首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A major hallmark of prion diseases is the cerebral amyloid accumulation of the pathogenic PrPSc, an abnormally misfolded, protease-resistant, and β-sheet rich protein. PrP106-126 is the key domain responsible for the conformational conversion and aggregation of PrP. It shares important physicochemical characteristics with PrPSc and presents similar neurotoxicity as PrPSc. By combination of fluorescence polarization, dye release assay and in situ time-lapse atomic force microscopy (AFM), we investigated the PrP106-126 amide interacting with the large unilamellar vesicles (LUVs) and the supported lipid bilayers (SLBs). The results suggest that the interactions involve a poration-mediated process: firstly, the peptide binding results in the formation of pores in the membranes, which penetrate only half of the membranes; subsequently, PrP106-126 amide undergoes the poration-mediated diffusion in the SLBs, represented by the formation and expansion of the flat high-rise domains (FHDs). The possible mechanisms of the interactions between PrP106-126 amide and lipid membranes are proposed based on our observations.  相似文献   

2.
PrP106-126 is located within the important domain concerning membrane related conformational conversion of human Prion protein (from cellular isoform PrPC to scrapie isoform PrPSc). Recent advances reveal that the pathological and physicochemical properties of PrP106-126 peptide are very sensitive to its N-terminal amidation, however, the detailed mechanism remains unclear. In this work, we studied the interactions of the PrP106-126 isoforms (PrP106-126CONH2 and PrP106-126COOH) with the neutral lipid bilayers by atomic force microscopy, surface plasmon resonance and fluorescence spectroscopy. The membrane structures were disturbed by the two isoforms in a similarly stepwise process. The distinct morphological changes of the membrane were characterized by formation of semi-penetrated defects and sigmoidal growth of flat high-rise domains on the supported lipid bilayers. However, PrP106-126COOH displayed a higher peptide-lipid binding affinity than PrP106-126CONH2 (∼2.9 times) and facilitated the peptide-lipid interactions by shortening the lag time. These results indicate that the C-terminal amidation may influence the pathological actions of PrP106-126 by lowering the interaction potentials with lipid membranes.  相似文献   

3.
The aetiological agent of prion disease is proposed to be an aberrant isoform of the cell surface glycoprotein known as the prion protein (PrPc). This pathological isoform (PrPSc) is abnormally deposited in the extracellular space of diseased CNS. Neurodegeneration in these disease has been shown to be associated with accumulation of PrPSc in affected tissue. To investigate the possible uptake mechanisms that may be required for PrPSc-induced neurodegeneration we studied the cellular trafficking of the neurotoxic fragment, PrP106-126. We were able to detect, by fluorescence microscopy, PrP106-126 inclusions in murine neurones, astrocytes and microglia in vitro. These inclusions were abundant after 24 hour exposure and still present 48h post-exposure. Shorter exposure times yielded only occasional cells with inclusions. Large extracellular aggregates of PrP106-126 could also be detected, which appeared in a time dependent manner. The appearance of inclusions or aggregates was not dependent on PrPc expression as determined by exposure of peptides from PrP-null mice. Using transmission electron microscopy and gold particle detection, positively labelled osmiophilic inclusions of peptide could be detected in the cytoplasm of exposed cells. These results demonstrate that cultured cells are capable of sequestering PrP106-126 and may indicate uptake pathways for PrPSc in various cell types. Toxicity of PrP106-126 may thus be mediated via a sequestration pathway that is not effective for this peptide in PrP-null cells.  相似文献   

4.
The insolubility of the disease-causing isoform of the prion protein (PrPSc) has prevented studies of its three-dimensional structure at atomic resolution. Electron crystallography of two-dimensional crystals of N-terminally truncated PrPSc (PrP 27-30) and a miniprion (PrPSc106) provided the first insights at intermediate resolution on the molecular architecture of the prion. Here, we report on the structure of PrP 27-30 and PrPSc106 negatively stained with heavy metals. The interactions of the heavy metals with the crystal lattice were governed by tertiary and quaternary structural elements of the protein as well as the charge and size of the heavy metal salts. Staining with molybdate anions revealed three prominent densities near the center of the trimer that forms the unit cell, coinciding with the location of the β-helix that was proposed for the structure of PrPSc. Differential staining also confirmed the location of the internal deletion of PrPSc106 at or near these densities.  相似文献   

5.
The key molecular event underlying prion diseases is the conversion of the monomeric and α-helical cellular form of the prion protein (PrPC) to the disease-associated state, which is aggregated and rich in β-sheet (PrPSc). The molecular details associated with the conversion of PrPC into PrPSc are not fully understood. The prion protein is attached to the cell membrane via a GPI lipid anchor and evidence suggests that the lipid environment plays an important role in prion conversion and propagation. We have previously shown that the interaction of the prion protein with anionic lipid membranes induces β-sheet structure and promotes prion aggregation, whereas zwitterionic membranes stabilize the α-helical form of the protein. Here, we report on the interaction of recombinant sheep prion protein with planar lipid membranes in real-time, using dual polarization interferometry (DPI). Using this technique, the simultaneous evaluation of multiple physical properties of PrP layers on membranes was achieved. The deposition of prion on membranes of POPC and POPC/POPS mixtures was studied. The properties of the resulting protein layers were found to depend on the lipid composition of the membranes. Denser and thicker protein deposits formed on lipid membranes containing POPS compared to those formed on POPC. DPI thus provides a further insight on the organization of PrP at the surface of lipid membranes.  相似文献   

6.
Cellular prion protein (PrPC) has attracted considerable attention for its role in transmissible spongiform encephalopathies (TSEs). In spite of being a point of intense research effort critical questions still remain regarding the physiological function of PrPC and how these functions may change with the conversion of the protein into the infectious and pathological conformation (PrPSc). While emerging evidence suggests PrPC/Sc are involved in signal transduction there is little consensus on the signaling pathways associated with the normal and diseased states. The purported involvement of PrPC in signal transduction, and the association of TSEs with neural pathology, makes kinome analysis of human neurons an interesting and appropriate model to characterize patterns of signal transduction following activation of PrPC by two commonly employed experimental ligands; antibody-induced dimerization by 6H4 and the amino acids 106-126 PrP peptide fragment (PrP 106–126). Analysis of the induced kinome responses reveals distinct patterns of signaling activity following each treatment. Specifically, stimulation of human neurons with the 6H4 antibody results in alterations in mitogen activated protein kinase (MAPK) signaling pathways while the 106-126 peptide activates growth factor related signaling pathways including vascular endothelial growth factor (VEGF) signaling and the phosphoinositide-3 kinase (PI3K) pathway. These pathways were validated through independent functional assays. Collectively these results indicate that stimulation of PrPC with distinct ligands, even within the same cell type, results in unique patterns of signaling. While this investigation highlights the apparent functional versatility of PrPC as a signaling molecule and may offer insight into cellular mechanisms of TSE pathology it also emphasizes the potential dangers associated with attributing activation of specific intracellular events to particular receptors through artificial models of receptor activation.  相似文献   

7.
In prion diseases, the posttranslational modification of host-encoded prion protein PrPc yields a high β-sheet content modified protein PrPsc, which further polymerizes into amyloid fibrils. PrP106-126 initiates the conformational changes leading to the conversion of PrPc to PrPsc. Molecules that can defunctionalize such peptides can serve as a potential tool in combating prion diseases. In microorganisms during stressed conditions, small stress molecules (SSMs) are formed to prevent protein denaturation and maintain protein stability and function. The effect of such SSMs on PrP106-126 amyloid formation is explored in the present study using turbidity, atomic force microscopy (AFM), and cellular toxicity assay. Turbidity and AFM studies clearly depict that the SSMs—ectoine and mannosylglyceramide (MGA) inhibit the PrP106-126 aggregation. Our study also connotes that ectoine and MGA offer strong resistance to prion peptide-induced toxicity in human neuroblastoma cells, concluding that such molecules can be potential inhibitors of prion aggregation and toxicity.  相似文献   

8.
《朊病毒》2013,7(5):477-488
Cellular prion protein (PrPC) has attracted considerable attention for its role in transmissible spongiform encephalopathies (TSEs). In spite of being a point of intense research effort critical questions still remain regarding the physiological function of PrPC and how these functions may change with the conversion of the protein into the infectious and pathological conformation (PrPSc). While emerging evidence suggests PrPC/Sc are involved in signal transduction there is little consensus on the signaling pathways associated with the normal and diseased states. The purported involvement of PrPC in signal transduction, and the association of TSEs with neural pathology, makes kinome analysis of human neurons an interesting and appropriate model to characterize patterns of signal transduction following activation of PrPC by two commonly employed experimental ligands; antibody-induced dimerization by 6H4 and the amino acids 106-126 PrP peptide fragment (PrP 106–126). Analysis of the induced kinome responses reveals distinct patterns of signaling activity following each treatment. Specifically, stimulation of human neurons with the 6H4 antibody results in alterations in mitogen activated protein kinase (MAPK) signaling pathways while the 106-126 peptide activates growth factor related signaling pathways including vascular endothelial growth factor (VEGF) signaling and the phosphoinositide-3 kinase (PI3K) pathway. These pathways were validated through independent functional assays. Collectively these results indicate that stimulation of PrPC with distinct ligands, even within the same cell type, results in unique patterns of signaling. While this investigation highlights the apparent functional versatility of PrPC as a signaling molecule and may offer insight into cellular mechanisms of TSE pathology it also emphasizes the potential dangers associated with attributing activation of specific intracellular events to particular receptors through artificial models of receptor activation.  相似文献   

9.
Prion diseases are fatal neurodegenerative disorders caused by prion proteins (PrP). Infectious prions accumulate in the brain through a template-mediated conformational conversion of endogenous PrPC into alternately folded PrPSc. Immunoassays toward pre-clinical detection of infectious PrPSc have been confounded by low-level prion accumulation in non-neuronal tissue and the lack of PrPSc selective antibodies. We report a method to purify infectious PrPSc from biological tissues for use as an immunogen and sample enrichment for increased immunoassay sensitivity. Significant prion enrichment is accomplished by sucrose gradient centrifugation of infected tissue and isolation with detergent resistant membranes from lipid rafts (DRMs). At equivalent protein concentration a 50-fold increase in detectable PrPSc was observed in DRM fractions relative to crude brain by direct ELISA. Sequential purification steps result in increased specific infectivity (DRM >20-fold and purified DRM immunogen >40-fold) relative to 1% crude brain homogenate. Purification of PrPSc from DRM was accomplished using phosphotungstic acid protein precipitation after proteinase-K (PK) digestion followed by size exclusion chromatography to separate PK and residual protein fragments from larger prion aggregates. Immunization with purified PrPSc antigen was performed using wild-type (wt) and Prnp0/0 mice, both on Balb/cJ background. A robust immune response against PrPSc was observed in all inoculated Prnp0/0 mice resulting in antisera containing high-titer antibodies against prion protein. Antisera from these mice recognized both PrPC and PrPSc, while binding to other brain-derived protein was not observed. In contrast, the PrPSc inoculum was non-immunogenic in wt mice and antisera showed no reactivity with PrP or any other protein.Key words: prion, scrapie, Prnp0/0 mice, purification methodology, antibody, antisera, lipid-rafts, detergent resistant membranes, neuroscience, immunization, diagnostic  相似文献   

10.
Mammalian prions refold host glycosylphosphatidylinositol-anchored PrPC into β-sheet–rich PrPSc. PrPSc is rapidly truncated into a C-terminal PrP27-30 core that is stable for days in endolysosomes. The nature of cell-associated prions, their attachment to membranes and rafts, and their subcellular locations are poorly understood; live prion visualization has not previously been achieved. A key obstacle has been the inaccessibility of PrP27-30 epitopes. We overcame this hurdle by focusing on nascent full-length PrPSc rather than on its truncated PrP27-30 product. We show that N-terminal PrPSc epitopes are exposed in their physiological context and visualize, for the first time, PrPSc in living cells. PrPSc resides for hours in unexpected cell-surface, slow moving strings and webs, sheltered from endocytosis. Prion strings observed by light and scanning electron microscopy were thin, micrometer-long structures. They were firmly cell associated, resisted phosphatidylinositol-specific phospholipase C, aligned with raft markers, fluoresced with thioflavin, and were rapidly abolished by anti-prion glycans. Prion strings and webs are the first demonstration of membrane-anchored PrPSc amyloids.  相似文献   

11.
During prion infection, the normal, protease-sensitive conformation of prion protein (PrPC) is converted via seeded polymerization to an abnormal, infectious conformation with greatly increased protease-resistance (PrPSc). In vitro, protein misfolding cyclic amplification (PMCA) uses PrPSc in prion-infected brain homogenates as an initiating seed to convert PrPC and trigger the self-propagation of PrPSc over many cycles of amplification. While PMCA reactions produce high levels of protease-resistant PrP, the infectious titer is often lower than that of brain-derived PrPSc. More recently, PMCA techniques using bacterially derived recombinant PrP (rPrP) in the presence of lipid and RNA but in the absence of any starting PrPSc seed have been used to generate infectious prions that cause disease in wild-type mice with relatively short incubation times. These data suggest that lipid and/or RNA act as cofactors to facilitate the de novo formation of high levels of prion infectivity. Using rPrP purified by two different techniques, we generated a self-propagating protease-resistant rPrP molecule that, regardless of the amount of RNA and lipid used, had a molecular mass, protease resistance and insolubility similar to that of PrPSc. However, we were unable to detect prion infectivity in any of our reactions using either cell-culture or animal bioassays. These results demonstrate that the ability to self-propagate into a protease-resistant insoluble conformer is not unique to infectious PrP molecules. They suggest that the presence of RNA and lipid cofactors may facilitate the spontaneous refolding of PrP into an infectious form while also allowing the de novo formation of self-propagating, but non-infectious, rPrP-res.  相似文献   

12.
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative pathologies characterized by the accumulation of amyloid fibrils mainly composed of the pathological isoform of the prion protein (PrPTSE). PrPTSE pre-amyloid fibrils are supposed to induce neurodegenerative lesions possibly through the alteration of membrane permeability. The effect of PrPTSE on cellular membranes has been modeled in vitro by synthetic peptides that are, however, only partially representative of PrPTSE isoforms found in vivo. In the present work we show that a synthetic membrane exposed to PrP27-30 extracted from TSE-infected hamster brains changes its permeability because of the formation of molecular pores that alter the conductance of the synthetic lipid bilayer. Synthetic membrane challenged with the recombinant prion peptide PrP90-231 shows a much lower conductance. Elevation of calcium ion concentration not only increases the current amplitude due to the action of both PrP27-30 and PrP90-231 on the membrane, but also amplifies the interaction of PrP90-231 with the lipid bilayer.  相似文献   

13.
Transmissible spongiform encephalopathies, including variant-Creutzfeldt-Jakob disease (vCJD) in humans and bovine spongiform encephalopathies in cattle, are fatal neurodegenerative disorders characterized by protein misfolding of the host cellular prion protein (PrPC) to the infectious scrapie form (PrPSc). However, the mechanism that exogenous PrPSc infects cells and where pathologic conversion of PrPC to the PrPSc form occurs remains uncertain. Here we report that similar to the mechanism of HIV-1 TAT-mediated peptide transduction, processed mature, full length PrP contains a conserved N-terminal cationic domain that stimulates cellular uptake by lipid raft-dependent, macropinocytosis. Inhibition of macropinocytosis by three independent means prevented cellular uptake of recombinant PrP; however, it did not affect recombinant PrP cell surface association. In addition, fusion of the cationic N-terminal PrP domain to a Cre recombinase reporter protein was sufficient to promote both cellular uptake and escape from the macropinosomes into the cytoplasm. Inhibition of macropinocytosis was sufficient to prevent conversion of PrPC to the pathologic PrPSc form in N2a cells exposed to strain RML PrPSc infected brain homogenates, suggesting that a critical determinant of PrPC conversion occurs following macropinocytotic internalization and not through mere membrane association. Taken together, these observations provide a cellular mechanism that exogenous pathological PrPSc infects cells by lipid raft dependent, macropinocytosis.  相似文献   

14.
Transmissible spongiform encephalopathies (TSEs) are caused by the accumulation of the abnormal prion protein scrapie (PrPSc). Prion protein aggregation, misfolding, and cytotoxicity in the brain are the major causes of neuronal dysfunction and ultimate neurodegeneration in all TSEs. Parkin, an E3 ubiquitin ligase, has been studied extensively in all major protein misfolding aggregating diseases, especially Parkinson’s disease and Alzheimer’s disease, but the role of parkin in TSEs remains unknown. Here we investigated the role of parkin in a prion disease cell model in which neuroblastoma2a (N2a) cells were treated with prion peptide PrP106–126. We observed a gradual decrease in the soluble parkin level upon treatment with PrP106–126 in a time-dependent manner. Furthermore, endogenous parkin colocalized with FITC-tagged prion fragment106–126. Overexpression of parkin in N2a cells via transfection repressed apoptosis by enhancing autophagy. Parkin-overexpressing cells also showed reductions in apoptotic BAX translocation to the mitochondria and cytochrome c release to the cytosol, which ultimately inhibited activation of proapoptotic caspases. Taken together, our findings reveal a parkin-mediated cytoprotective mechanism against PrP106–126 toxicity, which is a novel potential therapeutic target for treating prion diseases.  相似文献   

15.
The causative agent of prion diseases is the pathological isoform (PrPSc) of the host-encoded cellular prion protein (PrPC). PrPSc has an identical amino acid sequence to PrPC; thus, it has been assumed that an immune response against PrPSc could not be found in prion-affected animals. In this study, we found the anti-prion protein (PrP) antibody at the terminal stage of mouse scrapie. Several sera from mice in the terminal stage of scrapie reacted to the recombinant mouse PrP (rMPrP) molecules and brain homogenates of mouse prion diseases. These results indicate that mouse could recognize PrPC or PrPSc as antigens by the host immune system. Furthermore, immunization with rMPrP generates high titers of anti-PrP antibodies in wild-type mice. Some anti-PrP antibodies immunized with rMPrP prevent PrPSc replication in vitro. The mouse sera from terminal prion disease have several wide epitopes, although mouse sera immunized with rMPrP possess narrow epitopes.  相似文献   

16.
Prion diseases are incurable neurodegenerative disorders in which the normal cellular prion protein (PrPC) converts into a misfolded isoform (PrPSc) with unique biochemical and structural properties that correlate with disease. In humans, prion disorders, such as Creutzfeldt-Jakob disease, present typically with a sporadic origin, where unknown mechanisms lead to the spontaneous misfolding and deposition of wild type PrP. To shed light on how wild-type PrP undergoes conformational changes and which are the cellular components involved in this process, we analyzed the dynamics of wild-type PrP from hamster in transgenic flies. In young flies, PrP demonstrates properties of the benign PrPC; in older flies, PrP misfolds, acquires biochemical and structural properties of PrPSc, and induces spongiform degeneration of brain neurons. Aged flies accumulate insoluble PrP that resists high concentrations of denaturing agents and contains PrPSc-specific conformational epitopes. In contrast to PrPSc from mammals, PrP is proteinase-sensitive in flies. Thus, wild-type PrP rapidly converts in vivo into a neurotoxic, protease-sensitive isoform distinct from prototypical PrPSc. Next, we investigated the role of molecular chaperones in PrP misfolding in vivo. Remarkably, Hsp70 prevents the accumulation of PrPSc-like conformers and protects against PrP-dependent neurodegeneration. This protective activity involves the direct interaction between Hsp70 and PrP, which may occur in active membrane microdomains such as lipid rafts, where we detected Hsp70. These results highlight the ability of wild-type PrP to spontaneously convert in vivo into a protease-sensitive isoform that is neurotoxic, supporting the idea that protease-resistant PrPSc is not required for pathology. Moreover, we identify a new role for Hsp70 in the accumulation of misfolded PrP. Overall, we provide new insight into the mechanisms of spontaneous accumulation of neurotoxic PrP and uncover the potential therapeutic role of Hsp70 in treating these devastating disorders.  相似文献   

17.
《Biophysical journal》2020,118(6):1270-1278
Membrane interactions of amyloidogenic proteins constitute central determinants both in protein aggregation as well as in amyloid cytotoxicity. Most reported studies of amyloid peptide-membrane interactions have employed model membrane systems combined with application of spectroscopy methods or microscopy analysis of individual binding events. Here, we applied for the first time, to our knowledge, imaging flow cytometry for investigating interactions of representative amyloidogenic peptides, namely, the 106–126 fragment of prion protein (PrP(106–126)) and the human islet amyloid polypeptide (hIAPP), with giant lipid vesicles. Imaging flow cytometry was also applied to examine the inhibition of PrP(106–126)-membrane interactions by epigallocatechin gallate, a known modulator of amyloid peptide aggregation. We show that imaging flow cytometry provided comprehensive population-based statistical information upon morphology changes of the vesicles induced by PrP(106–126) and hIAPP. Specifically, the experiments reveal that both PrP(106–126) and hIAPP induced dramatic transformations of the vesicles, specifically disruption of the spherical shapes, reduction of vesicle circularity, lobe formation, and modulation of vesicle compactness. Interesting differences, however, were apparent between the impact of the two peptides upon the model membranes. The morphology analysis also showed that epigallocatechin gallate ameliorated vesicle disruption by PrP(106–126). Overall, this study demonstrates that imaging flow cytometry provides powerful means for disclosing population-based morphological membrane transformations induced by amyloidogenic peptides and their inhibition by aggregation modulators.  相似文献   

18.
The human prion protein (PrP) has five copies of an octapeptide repeat (OR). The mutant PrP with 6-14 OR causes the genetic form of Creutzfeldt-Jakob disease (CJD). To determine the influence of OR on the conversion of PrP, we examined the conversion efficiency of mouse mutant PrP molecules with 1-16 OR in scrapie-infected cells. The expression level of mutant PrP and the glycoform ratio of the abnormal isoform of PrP (PrPSc) were affected by the number of OR. The conversion efficiency was almost equivalent among mutant PrP molecules with 5-16 OR, whereas that of mutant PrP with 1-4 OR was decreased. The present study suggests that CJD patients with the longer extra OR, who usually show only a trace of PrPSc in the brain, can produce the authentic triplet PrPSc if secondary prion infection occurs.  相似文献   

19.
Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC) into scrapie prion protein (PrPSc) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site‐selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.  相似文献   

20.
PrPSc is the only known component of the scrapie prion. The difference between PrPSc and its normal isoform PrPc is probably conformational, since no difference has been found in the amino acid sequence or postranslational modifications between both proteins. Heparan sulfate (HS) has been shown to be a component of amyloid plaques in a number of diseases including the prion diseases. We now present evidence that PrP can specifically bind to heparin-like compounds and that this interaction might have a physiological significance. HS can increase the concentration of PrP in normal neuroblastoma cells, whereas low molecular weight heparin (LMWH) does not. In contrast, LMWH and other heparin-like molecules, excluding HS, can inhibit the synthesis of PrPSc in scrapie infected cells and reverse their phenotype back to normal as judged by measurement of PrPSc by immunoblotting and by infectivity experiments. Whether an interaction between PrP and glycosaminoglycans plays a direct role in the conversion of PrPc into PrPSc remains to be established. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号