共查询到20条相似文献,搜索用时 15 毫秒
1.
Sun S Yin G Lee YK Wong JT Zhang TY 《Biochemical and biophysical research communications》2011,(2):684-688
Effects of mechanical properties and thermal motion of POPE lipid membrane on electroporation were studied by molecular dynamics simulations. Among simulations in which specific atoms of lipids were artificially constrained at their equilibrium positions using a spring with force constant of 2.0 kcal/(mol Å2) in the external electric field of 1.4 kcal/(mol Å e), only constraint on lateral motions of lipid tails prohibited electroporation while non-tail parts had little effects. When force constant decreased to 0.2 kcal/(mol Å2) in the position constraints on lipid tails in the external electric field of 2.0 kcal/(mol Å e), water molecules began to enter the membrane. Position constraints of lipid tails allow water to penetrate from both sides of membrane. Thermal motion of lipids can induce initial defects in the hydrophobic core of membrane, which are favorable nucleation sites for electroporation. Simulations at different temperatures revealed that as the temperature increases, the time taken to the initial pore formation will decrease. 相似文献
2.
《生物化学与生物物理学报:生物膜》2015,1848(9):1783-1795
The plasma membrane, which encapsulates human cells, is composed of a complex mixture of lipids and embedded proteins. Emerging knowledge points towards the lipids as having a regulating role in protein function. Furthermore, insight from protein crystallography has revealed several different types of lipids intimately bound to membrane proteins and peptides, hereby possibly pointing to a site of action for the observed regulation. Cholesterol is among the lipid membrane constituents most often observed to be co-crystallized with membrane proteins, and the cholesterol levels in cell membranes have been found to play an essential role in health and disease. Remarkably little is known about the mechanism of lipid regulation of membrane protein function in health as well as in disease. Herein, we review molecular dynamics simulation studies aimed at investigating the effect of cholesterol on membrane protein and peptide properties. This article is part of a Special Issue entitled: Lipid–protein interactions. 相似文献
3.
Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. 总被引:1,自引:2,他引:1
下载免费PDF全文

To test the hypothesis that water pores in a lipid membrane mediate the proton transport, molecular dynamic simulations of a phospholipid membrane, in which the formation of a water pore is induced, are reported. The probability density of such a pore in the membrane was obtained from the free energy of formation of the pore, which was computed from the average force needed to constrain the pore in the membrane. It was found that the free energy of a single file of water molecules spanning the bilayer is 108(+/-10) kJ/mol. From unconstrained molecular dynamic simulations it was further deduced that the nature of the pore is very transient, with a mean lifetime of a few picoseconds. The orientations of water molecules within the pore were also studied, and the spontaneous translocation of a turning defect was observed. The combined data allowed a permeability coefficient for proton permeation across the membrane to be computed, assuming that a suitable orientation of the water molecules in the pore allows protons to permeate the membrane relatively fast by means of a wirelike conductance mechanism. The computed value fits the experimental data only if it is assumed that the entry of the proton into the pore is not rate limiting. 相似文献
4.
Flexibility of ras lipid modifications studied by 2H solid-state NMR and molecular dynamics simulations
下载免费PDF全文

Human posttranslationally modified N-ras oncogenes are known to be implicated in numerous human cancers. Here, we applied a combination of experimental and computational techniques to determine structural and dynamical details of the lipid chain modifications of an N-ras heptapeptide in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membranes. Experimentally, 2H NMR spectroscopy was used to study oriented membranes that incorporated ras heptapeptides with two covalently attached perdeuterated hexadecyl chains. Atomistic molecular dynamics simulations of the same system were carried out over 100 ns including 60 DMPC and 4 ras molecules. Several structural and dynamical experimental parameters could be directly compared to the simulation. Experimental and simulated 2H NMR order parameters for the methylene groups of the ras lipid chains exhibited a systematic difference attributable to the absence of collective motions in the simulation and to geometrical effects. In contrast, experimental 2H NMR spin-lattice relaxation rates for Zeeman order were well reproduced in the simulation. The lack of slower collective motions in the simulation did not appreciably influence the relaxation rates at a Larmor frequency of 115.1 MHz. The experimental angular dependence of the 2H NMR relaxation rates with respect to the external magnetic field was also relatively well simulated. These relaxation rates showed a weak angular dependence, suggesting that the lipid modifications of ras are very flexible and highly mobile in agreement with the low order parameters. To quantify these results, the angular dependence of the 2H relaxation rates was calculated by an analytical model considering both molecular and collective motions. Peptide dynamics in the membrane could be modeled by an anisotropic diffusion tensor with principal values of Dparallel=2.1x10(9) s(-1) and Dperpendicular=4.5x10(5) s(-1). A viscoelastic fitting parameter describing the membrane elasticity, viscosity, and temperature was found to be relatively similar for the ras peptide and the DMPC host matrix. Large motional amplitudes and relatively short correlation times facilitate mixing and dispersal with the lipid bilayer matrix, with implications for the role of the full-length ras protein in signal transduction and oncogenesis. 相似文献
5.
Experimental and computational studies have indicated that hydrophobicity plays a key role in driving the insertion of transmembrane alpha-helices into lipid bilayers. Molecular dynamics simulations allow exploration of the nature of the interactions of transmembrane alpha-helices with their lipid bilayer environment. In particular, coarse-grained simulations have considerable potential for studying many aspects of membrane proteins, ranging from their self-assembly to the relation between their structure and function. However, there is a need to evaluate the accuracy of coarse-grained estimates of the energetics of transmembrane helix insertion. Here, three levels of complexity of model system have been explored to enable such an evaluation. First, calculated free energies of partitioning of amino acid side chains between water and alkane yielded an excellent correlation with experiment. Second, free energy profiles for transfer of amino acid side chains along the normal to a phosphatidylcholine bilayer were in good agreement with experimental and atomistic simulation studies. Third, estimation of the free energy profile for transfer of an arginine residue, embedded within a hydrophobic alpha-helix, to the center of a lipid bilayer gave a barrier of approximately 15 kT. Hence, there is a substantial barrier to membrane insertion for charged amino acids, but the coarse-grained model still underestimates the corresponding free energy estimate (approximately 29 kT) from atomistic simulations (Dorairaj, S., and Allen, T. W. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 4943-4948). Coarse-grained simulations were then used to predict the free energy profile for transfer of a simple model transmembrane alpha-helix (WALP23) across a lipid bilayer. The results indicated that a transmembrane orientation was favored by about -70 kT. 相似文献
6.
Dissolution of many plant viruses is thought to start with swelling of the capsid caused by calcium removal following infection, but no high-resolution structures of swollen capsids exist. Here we have used microsecond all-atom molecular simulations to describe the dynamics of the capsid of satellite tobacco necrosis virus with and without the 92 structural calcium ions. The capsid expanded 2.5% upon removal of the calcium, in good agreement with experimental estimates. The water permeability of the native capsid was similar to that of a phospholipid membrane, but the permeability increased 10-fold after removing the calcium, predominantly between the 2-fold and 3-fold related subunits. The two calcium binding sites close to the icosahedral 3-fold symmetry axis were pivotal in the expansion and capsid-opening process, while the binding site on the 5-fold axis changed little structurally. These findings suggest that the dissociation of the capsid is initiated at the 3-fold axis. 相似文献
7.
Ribonucleotide reductase (RNR) is necessary for production of the precursor deoxyribonucleotides for DNA synthesis. Class Ia RNR functions via a stable free radical in one of the two components protein R2. The enzyme mechanism involves long range (proton coupled) electron transfer between protein R1 and the tyrosyl radical in protein R2. Earlier experimental studies showed that p-alkoxyphenols inhibit RNR. Here, molecular docking and molecular dynamics simulations involving protein R2 suggest an inhibition mechanism for p-alkoxyphenols . A low energy binding pocket is identified in protein R2. The preferred configuration provides a structural basis explaining their specific binding to the Escherichia coli and mouse R2 proteins. Trp48 (E. coli numbering), on the electron transfer pathway, is involved in the interactions with the inhibitors. The relative order of the binding energies calculated for the phenol derivatives to protein R2 is correlated with earlier experimental data on inhibition efficiency, in turn related to increasing size of the hydrophobic alkyl substituents. Using the configuration identified by molecular docking as a starting point for molecular dynamics simulations, we find that the p-allyloxyphenol interrupts the catalytic electron transfer pathway of the R2 protein by forming hydrogen bonds with Trp48 and Asp237, thus explaining the inhibitory activity of p-alkoxyphenols. 相似文献
8.
DNA condensation by TmHU studied by optical tweezers,AFM and molecular dynamics simulations 总被引:1,自引:0,他引:1
Wagner C Olbrich C Brutzer H Salomo M Kleinekathöfer U Keyser UF Kremer F 《Journal of biological physics》2011,37(1):117-131
The compaction of DNA by the HU protein from Thermotoga maritima (TmHU) is analysed on a single-molecule level by the usage of an optical tweezers-assisted force clamp. The condensation
reaction is investigated at forces between 2 and 40 pN applied to the ends of the DNA as well as in dependence on the TmHU
concentration. At 2 and 5 pN, the DNA compaction down to 30% of the initial end-to-end distance takes place in two regimes.
Increasing the force changes the progression of the reaction until almost nothing is observed at 40 pN. Based on the results
of steered molecular dynamics simulations, the first regime of the length reduction is assigned to a primary level of DNA
compaction by TmHU. The second one is supposed to correspond to the formation of higher levels of structural organisation.
These findings are supported by results obtained by atomic force microscopy. 相似文献
9.
Membrane protein function and stability has been shown to be dependent on the lipid environment. Recently, we developed a high-throughput computational approach for the prediction of membrane protein/lipid interactions. In the current study, we enhanced this approach with the addition of a new measure of the distortion caused by membrane proteins on a lipid bilayer. This is illustrated by considering the effect of lipid tail length and headgroup charge on the distortion caused by the integral membrane proteins MscS and FLAP, and by the voltage sensing domain from the channel KvAP. Changing the chain length of lipids alters the extent but not the pattern of distortion caused by MscS and FLAP; lipid headgroups distort in order to interact with very similar but not identical regions in these proteins for all bilayer widths investigated. Introducing anionic lipids into a DPPC bilayer containing the KvAP voltage sensor does not affect the extent of bilayer distortion. 相似文献
10.
Fast lipid disorientation at the onset of membrane fusion revealed by molecular dynamics simulations.
下载免费PDF全文

S Ohta-Iino M Pasenkiewicz-Gierula Y Takaoka H Miyagawa K Kitamura A Kusumi 《Biophysical journal》2001,81(1):217-224
Membrane fusion is a key event in vesicular trafficking in every cell, and many fusion-related proteins have been identified. However, how the actual fusion event occurs has not been elucidated. By using molecular dynamics simulations we found that when even a small region of two membranes is closely apposed such that only a limited number of water molecules remain in the apposed area (e.g., by a fusogenic protein and thermal membrane fluctuations), dramatic lipid disorientation results within 100 ps-2 ns, which might initiate membrane fusion. Up to 12% of phospholipid molecules in the apposing layers had their alkyl chains outside the hydrophobic region, lying almost parallel to the membrane surface or protruding out of the bilayer by 2 ns after two membranes were closely apposed. 相似文献
11.
Membrane protein function and stability has been shown to be dependent on the lipid environment. Recently, we developed a high-throughput computational approach for the prediction of membrane protein/lipid interactions. In the current study, we enhanced this approach with the addition of a new measure of the distortion caused by membrane proteins on a lipid bilayer. This is illustrated by considering the effect of lipid tail length and headgroup charge on the distortion caused by the integral membrane proteins MscS and FLAP, and by the voltage sensing domain from the channel KvAP. Changing the chain length of lipids alters the extent but not the pattern of distortion caused by MscS and FLAP; lipid headgroups distort in order to interact with very similar but not identical regions in these proteins for all bilayer widths investigated. Introducing anionic lipids into a DPPC bilayer containing the KvAP voltage sensor does not affect the extent of bilayer distortion. 相似文献
12.
13.
Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein–DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein–DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids. 相似文献
14.
Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations
下载免费PDF全文

The conversion of mechanical stress into a biochemical signal in a muscle cell requires a force sensor. Titin kinase, the catalytic domain of the elastic muscle protein titin, has been suggested as a candidate. Its activation requires major conformational changes resulting in the exposure of its active site. Here, force-probe molecular dynamics simulations were used to obtain insight into the tension-induced activation mechanism. We find evidence for a sequential mechanically induced opening of the catalytic site without complete domain unfolding. Our results suggest the rupture of two terminal beta-sheets as the primary unfolding steps. The low force resistance of the C-terminal relative to the N-terminal beta-sheet is attributed to their different geometry. A subsequent rearrangement of the autoinhibitory tail is seen to lead to the exposure of the active site, as is required for titin kinase activity. These results support the hypothesis of titin kinase as a force sensor. 相似文献
15.
《Molecular membrane biology》2013,30(5-6):338-345
AbstractTransmembrane translocation of C60 fullerenes functionalized by the single amino-derivative in neutral and charged forms was studies by extensive all-atom molecular dynamics simulations. It is shown that these complexes exhibit very strong affinity to the membrane core, but their spontaneous translocation through the membrane is not possible at practical time scale. In contrast, free amino derivatives translocate through the membrane much easier than their complexes with fullerenes, but do not have pronounced affinity to the membrane interior. Our results suggest that monofunctionalized C60 could be extremely efficient membrane targeting agents, which facilitate accumulation of the water-soluble compounds in the hydrophobic core of lipid bilayer. 相似文献
16.
Binding and interactions of L-BABP to lipid membranes studied by molecular dynamic simulations 总被引:1,自引:0,他引:1
Chicken liver bile acid-binding protein (L-BABP) is a member of the fatty acid-binding proteins super family. The common fold is a beta-barrel of ten strands capped with a short helix-loop-helix motif called portal region, which is involved in the uptake and release of non-polar ligands. Using multiple-run molecular dynamics simulations we studied the interactions of L-BABP with lipid membranes of anionic and zwitterionic phospholipids. The simulations were in agreement with our experimental observations regarding the electrostatic nature of the binding and the conformational changes of the protein in the membrane. We observed that L-BABP migrated from the initial position in the aqueous bulk phase to the interface of anionic lipid membranes and established contacts with the head groups of phospholipids through the side of the barrel that is opposite to the portal region. The conformational changes in the protein occurred simultaneously with the binding to the membrane. Remarkably, these conformational changes were observed in the portal region which is opposite to the zone where the protein binds directly to the lipids. The protein was oriented with its macrodipole aligned in the configuration of lowest energy within the electric field of the anionic membrane, which indicates the importance of the electrostatic interactions to determine the preferred orientation of the protein. We also identified this electric field as the driving force for the conformational change. For all the members of the fatty acid-binding protein family, the interactions with lipid membranes is a relevant process closely related to the uptake, release and transfer of the ligand. The observations presented here suggest that the ligand transfer might not necessarily occur through the domain that directly interacts with the lipid membrane. The interactions with the membrane electric field that determine orientation and conformational changes described here can also be relevant for other peripheral proteins. 相似文献
17.
Chicken liver bile acid-binding protein (L-BABP) is a member of the fatty acid-binding proteins super family. The common fold is a β-barrel of ten strands capped with a short helix-loop-helix motif called portal region, which is involved in the uptake and release of non-polar ligands. Using multiple-run molecular dynamics simulations we studied the interactions of L-BABP with lipid membranes of anionic and zwitterionic phospholipids. The simulations were in agreement with our experimental observations regarding the electrostatic nature of the binding and the conformational changes of the protein in the membrane. We observed that L-BABP migrated from the initial position in the aqueous bulk phase to the interface of anionic lipid membranes and established contacts with the head groups of phospholipids through the side of the barrel that is opposite to the portal region. The conformational changes in the protein occurred simultaneously with the binding to the membrane. Remarkably, these conformational changes were observed in the portal region which is opposite to the zone where the protein binds directly to the lipids. The protein was oriented with its macrodipole aligned in the configuration of lowest energy within the electric field of the anionic membrane, which indicates the importance of the electrostatic interactions to determine the preferred orientation of the protein. We also identified this electric field as the driving force for the conformational change. For all the members of the fatty acid-binding protein family, the interactions with lipid membranes is a relevant process closely related to the uptake, release and transfer of the ligand. The observations presented here suggest that the ligand transfer might not necessarily occur through the domain that directly interacts with the lipid membrane. The interactions with the membrane electric field that determine orientation and conformational changes described here can also be relevant for other peripheral proteins. 相似文献
18.
Yoda T Saito M Arai M Horii K Tsumoto K Matsushima M Kumagai I Kuwajima K 《Proteins》2001,42(1):49-65
Folding reaction of goat alpha-lactalbumin has been studied by stopped-flow circular dichroism and molecular dynamics simulations. The effects of four single mutations and a double mutation on the stability of the protein under a native condition were studied. The mutations were introduced into residues located at a hydrophobic core in the alpha-domain of the molecule. Here we show that an amino acid substitution (T29I) increases the native-state stability of goat alpha-lactalbumin against the guanidine hydrochloride-induced unfolding by 3.5 kcal/mol. Kinetic refolding and unfolding of wild-type and mutant goat alpha-lactalbumin measured by stopped-flow circular dichroism showed that the local structure around the Thr29 side chain was not constructed in the transition state of the folding reaction. To characterize the local structural change around the Thr29 side chain to an atomic level of resolution, we performed high-temperature (at 400 K and 600 K) molecular dynamics simulations and studied the structural change at an initial stage of unfolding observed in the simulation trajectories. The Thr29 portion of the molecule experienced structural disruption accompanied with the loss of inter-residue contacts and with the water molecule penetration in the 400-K simulation as well as in four of the six 600-K simulations. Disruption of the N-terminal portion was also observed and was consistent with the results of kinetic refolding/unfolding experiments shown in our previous report. 相似文献
19.
The base pair hybridization of a DNA segment was studied using molecular dynamics simulation. The results show the obvious correlation between the probability of successful hybridization and the accessible surface area to water of two successive base pairs, including the unpaired base pair adjacent to paired base pair and this adjacent paired base pair. Importantly, two metastable structures in an A-T base pair were discovered by the analysis of the free energy landscape. Both structures involved addition of a water molecule to the linkage between the two nucleobases in one base pair. The existence of the metastable structures provide potential barriers to the Watson-Crick base pair, and numerical simulations show that those potential barriers can be surmounted by thermal fluctuations at higher temperatures. These studies contribute an important step toward the understanding of the mechanism in DNA hybridization, particularly the effect of temperature on DNA hybridization and polymerase chain reaction. These observations are expected to be helpful for facilitating experimental bio/nanotechnology designs involving fast hybridization. 相似文献
20.
A method is proposed to measure the water permeability of membrane channels by means of molecular dynamics simulations. By applying a constant force to the bulk water molecules and a counter force on the complementary system, a hydrostatic pressure difference across the membrane can be established, producing a net directional water flow. The hydraulic or osmotic permeability can then be determined by the ratio of the water flux and the pressure difference. The method is applied and tested on an aquaglyceroporin channel through a series of simulations totaling 5 ns in duration. 相似文献