首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein synthesis in ribosomes requires two kinds of tRNAs: initiation and elongation. The former initiates the process (formylmethionine tRNA in prokaryotes and special methionine tRNA in eukaryotes). The latter participates in the synthesis proper, recognizing the sense codons. Synthesis is also assisted by special proteins: initiation, elongation, and termination factors. The termination factors are necessary to recognize stop codons (UAG, UGA, and UAA) and to release the complete protein chain from the elongation tRNA preceding a stop codon. No termination tRNA capable of recognizing stop codons by their anticodons is known. The termination factors are thought to do this. In the large ribosomal RNA, we found two sites that, like tRNAs, contain the anticodon hairpin but with triplets complementary to stop codons. One site is hairpin 69 from domain IV; the other site is hairpin 89, domain V. By analogy, we call them termination tRNAs: Ter-tRNA1 and Ter-tRNA2, respectively, even though they transport no amino acids, and suggest that they directly pair to stop codons. The termination factors only aid in this recognition, making it specific and reliable. A strong argument in favor of our hypothesis comes from vertebrate mitochondria. They are known to acquire two new stop codons, AGA and AGG. In the standard code, these are two out of six arginine codons. We revealed that the corresponding anticodons, UCU and CCU, have evolved in Ter-tRNA1 of these mitochondria.  相似文献   

2.
It is well known that protein synthesis in ribosomes on mRNA requires two kinds of tRNAs: initiation and elongation. The former initiates the process (formylmethionine tRNA in prokaryotes and special methionine tRNA in eukaryotes). The latter participates in the synthesis proper, recognizing the sense codons. The synthesis is assisted by special proteins: initiation, elongation, and termination factors. The termination factors are necessary to recognize stop codons (UAG, UGA, and UAA) and to release the complete protein chain from the elongation tRNA preceding a stop codon. No termination tRNA capable of recognizing stop codons by its anticodon is known. The termination factors are thought to do this. We discovered in the large ribosomal RNA two regions that, like tRNAs, contain the anticodon hairpin, but with triplets complementary to stop codons. By analogy, we called them termination tRNAs (Ter-tRNA1 and Ter-tRNA2), though they transport no amino acids, and suggested them to directly recognize stop codons. The termination factors only condition such a recognition, making it specific and reliable (of course, they fulfill the hydrolysis of the ester bond between the polypeptide and tRNA). A strong argument in favor of our hypothesis came from vertebrate mitochondria. They acquired two new stop codons, AGA and AGG (in the standard code, they are two out of six arginine codons). We revealed that the corresponding anticodons appear in Ter-tRNA1.  相似文献   

3.
Ivanov  V. I.  Beniaminov  A. D.  Mikheev  A. N.  Minyat  E. E. 《Molecular Biology》2001,35(4):614-622
It is well known that protein synthesis in ribosomes on mRNA requires two kinds of tRNAs: initiation and elongation. The former initiates the process (formylmethionine tRNA in prokaryotes and special methionine tRNA in eukaryotes). The latter participates in the synthesis proper, recognizing the sense codons. The synthesis is assisted by special proteins: initiation, elongation, and termination factors. The termination factors are necessary to recognize stop codons (UAG, UGA, and UAA) and to release the complete protein chain from the elongation tRNA preceding a stop codon. No termination tRNA capable of recognizing stop codons by its anticodon is known. The termination factors are thought to do this. We discovered in the large ribosomal RNA two regions that, like tRNAs, contain the anticodon hairpin, but with triplets complementary to stop codons. By analogy, we called them termination tRNAs (Ter-tRNA1 and Ter-tRNA2), though they transport no amino acids, and suggested them to directly recognize stop codons. The termination factors only condition such recognition to make it specific and reliable (of course, they fulfill the hydrolysis of the ester bond between the polypeptide and tRNA). A strong argument in favor of our hypothesis came from vertebrate mitochondria. They acquired two new stop codons, AGA and AGG (in the standard code, they are two out of six arginine codons). We revealed that the corresponding anticodons appear in Ter-tRNA1.  相似文献   

4.
5.
To synthesize a protein, a ribosome moves along a messenger RNA (mRNA), reads it codon by codon, and takes up the corresponding ternary complexes which consist of aminoacylated transfer RNAs (aa-tRNAs), elongation factor Tu (EF-Tu), and GTP. During this process of translation elongation, the ribosome proceeds with a codon-specific rate. Here, we present a general theoretical framework to calculate codon-specific elongation rates and error frequencies based on tRNA concentrations and codon usages. Our theory takes three important aspects of in-vivo translation elongation into account. First, non-cognate, near-cognate and cognate ternary complexes compete for the binding sites on the ribosomes. Second, the corresponding binding rates are determined by the concentrations of free ternary complexes, which must be distinguished from the total tRNA concentrations as measured in vivo. Third, for each tRNA species, the difference between total tRNA and ternary complex concentration depends on the codon usages of the corresponding cognate and near-cognate codons. Furthermore, we apply our theory to two alternative pathways for tRNA release from the ribosomal E site and show how the mechanism of tRNA release influences the concentrations of free ternary complexes and thus the codon-specific elongation rates. Using a recently introduced method to determine kinetic rates of in-vivo translation from in-vitro data, we compute elongation rates for all codons in Escherichia coli. We show that for some tRNA species only a few tRNA molecules are part of ternary complexes and, thus, available for the translating ribosomes. In addition, we find that codon-specific elongation rates strongly depend on the overall codon usage in the cell, which could be altered experimentally by overexpression of individual genes.  相似文献   

6.
The nucleotide context surrounding stop codons significantly affects the efficiency of translation termination. In eukaryotes, various 3′ contexts that are unfavorable for translation termination have been described; however, the exact molecular mechanism that mediates their effects remains unknown. In this study, we used a reconstituted mammalian translation system to examine the efficiency of stop codons in different contexts, including several previously described weak 3′ stop codon contexts. We developed an approach to estimate the level of stop codon readthrough in the absence of eukaryotic release factors (eRFs). In this system, the stop codon is recognized by the suppressor or near-cognate tRNAs. We observed that in the absence of eRFs, readthrough occurs in a 3′ nucleotide context-dependent manner, and the main factors determining readthrough efficiency were the type of stop codon and the sequence of the 3′ nucleotides. Moreover, the efficiency of translation termination in weak 3′ contexts was almost equal to that in the tested standard context. Therefore, the ability of eRFs to recognize stop codons and induce peptide release is not affected by mRNA context. We propose that ribosomes or other participants of the elongation cycle can independently recognize certain contexts and increase the readthrough of stop codons. Thus, the efficiency of translation termination is regulated by the 3′ nucleotide context following the stop codon and depends on the concentrations of eRFs and suppressor/near-cognate tRNAs.  相似文献   

7.
Recently we described an unusual programmed +1 frameshift event in yeast retrotransposon Ty3. Frameshifting depends on the presence of peptidyl-tRNA(AlaCGC) on the GCG codon in the ribosomal P site and on a translational pause stimulated by the slowly decoded AGU codon. Frameshifting occurs on the sequence GCG-AGU-U by out-of-frame binding of a valyl-tRNA to GUU without slippage of peptidyl-tRNA(AlaCGC). This mechanism challenges the conventional understanding that frameshift efficiency must correlate with the ability of mRNA-bound tRNA to slip between cognate or near-cognate codons. Though frameshifting does not require slippery tRNAs, it does require special peptidyl-tRNAs. We show that overproducing a second isoacceptor whose anticodon had been changed to CGC eliminated frameshifting; peptidyl-tRNA(AlaCGC) must have a special capacity to induce +1 frameshifting in the adjacent ribosomal A site. In order to identify other special peptidyl-tRNAs, we tested the ability of each of the other 63 codons to replace GCG in the P site. We found no correlation between the ability to stimulate +1 frameshifting and the ability of the cognate tRNA to slip on the mRNA--several codons predicted to slip efficiently do not stimulate frameshifting, while several predicted not to slip do stimulate frameshifting. By inducing a severe translational pause, we identified eight tRNAs capable of inducing measurable +1 frameshifting, only four of which are predicted to slip on the mRNA. We conclude that in Saccharomyces cerevisiae, special peptidyl-tRNAs can induce frameshifting dependent on some characteristic(s) other than the ability to slip on the mRNA.  相似文献   

8.
Decoding with the A:I wobble pair is inefficient.   总被引:11,自引:4,他引:7       下载免费PDF全文
tRNAs with inosine (I) in the first position read three codons ending in U, C and A. However, A-ending codons read with I are rarely used. In Escherichia coli, CGA/U/C are all read solely by tRNAICGArg. CGU and CGC are very common codons, but CGA is very rare. Three independent in vivo assays show that translation of CGA is relatively inefficient. In the first, nine tandem CGA cause a strong rho-mediated polar effect on expression of a lacZ reporter gene. The inhibition is made more extreme by a mutation in ribosomal protein S12 (rpsL), which indicates that ribosomal binding by tRNAICGArg is slow and/or unstable in the CGA cluster. The second assay, in which codons are substituted for the regulatory UGA of the RF2 frameshift, confirms that aa-tRNA selection is slow and/or unstable at CGA. In the third assay, CGA is found to be a poor 5' context for amber suppression, which suggests that an A:I base pair in the P site can interfere with translation of a codon in the A site. Two possible errors, frameshifting and premature termination by RF2, are not significant causes for inefficiency at CGA. It is concluded that the A:I pair destabilizes codon:anticodon complexes during two successive ribosomal cycles, and it is suggested that these properties contribute to the rare usage of codons read with the A:I base pair.  相似文献   

9.
The -1 programmed ribosomal frameshifts (PRF), which are used by many viruses, occur at a heptanucleotide slippery sequence and are currently thought to involve the tRNAs interacting with the ribosomal P- and A-site codons. We investigated here whether the tRNA occupying the ribosomal E site that precedes a slippery site influences -1 PRF. Using the human immunodeficiency virus type 1 (HIV-1) frameshift region, we found that mutating the E-site codon altered the -1 PRF efficiency. When the HIV-1 slippery sequence was replaced with other viral slippery sequences, mutating the E-site codon also altered the -1 PRF efficiency. Because HIV-1 -1 PRF can be recapitulated in bacteria, we used a bacterial ribosome system to select, by random mutagenesis, 16S ribosomal RNA (rRNA) mutations that modify the expression of a reporter requiring HIV-1 -1 PRF. Three mutants were isolated, which are located in helices 21 and 22 of 16S rRNA, a region involved in translocation and E-site tRNA binding. We propose a novel model where -1 PRF is triggered by an incomplete translocation and depends not only on the tRNAs interacting with the P- and A-site codons, but also on the tRNA occupying the E site.  相似文献   

10.
We present a model for calculating the protein production rate as a function of the translation rate. The model takes into account that the elongation rate along an mRNA molecule is non-uniform as a result of different tRNA availabilities for different codons. Initiation of ribosomes on an mRNA is normally the rate-limiting step in the translation process, and blocking of the initiation site can be avoided if the codons closest to this site allow fast translation by the ribosome. Hence, different selective forces may act on the choice of synonymous codons in the initiation region than elsewhere on a given mRNA. We show that the elongation rate along the whole mRNA influences the production rate of abundant proteins, whereas only the elongation rate in the initiation region is of importance for the production rate of rare proteins. We also present an analysis of the codon distribution along known mRNAs coding for abundant and rare proteins.  相似文献   

11.
Translational release factors decipher stop codons in mRNA and activate hydrolysis of peptidyl-tRNA in the ribosome during translation termination. The mechanisms of these fundamental processes are unknown. Here we have mapped the interaction of bacterial release factor RF1 with the ribosome by directed hydroxyl radical probing. These experiments identified conserved domains of RF1 that interact with the decoding site of the 30S ribosomal subunit and the peptidyl transferase site of the 50S ribosomal subunit. RF1 interacts with a binding pocket formed between the ribosomal subunits that is also the interaction surface of elongation factor EF-G and aminoacyl-tRNA bound to the A site. These results provide a basis for understanding the mechanism of stop codon recognition coupled to hydrolysis of peptidyl-tRNA, mediated by a protein release factor.  相似文献   

12.
Stabilization of the ribosomal complexes plays an important role in translational control. Mechanisms of ribosome stabilization have been studied in detail for initiation and elongation of eukaryotic translation, but almost nothing is known about stabilization of eukaryotic termination ribosomal complexes. Here, we present one of the mechanisms of fine-tuning of the translation termination process in eukaryotes. We show that certain deacylated tRNAs, remaining in the E site of the ribosome at the end of the elongation cycle, increase the stability of the termination and posttermination complexes. Moreover, only the part of eRF1 recognizing the stop codon is stabilized in the A site of the ribosome, and the stabilization is not dependent on the hydrolysis of peptidyl-tRNA. The determinants, defining this property of the tRNA, reside in the acceptor stem. It was demonstrated by site-directed mutagenesis of tRNAVal and construction of a mini-helix structure identical to the acceptor stem of tRNA. The mechanism of this stabilization is different from the fixation of the unrotated state of the ribosome by CCA end of tRNA or by cycloheximide in the E site. Our data allow to reveal the possible functions of the isodecoder tRNAs in eukaryotes.  相似文献   

13.
Eukaryote ribosomal translation is terminated when release factor eRF1, in a complex with eRF3, binds to one of the three stop codons. The tertiary structure and dimensions of eRF1 are similar to that of a tRNA, supporting the hypothesis that release factors may act as molecular mimics of tRNAs. To identify the yeast eRF1 stop codon recognition domain (analogous to a tRNA anticodon), a genetic screen was performed to select for mutants with disabled recognition of only one of the three stop codons. Nine out of ten mutations isolated map to conserved residues within the eRF1 N-terminal domain 1. A subset of these mutants, although wild-type for ribosome and eRF3 interaction, differ in their respective abilities to recognize each of the three stop codons, indicating codon-specific discrimination defects. Five of six of these stop codon-specific mutants define yeast domain 1 residues (I32, M48, V68, L123, and H129) that locate at three pockets on the eRF1 domain 1 molecular surface into which a stop codon can be modeled. The genetic screen results and the mutant phenotypes are therefore consistent with a role for domain 1 in stop codon recognition; the topology of this eRF1 domain, together with eRF1-stop codon complex modeling further supports the proposal that this domain may represent the site of stop codon binding itself.  相似文献   

14.
Codon pairs in the genome of Escherichia coli   总被引:9,自引:0,他引:9  
MOTIVATION: The effect of two neighboring codons (codon pairs) on gene expression is mediated via the interaction of their cognate tRNAs occupying the two functional ribosomal sites during the translation elongation step. For steric reasons it is reasonable to assume that not all combinations of codons and therefore of tRNAs are equally favorable when situated on the ribosome surface. Aiming of identifying preferential and rare codon pairs, we have determined the frequency of occurrence of all possible combinations of codon pairs in the entire genome of Escherichia coli (E.coli). RESULTS: The frequency of occurrence of the 3904 codon pairs comprising both sense:sense and sense:stop codon pairs in the full set of E.coli 4289 ORFs was found to vary from zero to 4913 times. For most of the pairs we have observed a significant difference between the real and statistically predicted frequency of occurrence. The analysis of 334 highly expressed and 303 poorly expressed E.coli genes showed that codon pair usage is different for the two gene categories. Using an especially defined criterion (Delta(REG)), the codon pairs are classified as 'hypothetically attenuating' (HAP) and 'hypothetically non-attenuating' (HNAP) and their possible effect on translation is discussed. AVAILABILITY: The program used in this study is available at http://www.bio21.bas.bg/codonpairs/  相似文献   

15.
The Taura syndrome virus (TSV), a member of the Dicistroviridae family of viruses, is a single-stranded positive-sense RNA virus which contains two nonoverlapping reading frames separated by a 230-nucleotide intergenic region. This intergenic region contains an internal ribosome entry site (IRES) which directs the synthesis of the TSV capsid proteins. Unlike other dicistroviruses, the TSV IRES contains an AUG codon that is in frame with the capsid region, suggesting that the IRES initiates translation at this AUG codon by using initiator tRNAmet. We show here that the TSV IRES does not use this or any other AUG codon to initiate translation. Like the IRES in cricket paralysis virus (CrPV), the TSV IRES can assemble 80S ribosomes in the absence of initiation factors and can direct protein synthesis in a reconstituted system that contains only purified ribosomal subunits, eukaryotic elongation factors 1A and 2, and aminoacylated tRNAs. The functional conservation of the CrPV-like IRES elements in viruses that can infect different invertebrate hosts suggests that initiation at non-AUG codons by an initiation factor-independent mechanism may be more prevalent.  相似文献   

16.
The precise mechanism of stop codon recognition in translation termination is still unclear. A previously published study by Ivanov and colleagues proposed a new model for stop codon recognition in which 3-nucleotide Ter-anticodons within the loops of hairpin helices 69 (domain IV) and 89 (domain V) in large ribosomal subunit (LSU) rRNA recognize stop codons to terminate protein translation in eubacteria and certain organelles. We evaluated this model by extensive bioinformatic analysis of stop codons and their putative corresponding Ter-anticodons across a much wider range of species, and found many cases for which it cannot explain the stop codon usage without requiring the involvement of one or more of the eight possible noncomplementary base pairs. Involvement of such base pairs may not be structurally or thermodynamically damaging to the model. However, if, according to the model, Ter-anticodon interaction with stop codons occurs within the ribosomal A-site, the structural stringency which that site imposes on sense codon.tRNA anticodon interaction should also extend to stop codon.Ter-anticodon interactions. Moreover, with Ter-tRNA in place of an aminoacyl-tRNA, for each of the various Ter-anticodons there is a sense codon that can interact with it preferentially by complementary and wobble base-pairing. Both these considerations considerably weaken the arguments put forth previously.  相似文献   

17.
The translation machinery recognizes codons that enter the ribosomal A site with remarkable accuracy to ensure that polypeptide synthesis proceeds with a minimum of errors. When a termination codon enters the A site of a eukaryotic ribosome, it is recognized by the release factor eRF1. It has been suggested that the recognition of translation termination signals in these organisms is not limited to a simple trinucleotide codon, but is instead recognized by an extended tetranucleotide termination signal comprised of the stop codon and the first nucleotide that follows. Interestingly, pharmacological agents such as aminoglycoside antibiotics can reduce the efficiency of translation termination by a mechanism that alters this ribosomal proofreading process. This leads to the misincorporation of an amino acid through the pairing of a near-cognate aminoacyl tRNA with the stop codon. To determine whether the sequence context surrounding a stop codon can influence aminoglycoside-mediated suppression of translation termination signals, we developed a series of readthrough constructs that contained different tetranucleotide termination signals, as well as differences in the three bases upstream and downstream of the stop codon. Our results demonstrate that the sequences surrounding a stop codon can play an important role in determining its susceptibility to suppression by aminoglycosides. Furthermore, these distal sequences were found to influence the level of suppression in remarkably distinct ways. These results suggest that the mRNA context influences the suppression of stop codons in response to subtle differences in the conformation of the ribosomal decoding site that result from aminoglycoside binding.  相似文献   

18.
Sarah E. Kolitz 《FEBS letters》2010,584(2):396-203
The initiator tRNA must serve functions distinct from those of other tRNAs, evading binding to elongation factors and instead binding directly to the ribosomal P site with the aid of initiation factors. It plays a key role in decoding the start codon, setting the frame for translation of the mRNA. Sequence elements and modifications of the initiator tRNA distinguish it from the elongator methionyl tRNA and help it to perform its varied tasks. These identity elements appear to finely tune the structure of the initiator tRNA, and growing evidence suggests that the body of the tRNA is involved in transmitting the signal that the start codon has been found to the rest of the pre-initiation complex.  相似文献   

19.
Estradiol (E2) induces an increase in the peptide elongation rate of isolated uterine ribosomes assayed in a cell-free protein synthesis system. An inhibitory factor, extracted from ribosomes of E2-deprived rats, was found to inhibit the peptide elongation reaction by acting on certain tRNAs to render them incapable of binding to aminoacyl-tRNA synthetases, thus reducing the availability of specific aminoacylated tRNAs required for the sequential translation of the codons in mRNA. The uterine ribosome-associated tRNA inactivator (RATI) has been partially purified and monoclonal antibodies (MABs) to RATI have been prepared. Specificity of the MABs for RATI was indicated by the inactivation of RATI in vitro by the anti-RATI MABs. RATI selectively inactivates deacylated, but not acylated, tRNAs and the inactivation does not appear to involve nuclease cleavage of the tRNA. Within 1 h after E2 treatment 50% of both RATI activity and immunoreactivity were lost from the uterine ribosome extracts, suggesting that E2 regulation of tRNA reutilization may occur through dissociation of RATI from the ribosomal site of tRNA deacylation or alteration in the structure of RATI resulting in inactivation both biologically and immunologically. We propose that RATI may function as an E2-regulatable 'switch' mechanism which inactivates, delays or defers the aminoacylation of certain tRNAs in the absence of E2 and which participates in the regulation of protein synthesis at the translational level by creating rate-limiting levels of certain tRNAs in the E2-deprived uterus.  相似文献   

20.
Termination of protein synthesis (hydrolysis of the last peptidyl-tRNA on the ribosome) takes place when the ribosomal A site is occupied simultaneously by one of the three stop codons and by a class-1 translation termination factor. The existing procedures to measure the functional activity of this factor both in vitro and in vivo have serious drawbacks, the main of which are artificial conditions for in vitro assays, far from those in the cell, and indirect evaluation of activity in in vivo systems. A simple reliable and sensitive system to measure the functional activity of class-1 translation termination factors could considerably expedite the study of the terminal steps of protein synthesis, at present remaining poorly known, especially in eukaryotes. We suggest a novel system to test the functional activity in vitro using native functionally active mRNA, rather than tri-, tetra-, or oligonucleotides as before. This mRNA is specially designed to contain one of the three terminating (stop) codons within the coding nucleotide sequence. Plasmids have been generated that carry the genes of suppressor tRNAs each of which is specific toward one of the three stop codons. They were shown to support normal synthesis of a reporter protein, luciferase, by reading through the stop codon within the coding mRNA sequence. We have demonstrated that human class-1 translation termination factor eRF1 is able to compete with suppressor tRNA for a stop codon and to completely prevent its suppressive effect at a sufficient concentration. Forms of eRF1 with point mutations in functionally essential regions have lower competitive ability, demonstrating the sensitivity of the method to the eRF1 structure. The enzymatic reaction catalyzed by the full-size reporter protein is accompanied by emission of light quanta. Therefore, competition between suppressor tRNA and eRF1 can be measured using a luminometer, and this allows precise kinetic measurements in a continuous automatic mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号