首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this review, genes and proteins involved in cytokinesis and cell proliferation of cell-wall bacteria and mycoplasms are considered. We hope that this comparative analysis of genes and proteins of phylogenetically distant bacteria, including the minimal cells of mycoplasmas, can be useful for understanding the basic principles of prokaryotic cell division. The ftsZ gene was found among representatives of all bacterial groups. The recent data indicate that FtsZ protein plays the central role in the process of bacterial cell division. FtsZ protein was revealed in all Eubacterial groups (including mycoplasmas), in Archaebacteria and chloroplasts, All FtsZ proteins are able to form protofilaments as a result of polymerization in vitro and demonstrate GTF-ase activity. On the base of these properties and some similarities in amino acid sequences with tubulins, it has been suggested that FtsZ protein is an evolutionary ancestor of Eukaryotic tubulins. On the earliest stage of bacterial cytokinesis FtsZ protein assembles into a submembranous Z-ring which encircles bacterial cell in the predivisional site. Some other bacterial proteins take part in stabilization and contraction of the Z-ring, which is considered as a cytoskeleton-like bacterial structure.  相似文献   

2.
Norris V  Fishov I 《Biochimie》2001,83(1):91-97
The mechanism responsible for creating the division site in the right place at the right time in bacteria is unknown. It has been attributed to the formation of proteolipid domains in the cytoplasmic membrane surrounding the nucleoids. We interpret the growing evidence for this hypothesis by invoking hyperstructures, which exist at a level of organization intermediate between macromolecules and genes. Non-equilibrium hyperstructures comprise the genes, mRNA proteins and lipids required for a particular function such as cell division, and assemble and disassemble according to the needs of the cell.  相似文献   

3.
4.
5.
While the spread of Toxoplasma gondii within the infected human or animal host is associated with pathology, the pathways of dissemination have remained enigmatic. From the time point of entry into the gut, to the quiescent chronic infection in the central nervous system, Toxoplasma is detected and surveyed by immune cells that populate the tissues, for example dendritic cells. Paradoxically, this protective migratory function of leukocytes appears to be targeted by Toxoplasma to mediate its dissemination in the organism. Recent findings show that tightly regulated events take place shortly after host cell invasion that promote the migratory activation of infected dendritic cells. Here, we review the emerging knowledge on how this obligate intracellular protozoan orchestrates the subversion of leukocytes to achieve systemic dissemination and reach peripheral organs where pathology manifests.  相似文献   

6.
7.
In this review we describe proteins and supermolecular structures which take part in the division of bacterial cells. FtsZ, a eukaryotic tubulin homolog is a key cell division protein in most prokaryotes. FtsZ, as well as tubulin, is capable of binding and hydrolyzing GTP. The division of a bacterial cell begins with the forming of a so-called divisome. The basis of such a divisome is a contractile ring (Z ring) which encircles the cell about midcell. The Z-ring consists of a bundle of laterally bound protofilaments formed in result of FtsZ polymerization. Z-ring is rigidly bounded to the cytosolic side of the inner membrane with the participation of FtsA, ZipA, FtsW and many other divisome cell division proteins. The ring directs the process of cytokinesis transmitting constriction power to the membrane. The primary structures of the prokaryotic FtsZ family members significantly differ from eukaryotic tubulins except for the sites of GTP binding. There is a high degree of structural homology between these proteins in the region. FtsZ is one of the most conserved proteins in prokaryotes. However, ftsZ genes have not been found in several species of microorganisms with completely sequenced genomes. They include two species of mycoplasmas (Ureaplasma parvum and Mycoplasma mobile), Prostecobacter dejongeii, 10 species of chlamydia and 5 species of archaea. Consequently, these organisms divide without FtsZ participation. The genomes of U. parvum and M. mobile have many open reading frames which encode proteins with unknown functions. A comparison of the primary structures of these hypothetical proteins did not identify any known cell division proteins. We hypothesize that the process of cell division in these organisms should involve proteins similar to FtsZ in function and homologous to FtsZ or other cell division proteins in structure.  相似文献   

8.
We found that insertion sequence (IS) elements are unusually abundant in the relatively recently evolved bacterial endosymbionts of maize weevils. Because multicopy elements can facilitate genomic recombination and deletion, this IS expansion may represent an early stage in the genomic reduction that is common in most ancient endosymbionts.  相似文献   

9.
Microspectrofluorometry of cell coenzymes (NAD(P)H, flavins) in conjunction with sequential microinjections into the same cell of metabolites and modifiers, reveals aspects of the regulatory mechanisms of transient redox changes of mitochondrial and extramitochondrial nicotinamide adenine dinucleotides. The injection of ADP in the course of an NAD(P)H transient produced by glycolytic (e.g. glucose 6-phosphate, G6P) or mitochondrial (e.g. malate) substrate leads to sharp reoxidation (state III, Chance and Williams, 1955), followed by a spontaneous state III to IV transition, and an ultimate return to original redox steady state. The response to ADP alone is biphasic, i.e. a small oxidation-reduction transient followed by a larger reverse transient. Similarities between responses to injected ATP and ADP suggest possible intracellular interconversions. Sequential injections of glycolytic and Krebs cycle substrates into the same cell, produce a two-step NAD(P) response, possibly revealing the intracellular compartmentation of this coenzyme. A two-step NAD(P)H response to sequentially injected fructose 1,6-diphosphate and G6P indicates the dynamic or even structural compartmentation of glycolytic phosphate esters in separate intracellular pools. The intracellular regulation and compartmentation of bioenergetic pathways and cell-to-cell metabolic inhomogeneities provide the basis on which the quantitative biochemistry of the intact living cell may be reconciled with these in situ findings.  相似文献   

10.
The bacterial cell cycle requires the tight regulation and precise coordination of several sophisticated cellular processes. Prominent among them is the formation of the dividing wall or septum, which has to take place at the right time and place to ensure equality of the progeny and integrity of the genome. Nucleoid occlusion is a defence mechanism that prevents the chromosome from being bisected and broken by the division septum. It does so by preventing Z ring formation near the nucleoid, which also helps to determine the location of septation.  相似文献   

11.
The bacterial dcw cluster is a group of genes involved in cell division and peptidoglycan synthesis. Comparison of the cluster across several bacterial genomes shows that its gene content and its gene order are conserved in distant bacterial lineages and, moreover, that, being most conserved in rod-shaped bacteria, the degree of conservation relates to bacterial morphology. We propose a model in which the selective pressure to maintain the cluster arises from the need to efficiently coordinate the processes of elongation and septation in rod-shaped bacteria. Gene order in the dcw cluster would be conserved as a result of mechanisms comprising: (i) a limited amount of peptidoglycan precursors required both for septation and elongation of the wall; (ii) co-translational assembly of the protein complexes involved in cell division and in the synthesis of the peptidoglycan precursors; and (iii) alternation in the cellular localization of the assembled complexes to participate either in the synthesis of the septal peptidoglycan and division, or in the synthesis of the lateral wall. The name genomic channeling is proposed for this model as it involves a genomic arrangement that could facilitate the assembly of specific protein complexes and their subsequent conveyance to specific locations in the crowded cytoplasm and the envelope.  相似文献   

12.
The kinetics of cell division and movement in four epithelial-like cell lines, grown in continuously perfused culture medium, were studied by time-lapse cinemicrography. One line exhibited “contact regulation of cell division,” so that the rate of mitosis per cell decreased steadily as population density increased. In the other three lines mitosis was not controlled as a function of population density until the cells became very crowded. An explanation for this difference was sought in terms of the hypothesis that the rate of division depends on the area of the cell membrane. Cells of the contact-regulated line flattened uniformly on the substrate. Their motility was restrained by adhesion between their borders. As they crowded together, contact inhibition of cell overlap caused a steady decrease in average surface area per cell. All three of the non-controlled lines also had contact inhibition of overlap. Cells of two of them flattened on the substrate; but these cells had little mutual adhesion and were highly motile, so that they continually changed their shapes. The areas of their cell membranes were therefore not subject to a restraint that could control the rate of division. Cells of the fourth line remained rounded or only slightly flattened during culture growth, so that no change in cell membrane area occurred that could change the rate of division.  相似文献   

13.
14.
Salmonella typhimurium multiplication inside eukaryotic host cells is critical for virulence. Salmonella typhimurium strain SL1344 appears as filaments upon growth in macrophages and MelJuSo cells, a human melanoma cell line, indicating a specific blockage in the bacterial cell division process. Several studies have investigated the host cell response impairing bacterial division. However, none looked at the bacterial factors involved in inhibition of Salmonella division inside eukaryotic cells. We show here that blockage in the bacterial division process is sulA-independent and takes place after FtsZ-ring assembly. Salmonella typhimurium genes in which mutations lead to filamentous growth within host cells were identified by a large scale mutagenesis approach on strain 12023, revealing bacterial functions crucial for cell division within eukaryotic cells. We finally demonstrate that SL1344 filamentation is a result of hisG mutation, requires the activity of an enzyme of the histidine biosynthetic pathway HisFH and is specific for the vacuolar environment.  相似文献   

15.
A solid phase immunoenzymatic technique was employed for detecting single IFN-gamma-producing cells (IFN-gamma PC) in the mouse. After infection with lymphocytic choriomeningitis virus or Listeria monocytogenes, the numbers of IFN-gamma PC in spleens began to rise on day 4, attained maxima on days 7 and 8, and declined thereafter. Negative selection in vitro by use of mAb and C allowed phenotypic identification of the producer cells; most, if not all, carried Thy-1, and approximately one half expressed CD4, the other half, CD8. Depletion of cells in vivo by treatment of mice with mAb led to somewhat different results; again, anti-Thy-1 antibody eliminated essentially all IFN-gamma PC, but considerably more than 50% were either CD4+ or CD8+, suggesting regulatory interactions between these T lymphocyte subsets with regard to generation of the lymphokine.  相似文献   

16.
17.
In this review we have tried to describe proteins and supermolecular structures which take part in the division of bacterial cell. The principal cell division protein of the most of prokaryotes is FtsZ, a homologue of eukaryotic tubulin. FtsZ just as tubulin is capable to bind and hydrolyze GTP. The division of bacterial cell begins with forming of so called divisome. The basis of such divisome is a contractile ring (Z ring); the ring encircles the cell about midcell. Z ring consists of a bundle of laterally bound protofilaments, which have been formed as a result of FtsZ polymerization. Z ring is rigidly bounded to cytozolic side of inner membrane with participation of FtsA, ZipA, FtsW and many other cell division proteins of divisome. The ring directs the process of cytokinesis transmitting power of constriction to membrane. Primary structures of members of the family of prokaryotic FtsZs differ from eukaryotic tubulines significantly except the region, where the site of GTP binding is placed. There is high degree of homology between structures of these proteins in the region. FtsZ is one of the most conservative proteins in prokaryotes, but ftsZ genes have not been found in completely sequenced genomes of several species of microorganisms. There are 2 species of mycoplasmas (Ureaplasma parvum and Mycoplasma mobile), Prostecobacter dejongeii, 10 species of chlamydia and 5 species of archaea among them. So these organisms divide without FtsZ. There are many open reading frames which encode proteins with unknown functions in genomes of U. parvum and M. mobile. The comparison of primary structures of these hypothetical proteins with structures of cell division proteins did not allow researchers to find similar proteins among them. We suppose that the process of cell division of these organisms should recruit proteins with function similar to FtsZ and having homologous with FtsZ or other cell division proteins spatial structures.  相似文献   

18.
E Haas 《Biophysical journal》1980,31(3):301-312
Since the usual measurements of light emission from marine bacteria involve many (10(6)-10(10)) cells, the question has often been raised as to whether or not the individual cell's luminescence is truly continuous. To investigate this question, we assembled a sensitive photo-counting system with computerized data acquisition. Several luminous species were studied: Beneckea harveyi, Photobacterium belozerskii, P. fischeri, and P. leiognathi. Isolated single cells gave count rates ranging from 2 to 10 times the background, depending on the brightness of the strain and the state of induction. No flashes, bursts, or oscillations were evident from data collected in counting intervals of 100 ms, using both photo time-correction and power spectral analysis. Our algorithms could detect an oscillating component with an intensity as low as 0.3% of the average, as determined by the analysis of reference light sources. That photons are emitted randomly was further shown by the fact that the count distribution from the living cell closely matched that of a reference light source attenuated to the same average count rate.  相似文献   

19.
Bacterial FtsZ assembles and constricts after chromosomal segregation in the course of cell division. Here we examined the localization of FtsZ in multinucleated swarmer cells of Proteus mirabilis by immunostaining. FtsZ was found to localize to the point of karyomitosis in swarmer cells of P. mirabilis, which is equivalent to filamentous mutants of Escherichia coli defective in the ftsI or ftsQ genes that are involved in later steps of cell division. Thus our findings suggest that the appearance of swarmer cells results from cellular functions immediately after FtsZ assembly.  相似文献   

20.
Recent evidence suggests that cell-to-cell difference at the gene expression level is an order of magnitude greater than previously thought even for isogenic bacterial populations. Such gene expression heterogeneity determines the fate of individual bacterial cells in populations and could also affect the ultimate fate of populations themselves. To quantify the heterogeneity and its biological significance, quantitative methods to measure gene expression in single bacterial cells are needed. In this work, we developed two SYBR Green-based RT-qPCR methods to determine gene expression directly in single bacterial cells. The first method involves a single-tube operation that can analyze one gene from each bacterial cell. The second method is featured by a two-stage protocol that consists of RNA isolation from a single bacterial cell and cDNA synthesis in the first stage, and qPCR in the second stage, which allows determination of expression level of multiple genes simultaneously for single bacterial cells of both gram-positive and negative. We applied the methods to stress-treated (i.e. low pH and high temperature) Escherichia coli populations. The reproducible results demonstrated that the method is sensitive enough not only for measuring cellular responses at the single-cell level, but also for revealing gene expression heterogeneity among the bacterial cells. Furthermore, our results showed that the two-stage method can reproducibly measure multiple highly expressed genes from a single E. coli cell, which exhibits important foundation for future development of a high throughput and lab-on-chips whole-genome RT-qPCR methodology for single bacterial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号