首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conversion of mechanical stress into a biochemical signal in a muscle cell requires a force sensor. Titin kinase, the catalytic domain of the elastic muscle protein titin, has been suggested as a candidate. Its activation requires major conformational changes resulting in the exposure of its active site. Here, force-probe molecular dynamics simulations were used to obtain insight into the tension-induced activation mechanism. We find evidence for a sequential mechanically induced opening of the catalytic site without complete domain unfolding. Our results suggest the rupture of two terminal beta-sheets as the primary unfolding steps. The low force resistance of the C-terminal relative to the N-terminal beta-sheet is attributed to their different geometry. A subsequent rearrangement of the autoinhibitory tail is seen to lead to the exposure of the active site, as is required for titin kinase activity. These results support the hypothesis of titin kinase as a force sensor.  相似文献   

2.
Steered molecular dynamics studies of titin I1 domain unfolding   总被引:3,自引:0,他引:3       下载免费PDF全文
The cardiac muscle protein titin, responsible for developing passive elasticity and extensibility of muscle, possesses about 40 immunoglobulin-like (Ig) domains in its I-band region. Atomic force microscopy (AFM) and steered molecular dynamics (SMD) have been successfully combined to investigate the reversible unfolding of individual Ig domains. However, previous SMD studies of titin I-band modules have been restricted to I27, the only structurally known Ig domain from the distal region of the titin I-band. In this paper we report SMD simulations unfolding I1, the first structurally available Ig domain from the proximal region of the titin I-band. The simulations are carried out with a view toward upcoming atomic force microscopy experiments. Both constant velocity and constant force stretching have been employed to model mechanical unfolding of oxidized I1, which has a disulfide bond bridging beta-strands C and E, as well as reduced I1, in which the disulfide bridge is absent. The simulations reveal that I1 is protected against external stress mainly through six interstrand hydrogen bonds between its A and B beta-strands. The disulfide bond enhances the mechanical stability of oxidized I1 domains by restricting the rupture of backbone hydrogen bonds between the A'- and G-strands. The disulfide bond also limits the maximum extension of I1 to approximately 220 A. Comparison of the unfolding pathways of I1 and I27 are provided and implications to AFM experiments are discussed.  相似文献   

3.
M Rief  M Gautel  A Schemmel    H E Gaub 《Biophysical journal》1998,75(6):3008-3014
The domains of the giant muscle protein titin (connectin) provide interaction sites for other sarcomeric proteins and fulfill mechanical functions. In this paper we compare the unfolding forces of defined regions of different titin isoforms by single-molecule force spectroscopy. Constructs comprising six to eight immunoglobulin (Ig) domains located in the mechanically active I-band part of titin are compared to those containing fibronectin III (Fn3) and Ig domains from the A-band part. The high spatial resolution of the atomic force microscope allows us to detect differences in length as low as a few amino acids. Thus constructs of different lengths may be used as molecular rulers for structural comparisons with other modular proteins. The unfolding forces range between 150 and 300 pN and differ systematically between the constructs. Fn3 domains in titin exhibit 20% lower unfolding forces than Ig domains. Fn3 domains from tenascin, however, unfold at forces only half those of titin Fn3 domains. This indicates that the tightly folded titin domains are designed to maintain their structural integrity, even under the influence of stretching forces. Hence, at physiological forces, unfolding is unlikely unless the forces are applied for a long time (longer than minutes).  相似文献   

4.
Titin (also known as connectin) is the main determinant of physiological levels of passive muscle force. This force is generated by the extensible I-band region of the molecule, which is constructed of the PEVK domain and tandem-immunoglobulin segments comprising serially linked immunoglobulin (Ig)-like domains. It is unresolved whether under physiological conditions Ig domains remain folded and act as "spacers" that set the sarcomere length at which the PEVK extends or whether they contribute to titin's extensibility by unfolding. Here we focused on whether Ig unfolding plays a prominent role in stress relaxation (decay of force at constant length after stretch) using mechanical and immunolabeling studies on relaxed human soleus muscle fibers and Monte Carlo simulations. Simulation experiments using Ig-domain unfolding parameters obtained in earlier single-molecule atomic force microscopy experiments recover the phenomenology of stress relaxation and predict large-scale unfolding in titin during an extended period (> approximately 20 min) of relaxation. By contrast, immunolabeling experiments failed to demonstrate large-scale unfolding. Thus, under physiological conditions in relaxed human soleus fibers, Ig domains are more stable than predicted by atomic force microscopy experiments. Ig-domain unfolding did not become more pronounced after gelsolin treatment, suggesting that the thin filament is unlikely to significantly contribute to the mechanical stability of the domains. We conclude that in human soleus fibers, Ig unfolding cannot solely explain stress relaxation.  相似文献   

5.
Titin, a 1-microm-long protein found in striated muscle myofibrils, possesses unique elastic and extensibility properties in its I-band region, which is largely composed of a PEVK region (70% proline, glutamic acid, valine, and lysine residue) and seven-strand beta-sandwich immunoglobulin-like (Ig) domains. The behavior of titin as a multistage entropic spring has been shown in atomic force microscope and optical tweezer experiments to partially depend on the reversible unfolding of individual Ig domains. We performed steered molecular dynamics simulations to stretch single titin Ig domains in solution with pulling speeds of 0.5 and 1.0 A/ps. Resulting force-extension profiles exhibit a single dominant peak for each Ig domain unfolding, consistent with the experimentally observed sequential, as opposed to concerted, unfolding of Ig domains under external stretching forces. This force peak can be attributed to an initial burst of backbone hydrogen bonds, which takes place between antiparallel beta-strands A and B and between parallel beta-strands A' and G. Additional features of the simulations, including the position of the force peak and relative unfolding resistance of different Ig domains, can be related to experimental observations.  相似文献   

6.
The M-band is a transverse structure in the center of the sarcomere, which is thought to stabilize the thick filament lattice. It was shown recently that the constitutive vertebrate M-band component myomesin can form antiparallel dimers, which might cross-link the neighboring thick filaments. Myomesin consists mainly of immunoglobulin-like (Ig) and fibronectin type III (Fn) domains, while several muscle types express the EH-myomesin splice isoform, generated by the inclusion of the unique EH-segment of about 100 amino acid residues (aa) in the center of the molecule. Here we use atomic force microscopy (AFM), transmission electron microscopy (TEM) and circular dichroism (CD) spectroscopy for the biophysical characterization of myomesin. The AFM identifies the "mechanical fingerprints" of the modules constituting the myomesin molecule. Stretching of homomeric polyproteins, constructed of Ig and Fn domains of human myomesin, produces a typical saw-tooth pattern in the force-extension curve. The domains readily refold after relaxation. In contrast, stretching of a heterogeneous polyprotein, containing several repeats of the My6-EH fragment reveals a long initial plateau corresponding to the sum of EH-segment contour lengths, followed by several My6 unfolding peaks. According to this, the EH-segment is characterized as an entropic chain with a persistence length of about 0.3nm. In TEM pictures, the EH-domain appears as a gap in the molecule, indicating a random coil conformation similar to the PEVK region of titin. CD spectroscopy measurements support this result, demonstrating a mostly non-folded conformation for the EH-segment. We suggest that similarly to titin, myomesin is a molecular spring, whose elasticity is modulated by alternative splicing. The Ig and Fn domains might function as reversible "shock absorbers" by sequential unfolding in the case of extremely high or long sustained stretching forces. These complex visco-elastic properties of myomesin might be crucial for the stability of the sarcomere.  相似文献   

7.
Titin is a giant elastomeric protein responsible for the generation of passive muscle force. Mechanical force unfolds titin’s globular domains, but the exact structure of the overstretched titin molecule is not known. Here we analyzed, by using high-resolution atomic force microscopy, the structure of titin molecules overstretched with receding meniscus. The axial contour of the molecules was interrupted by topographical gaps with a mean width of 27.7 nm that corresponds well to the length of an unfolded globular (immunoglobulin and fibronectin) domain. The wide gap-width distribution suggests, however, that additional mechanisms such as partial domain unfolding and the unfolding of neighboring domain multimers may also be present. In the folded regions we resolved globules with an average spacing of 5.9 nm, which is consistent with a titin chain composed globular domains with extended interdomain linker regions. Topographical analysis allowed us to allocate the most distal unfolded titin region to the kinase domain, suggesting that this domain systematically unfolds when the molecule is exposed to overstretching forces. The observations support the prediction that upon the action of stretching forces the N-terminal ß-sheet of the titin kinase unfolds, thus exposing the enzyme’s ATP-binding site and hence contributing to the molecule’s mechanosensory function.  相似文献   

8.
9.
B Zhang  G Xu    J S Evans 《Biophysical journal》1999,77(3):1306-1315
Molecular elasticity is a physicomechanical property that is associated with a select number of polypeptides and proteins, such as the giant muscle protein, titin, and the extracellular matrix protein, tenascin. Both proteins have been the subject of atomic force microscopy (AFM), laser tweezer, and other in vitro methods for examining the effects of force extension on the globular (FNIII/Ig-like) domains that comprise each protein. In this report we present a time-dependent method for simulating AFM force extension and its effect on FNIII/Ig domain unfolding and refolding. This method treats the unfolding and refolding process as a standard three-state protein folding model (U right arrow over left arrow T right arrow over left arrow F, where U is the unfolded state, T is the transition or intermediate state, and F is the fully folded state), and integrates this approach within the wormlike chain (WLC) concept. We simulated the effect of AFM tip extension on a hypothetical titin molecule comprised of 30 globular domains (Ig or FNIII) and 25% Pro-Glu-Val-Lys (PEVK) content, and analyzed the unfolding and refolding processes as a function of AFM tip extension, extension rate, and variation in PEVK content. In general, we find that the use of a three-state protein-folding kinetic-based model and the implicit inclusion of PEVK domains can accurately reproduce the experimental force-extension curves observed for both titin and tenascin proteins. Furthermore, our simulation data indicate that PEVK domains exhibit extensibility behavior, assist in the unfolding and refolding of FNIII/Ig domains in the titin molecule, and act as a force "buffer" for the FNIII/Ig domains, particularly at low and moderate extension forces.  相似文献   

10.
Titin, the giant protein of striated muscle, provides a continuous link between the Z-disk and the M-line of a sarcomere. The elastic I-band section of titin comprises two main structural elements, stretches of immunoglobulin-like domains and a unique sequence, the PEVK segment. Both elements contribute to the extensibility and passive force development of nonactivated muscle. Extensibility of the titin segments in skeletal muscle has been determined by immunofluorescence/immunoelectron microscopy of sarcomeres stained with sequence-assigned titin antibodies. The force developed upon stretch of titin has been measured on isolated molecules or recombinant titin fragments with the help of optical tweezers and the atomic force microscope. Force has also been measured in single isolated myofibrils. The force-extension relation of titin could be readily fitted with models of biopolymer elasticity. For physiologically relevant extensions, the elasticity of the titin segments was largely explainable by an entropic-spring mechanism. The modelling explains why during stretch of titin, the Ig-domain regions (with folded modules) extend before the PEVK domain. In cardiac muscle, I-band titin is expressed in different isoforms, termed N2-A and N2-B. The N2-A isoform resembles that of skeletal muscle, whereas N2-B titin is shorter and is distinguished by cardiac-specific Ig-motifs and nonmodular sequences within the central I-band section. Examination of N2-B titin extensibility revealed that this isoform extends by recruiting three distinct elastic elements: poly-Ig regions and the PEVK domain at lower stretch and, in addition, a unique 572-residue sequence insertion at higher physiological stretch. Extension of all three elements allows cardiac titin to stretch fully reversibly at physiological sarcomere lengths, without the need to unfold individual Ig domains. However, unfolding of a very small number of Ig domains remains a possibility.  相似文献   

11.
The mechanisms that determine mechanical stabilities of protein folds remain elusive. Our understanding of these mechanisms is vital to both bioengineering efforts and to the better understanding and eventual treatment of pathogenic mutations affecting mechanically important proteins such as titin. We present a new approach to analyze data from single‐molecule force spectroscopy for different domains of the giant muscle protein titin. The region of titin found in the I‐band of a sarcomere is composed of about 40 Ig‐domains and is exposed to force under normal physiological conditions and connects the free‐hanging ends of the myosin filaments to the Z‐disc. Recent single‐molecule force spectroscopy data show a mechanical hierarchy in the I‐band domains. Domains near the C‐terminus in this region unfold at forces two to three times greater than domains near the beginning of the I‐band. Though all of these Ig‐domains are thought to share a fold and topology common to members of the Ig‐like fold family, the sequences of neighboring domains vary greatly with an average sequence identity of only 25%. We examine in this study the relation of these unique mechanical stabilities of each I‐band Ig domain to specific, conserved physical–chemical properties of amino acid sequences in related Ig domains. We find that the sequences of each individual titin Ig domain are very highly conserved, with an average sequence identity of 79% across species that are divergent as humans, chickens, and zebra fish. This indicates that the mechanical properties of each domain are well conserved and tailored to its unique position in the titin molecule. We used the PCPMer software to determine the conservation of amino acid properties in titin Ig domains grouped by unfolding forces into “strong” and “weak” families. We found two motifs unique to each family that may have some role in determining the mechanical properties of these Ig domains. A detailed statistical analysis of properties of individual residues revealed several positions that displayed differentially conserved properties in strong and weak families. In contrast to previous studies, we find evidence that suggests that the mechanical stability of Ig domains is determined by several residues scattered across the β‐sandwich fold, and force sensitive residues are not only confined to the A′‐G region. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

12.
Titin, an important constituent of vertebrate muscles, is a protein of the order of a micrometer in length in the folded state. Atomic force microscopy and laser tweezer experiments have been used to stretch titin molecules to more than ten times their folded lengths. To explain the observed relation between force and extension, it has been suggested that the immunoglobulin and fibronectin domains unfold one at a time in an all-or-none fashion. We use molecular dynamics simulations to study the forced unfolding of two different fibronectin type 3 domains (the ninth, 9Fn3, and the tenth, 10Fn3, from human fibronectin) and of their heterodimer of known structure. An external biasing potential on the N to C distance is employed and the protein is treated in the polar hydrogen representation with an implicit solvation model. The latter provides an adiabatic solvent response, which is important for the nanosecond unfolding simulation method used here. A series of simulations is performed for each system to obtain meaningful results. The two different fibronectin domains are shown to unfold in the same way along two possible pathways. These involve the partial separation of the "beta-sandwich", an essential structural element, and the unfolding of the individual sheets in a stepwise fashion. The biasing potential results are confirmed by constant force unfolding simulations. For the two connected domains, there is complete unfolding of one domain (9Fn3) before major unfolding of the second domain (10Fn3). Comparison of different models for the potential energy function demonstrates that the dominant cohesive element in both proteins is due to the attractive van der Waals interactions; electrostatic interactions play a structural role but appear to make only a small contribution to the stabilization of the domains, in agreement with other studies of beta-sheet stability. The unfolding forces found in the simulations are of the order of those observed experimentally, even though the speed of the former is more than six orders of magnitude greater than that used in the latter.  相似文献   

13.
Molecular elasticity is associated with a select number of polypeptides and proteins, such as titin, Lustrin A, silk fibroin, and spider silk dragline protein. In the case of titin, the globular (Ig) and non-globular (PEVK) regions act as extensible springs under stretch; however, their unfolding behavior and force extension characteristics are different. Using our time-dependent macroscopic method for simulating AFM-induced titin Ig domain unfolding and refolding, we simulate the extension and relaxation of hypothetical titin chains containing Ig domains and a PEVK region. Two different models are explored: 1) a series-linked WLC expression that treats the PEVK region as a distinct entropic spring, and 2) a summation of N single WLC expressions that simulates the extension and release of a discrete number of parallel titin chains containing constant or variable amounts of PEVK. In addition to these simulations, we also modeled the extension of a hypothetical PEVK domain using a linear Hooke's spring model to account for "enthalpic" contributions to PEVK elasticity. We find that the modified WLC simulations feature chain length compensation, Ig domain unfolding/refolding, and force-extension behavior that more closely approximate AFM, laser tweezer, and immunolocalization experimental data. In addition, our simulations reveal the following: 1) PEVK extension overlaps with the onset of Ig domain unfolding, and 2) variations in PEVK content within a titin chain ensemble lead to elastic diversity within that ensemble.  相似文献   

14.
Polycystin-1 is a large membrane-associated protein that interacts with polycystin-2 in the primary cilia of renal epithelial cells to form a mechanosensitive ion channel. Bending of the cilia induces calcium flow into the cells, mediated by the polycystin complex. Antibodies to polycystin-1 and polycystin-2 abolish this activation. Based on this, it has been suggested that the extracellular region of polycystin-1, which has a number of putative binding domains, may act as a mechanosensor. A large proportion of the extracellular region of polycystin-1 consists of beta-sandwich PKD domains in tandem array. We use atomic force microscopy to investigate the mechanical properties of the PKD domains of polycystin-1. We show that these domains, despite having a low thermodynamic stability, exhibit a remarkable mechanical strength, similar to that of immunoglobulin domains in the giant muscle protein titin. In agreement with the experimental results molecular dynamics simulations performed at low constant force show that the first PKD domain of polycystin (PKDd1) has a similar unfolding time as titin I27, under the same conditions. The simulations suggest that the basis for this mechanical stability is the formation of a force-stabilised intermediate. Our results suggest that these domains will remain folded under external force supporting the hypothesis that polycystin-1 could act as a mechanosensor, detecting changes in fluid flow in the kidney tubule.  相似文献   

15.
Myomesin is one of the most important structural molecules constructing the M-band in the force-generating unit of striated muscle, and a critical structural maintainer of the sarcomere. Using molecular dynamics simulations, we here dissect the mechanical properties of the structurally known building blocks of myomesin, namely α-helices, immunglobulin (Ig) domains, and the dimer interface at myomesin’s 13th Ig domain, covering the mechanically important C-terminal part of the molecule. We find the interdomain α-helices to be stabilized by the hydrophobic interface formed between the N-terminal half of these helices and adjacent Ig domains, and, interestingly, to show a rapid unfolding and refolding equilibrium especially under low axial forces up to ∼15 pN. These results support and yield atomic details for the notion of recent atomic-force microscopy experiments, namely, that the unique helices inserted between Ig domains in myomesin function as elastomers and force buffers. Our results also explain how the C-terminal dimer of two myomesin molecules is mechanically outperforming the helices and Ig domains in myomesin and elsewhere, explaining former experimental findings. This study provides a fresh view onto how myomesin integrates elastic helices, rigid immunoglobulin domains, and an extraordinarily resistant dimer into a molecular structure, to feature a mechanical hierarchy that represents a firm and yet extensible molecular anchor to guard the stability of the sarcomere.  相似文献   

16.
The giant protein titin, which is responsible for passive elasticity in muscle fibers, is built from approximately 300 regular immunoglobulin-like (Ig) domains and FN-III repeats. While the soft elasticity derived from its entropic regions, as well as the stiff mechanical resistance derived from the unfolding of the secondary structure elements of Ig- and FN-III domains have been studied extensively, less is known about the mechanical elasticity stemming from the orientation of neighboring domains relative to each other. Here we address the dynamics and energetics of interdomain arrangement of two adjacent Ig-domains of titin, Z1, and Z2, using molecular dynamics (MD) simulations. The simulations reveal conformational flexibility, due to the domain-domain geometry, that lends an intermediate force elasticity to titin. We employ adaptive biasing force MD simulations to calculate the energy required to bend the Z1Z2 tandem open to identify energetically feasible interdomain arrangements of the Z1 and Z2 domains. The finding is cast into a stochastic model for Z1Z2 interdomain elasticity that is generalized to a multiple domain chain replicating many Z1Z2-like units and representing a long titin segment. The elastic properties of this chain suggest that titin derives so-called tertiary structure elasticity from bending and twisting of its domains. Finally, we employ steered molecular dynamics simulations to stretch individual Z1 and Z2 domains and characterize the so-called secondary structure elasticity of the two domains. Our study suggests that titin's overall elastic response at weak force stems from a soft entropic spring behavior (not described here), from tertiary structure elasticity with an elastic spring constant of approximately 0.001-1 pN/A and, at strong forces, from secondary structure elasticity.  相似文献   

17.
The elastic I-band part of muscle protein titin contains two tandem immunoglobulin (Ig) domain regions of distinct mechanical properties. Until recently, the only known structure was that of the I27 module of the distal region, whose mechanical properties have been reported in detail. Recently, the structure of the first proximal domain, I1, has been resolved at 2.1A. In addition to the characteristic beta-sandwich structure of all titin Ig domains, the crystal structure of I1 showed an internal disulfide bridge that was proposed to modulate its mechanical extensibility in vivo. Here, we use single molecule force spectroscopy and protein engineering to examine the mechanical architecture of this domain. In contrast to the predictions made from the X-ray crystal structure, we find that the formation of a disulfide bridge in I1 is a relatively rare event in solution, even under oxidative conditions. Furthermore, our studies of the mechanical stability of I1 modules engineered with point mutations reveal significant differences between the mechanical unfolding of the I1 and I27 modules. Our study illustrates the varying mechanical architectures of the titin Ig modules.  相似文献   

18.
The elastic section of the giant muscle protein titin contains many immunoglobulin-like domains, which have been shown by single-molecule mechanical studies to unfold and refold upon stretch-release. Here we asked whether the mechanical properties of Ig domains and/or other titin regions could be responsible for the viscoelasticity of nonactivated skeletal-muscle sarcomeres, particularly for stress relaxation and force hysteresis. We show that isolated psoas myofibrils respond to a stretch-hold protocol with a characteristic force decay that becomes more pronounced following stretch to above 2.6-microm sarcomere length. The force decay was readily reproducible by a Monte Carlo simulation taking into account both the kinetics of Ig-domain unfolding and the worm-like-chain model of entropic elasticity used to describe titin's elastic behavior. The modeling indicated that the force decay is explainable by the unfolding of only a very small number of Ig domains per titin molecule. The simulation also predicted that a unique sequence in titin, the PEVK domain, may undergo minor structural changes during sarcomere extension. Myofibrils subjected to 1-Hz cycles of stretch-release exhibited distinct hysteresis that persisted during repetitive measurements. Quick stretch-release protocols, in which variable pauses were introduced after the release, revealed a two-exponential time course of hysteresis recovery. The rate constants of recovery compared well with the refolding rates of Ig-like or fibronectin-like domains measured by single-protein mechanical analysis. These findings suggest that in the sarcomere, titin's Ig-domain regions may act as entropic springs capable of adjusting their contour length in response to a stretch.  相似文献   

19.
Titin is a giant filamentous protein of the muscle sarcomere in which stretch induces the unfolding of its globular domains. However, the mechanisms of how domains are progressively selected for unfolding and which domains eventually unfold have for long been elusive. Based on force-clamp optical tweezers experiments we report here that, in a paradoxical violation of mechanically driven activation kinetics, neither the global domain unfolding rate, nor the folded-state lifetime distributions of full-length titin are sensitive to force. This paradox is reconciled by a gradient of mechanical stability so that domains are gradually selected for unfolding as the magnitude of the force field increases. Atomic force microscopic screening of extended titin molecules revealed that the unfolded domains are distributed homogenously along the entire length of titin, and this homogeneity is maintained with increasing overstretch. Although the unfolding of domains with progressively increasing mechanical stability makes titin a variable viscosity damper, the spatially randomized variation of domain stability ensures that the induced structural changes are not localized but are distributed along the molecule''s length. Titin may thereby provide complex safety mechanims for protecting the sarcomere against structural disintegration under excessive mechanical conditions.  相似文献   

20.
Myomesin is one of the most important structural molecules constructing the M-band in the force-generating unit of striated muscle, and a critical structural maintainer of the sarcomere. Using molecular dynamics simulations, we here dissect the mechanical properties of the structurally known building blocks of myomesin, namely α-helices, immunglobulin (Ig) domains, and the dimer interface at myomesin’s 13th Ig domain, covering the mechanically important C-terminal part of the molecule. We find the interdomain α-helices to be stabilized by the hydrophobic interface formed between the N-terminal half of these helices and adjacent Ig domains, and, interestingly, to show a rapid unfolding and refolding equilibrium especially under low axial forces up to ∼15 pN. These results support and yield atomic details for the notion of recent atomic-force microscopy experiments, namely, that the unique helices inserted between Ig domains in myomesin function as elastomers and force buffers. Our results also explain how the C-terminal dimer of two myomesin molecules is mechanically outperforming the helices and Ig domains in myomesin and elsewhere, explaining former experimental findings. This study provides a fresh view onto how myomesin integrates elastic helices, rigid immunoglobulin domains, and an extraordinarily resistant dimer into a molecular structure, to feature a mechanical hierarchy that represents a firm and yet extensible molecular anchor to guard the stability of the sarcomere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号