for the cell to resume deposition of parallel microfibrils. We first transiently disrupted the parallel order of microfibrils in mor1-1 using a brief treatment with the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB). We then analysed the alignment of recently deposited cellulose microfibrils (by field emission scanning electron microscopy) as cellulose synthesis recovered and microtubules remained disrupted at the mor1-1 mutant's non-permissive culture temperature. Despite the disordered cortical microtubules and an initially randomized wall texture, new cellulose microfibrils were deposited with parallel, transverse orientation. These results show that transverse cellulose microfibril deposition requires neither accurately transverse cortical microtubules nor a pre-existing template of well-ordered microfibrils. We also demonstrated that DCB treatments reduced the ability of cortical microtubules to form transverse arrays, supporting a role for cellulose microfibrils in influencing cortical microtubule organization.  相似文献   

14.
Summary The gross structure of the cell wall and the organization of the plasmalemma of the filamentous brown algaAsteronema rhodochortonoides were examined in replicas of freeze-fractured cells. The protoplasmic fracture face (PF) of the plasmalemma, apart from the single particles, exhibits two particular particle complexes, i.e., single linear arrays of closely packed particles, and well defined particle pentads. The former display a consistent relationship with the ends of microfibril imprints and therefore are considered as terminal complexes (TCs). They seem to be composed of subunits, each one consisting of two particles. The average diameter of the particles is 7 nm. The number of the subunits forming the TCs varies between 2 and 40. Short TCs, consisting of 3–5 subunits were also found on the PF of dictyosome vesicles, a fact suggesting the involvement of the Golgi apparatus in exocytosis of preformed TC portions. The occurrence, distribution and size of the TCs appear to be related to the developmental stage of the cell. A large number of TCs occur in actively growing cells, while a few or no TCs are found in differentiated cells. The pentads are rectangular structures consisting of five particles, four in the corners and one in the centre. Their dimensions are very constant, but their occurrence and distribution varies. They occur in young developing cells where TCs are few or absent, but were also observed in areas showing many TCs. In differentiated cells no pentads were found. Pentad-like structures were rarely observed on the PF of dictyosome vesicles or cisternae. The observations support the hypothesis that pentads are involved in the synthesis of matrix polysaccharides, which are the major components of brown algal cell wall and their synthesis begins before that of cellulose.Dedicated to Prof. Dr. Dr. h.c. Eberhard Schnepf on the occasion of his retirement  相似文献   

15.
The intramembrane particles and cellulose synthesis of the brown alga Syringoderma phinneyi Henry et Müller were examined using replicas of freeze‐fractured apical cells. Like in other brown algae, linear terminal complexes (TCs) were found in the plasmatic fracture face (PF) of the plasmalemma, which are the putative cellulose synthases. Terminal complexes consist of a single row of particles, each particle composed of two sub‐units, and are found in close relationship with cellulose microfibril imprints. Examination of the distribution of TCs revealed a clear apico‐basal gradient, with a higher density of TCs in the apical part. This seems to reflect the tip growth of the apical cells. The rate of cellulose synthesis per TC subunit was calculated based on the dimensions of the TCs and cellulose microfibrils.  相似文献   

16.
Summary Thersw1 mutant ofArabidopsis thaliana has a single amino acid substitution in a putative glycosyl transferase that causes a temperature-dependent reduction in cellulose production. We used recently described methods to examine root growth by surface marker particles, cell wall structure by field emission scanning electron microscopy and microtubule alignment by immunofluorescence after the mutant is transferred to its restrictive temperature. We find that raising the temperature quickly accelerates root elongation in both wild type and mutant, presumably as a result of general metabolic stimulation, but that in the mutant, the rate declines within 7–8 h and elongation almost ceases after 24 h. Radial swelling begins at about 6 h in the mutant and root diameter continues to increase until about 24 h. The normal transverse alignment of microfibrils is severely impaired in the mutant after 8 h, and chemical inhibition of cellulose synthesis by 2,6-dichlorobenzonitrile causes a similar loss of orientation. After 24 h, microfibrils are not clearly visible in the walls of cells that would have been in the mitotic and early-elongation zone of wild-type roots. Changes in older cells are less marked; loss of transverse microfibril orientation occurs without disruption to the transverse orientation of cortical microtubules. The wild type shows none of the changes except for acceleration of elongation, which in its case is sustained. We conclude that microfibril alignment requires the normal functioning of RSW1 and that, in view of the effects of dichlorobenzonitrile, there may be a more general linkage between the rate of cellulose production and its proper alignment.Abbreviations DCB 2,6-dichlorobenzonitrile - REGR relative elemental growth rate Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

17.
D Montezinos  R M Brown 《Cytobios》1978,23(90):119-139
Cell wall biogenesis in the unicellular green alga Oocystis apiculata has been studied. Under normal growth conditions, a cell wall with ordered microfibrils is synthesized. In each layer there are rows of parallel microfibrils. Layers are nearly perpendicular to each other. Terminal linear synthesizing complexes are located in the plasma membrane, and they are capable of bidirectional synthesis of cellulose microfibrils. Granule bands associated with the inner leaflet of the plasma membrane appear to control the orientation of newly synthesized microfibrils. Subcortical microtubules also are present during wall synthesis. Patterns of cell wall synthesis were studied after treatment with EDTA and EGTA as well as divalent cations (MgSO4, CaSO4, Cacl2). 0.1 M EDTA treatment for 15 min results in the disassociation of the terminal complexes from the ends of microfibrils. EDTA-treated cells followed by 15 min treatment with MgSO4 results in reaggregation of the linear complexes into a paired state, remote from the original ends to which they were associated. After 90 min treatment with MgSO4, normal synthesis resumes. EGTA and calcium salts do not affect the linear complexes or microfibril orientation. Treatments with colchicine and vinblastine sulphate do not depolymerize the microtubles, but the wall microfibril orientation is altered. With colchicine or vinblastine, the change in orientation from layer to layer is inhibited. The process is reversible upon removal of the drugs. Lumicolchicine has no effect upon microfibril orientation, but granule bands are disorganized. Treatment with coumarin, a known inhibitor of cellulose synthesis, causes the loss of visualization of subunits of the terminal complexes. The possibility of the existence of a membrane-associated colchicine-sensitive orientation protein for cellulose microfibrils is discussed. Transmembrane modulation of microfibril synthesis and orientation is presented.  相似文献   

18.
J. Ross Colvin 《Planta》1980,149(2):97-107
The mechanism of formation of cellulose-like microfibrils by a non-soluble, particulate enzyme and uridine diphosphoglucose (UDPG) in a cell-free system from Acetobacter xylinum was studied by transmission electron microscopy and X-ray diffraction. The suspension of particles to which the enzyme is adsorbed is composed of whole, dense ovoids, 50–250 nm long when wet, of fragments of the ovoids, and amorphous substance. There is a typical unit membrane around each ovoid but initially there is no trace of fibrillar material in the suspension. When the suspension of particles is incubated with UDPG, linear wisps of fibrils are produced which associate rapidly to form longer and wider threads, especially in 0.01 M NaCl. There is no visible attachment of the wisps to the particles. After 20 min incubation, threads with the typical morphology of cellulose microfibrils are formed that later tend to become entangled in clumps. The microfibrils are insoluble in hot, aqueous, alkaline solutions and resistant to the action of trypsin, but may be degraded by glusulase. After treatment with 1 M NaOH at 100° C or with cold 18% NaOH they show an X-ray diffraction pattern which resembles that of Cellulose II from mercerized, authentic bacterial cellulose. Incorporation of radioactive glucose into the insoluble residue is enhanced by drying of the cellulose microfibrils before alkaline digestion and especially by the addition of a gross excess of carrier cellulose after incubation. In this system there is no evidence for participation of linear, axial, synthesizing sites on the cell wall of the bacterium or for ordered, organized granules in the assembly of the microfibrils. That is, cellulose-like microfibrils may be formed in a cell-free system without the action of any of the previously suggested cell organelles. In addition, these observations are consistent with a previously described notion of a transient, hydrated, nascent, bacterial cellulose microfibril. The possibility that cellulose microfibrils of green plants may be formed in the same way is considered.N.R.C.C. 18314  相似文献   

19.
Werner Herth 《Planta》1983,159(4):347-356
The cell-wall structure and plasma-membrane particle arrangement during cell wall formation of the filamentous chlorophycean alga Spirogyra sp. was investigated with the freeze-fracture technique. The cell wall consists of a thick outer slime layer and a multilayered inner wall with ribbon-like microfibrils. This inner wall shows three differing orientations of microfibrils: random orientation on its outside, followed by axial bundles of parallel microfibrils, and several internal layers of bands of mostly five to six parallel associated microfibrils with transverse to oblique orientation. The extraplasmatic fracture face of the plasma membrane shows microfibril imprints, relatively few particles, and “terminal complexes” arranged in a hexagonal package at the end of the imprint of a microfibril band. The plasmatic fracture face of the plasma membrane is rich in particles. In places, it reveals hexagonal arrays of “rosettes”. These rosettes are best demonstrable with the double-replica technique. These findings on rosette arrays of the zygnematacean alga Spirogyra are compared in detail with the published data on the desmidiacean algae Micrasterias and Closterium.  相似文献   

20.
The arrangements of cortical microtubules (MTs) in a tip-growing protonemal cell of Adiantum capillus-veneris L. and of cellulose microfibrils (MFs) in its wall were examined during blue-light (BL)-induced apical swelling. In most protonemal cells which had been growing in the longitudinal direction under red light, apical swelling was induced within 2 h of the onset of BL irradiation, and swelling continued for at least 8 h. During the longitudinal growth under red light, the arrangement of MFs around the base of the apical hemisphere (the subapical region) was perpendicular to the cell axis, while a random arrangement of MFs was found at the very tip, and a roughly axial arrangement was observed in the cylindrical region of most cells. This orientation of MFs corresponds to that of the cortical MTs reported previously (Murata et al. 1987, Protoplasma 141, 135–138). In cells irradiated with BL, a random rather than transverse arrangement of both MTs and MFs was found in the subapical region. Time-course studies showed that this reorientation occurred within 1 h after the onset of the BL irradiation, i.e. it preceded the change in growth pattern. These results indicate that the orientation of cortical MTs and of cellulose MFs is involved in the regulation of cell diameter in a tip-growing Adiantum protonemal cell.Abbreviations BL blue light - MF(s) microfibril(s) - MT(s) microtubule(s)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号