首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoconversion of phytochrome (phytochrome A from Avena satina) from the inactive (Pr) to the physiologically active form (Pfr) was studied by near-infrared Fourier transform resonance Raman spectroscopy at cryogenic temperatures, which allow us to trap the intermediate states. Nondeuterated and deuterated buffer solutions were used to determine the effect of H/D exchange on the resonance Raman spectra. For the first time, reliable spectra of the "bleached" intermediates meta-R(A) and meta-R(C) were obtained. The vibrational bands in the region 1300-1700 cm(-)(1), which is particularly indicative of structural changes in tetrapyrroles, were assigned on the basis of recent calculations of the Raman spectra of the chromophore in C-phycocyanin and model compounds [Kneip, C., Hildebrandt, P., Németh, K., Mark, F., Schaffner, K. (1999) Chem. Phys. Lett. 311, 479-485]. The experimental resonance Raman spectra Pr are compatible with the Raman spectra calculated for the protonated ZZZasa configuration, which hence is suggested to be the chromophore structure in this parent state of phytochrome. Furthermore, marker bands could be identified that are of high diagnostic value for monitoring structural changes in individual parts of the chromophore. Specifically, it could be shown that not only in the parent states Pr and Pfr but also in all intermediates the chromophore is protonated at the pyrroleninic nitrogen. The spectral changes observed for lumi-R confirm the view that the photoreaction of Pr is a Z --> E isomerization of the CD methine bridge. The subsequent thermal decay reaction to meta-R(A) includes relaxations of the CD methine bridge double bond, whereas the formation of meta-R(C) is accompanied by structural adaptations of the pyrrole rings B and C in the protein pocket. The far-reaching similarities between the chromophores of meta-R(A) and Pfr suggest that in the step meta-R(A) --> Pfr the ultimate structural changes of the protein matrix occur.  相似文献   

2.
Resonance Raman analysis of the Pr and Pfr forms of phytochrome   总被引:4,自引:0,他引:4  
S P Fodor  J C Lagarias  R A Mathies 《Biochemistry》1990,29(50):11141-11146
Resonance Raman vibrational spectra of the Pr and Pfr forms of oat phytochrome have been obtained at room temperature. When Pr is converted to Pfr, new bands appear in the C = C and C = N stretching region at 1622, 1599, and 1552 cm-1, indicating that a major structural change of the chromophore has occurred. The Pr to Pfr conversion results in an 11 cm-1 lowering of the N-H rocking band from 1323 to 1312 cm-1. Normal mode calculations correlate this frequency drop with a Z----E isomerization about the C15 = C16 bond. A line at 803 cm-1 in Pr is replaced by an unusually intense mode at 814 cm-1 in Pfr. Calculations on model tetrapyrrole chromophores suggest that these low-wavenumber modes are hydrogen out-of-plane (HOOP) wagging vibrations of the bridging C15 methine hydrogen and that both the intensity and frequency of the C15 HOOP mode are sensitive to the geometry around the C14-C15 and C15 = C16 bonds. The large intensity of the 814-cm-1 mode in Pfr indicates that the chromophore is highly distorted from planarity around the C15 methine bridge. If the Pr----Pfr conversion does involve a C15 = C16 Z----E isomerization, then the intensity of the C15 HOOP mode in Pfr argues that the chromophore has an E,anti conformation. On the basis of a comparison with the vibrational calculations, the low frequency (803 cm-1) and the reduced intensity of the C15 HOOP mode in Pr suggest that the chromophore in Pr adopts the C15-Z,syn conformation.  相似文献   

3.
Phytochromes act as photoswitches between the red- and far-red absorbing parent states of phytochromes (Pr and Pfr). Plant phytochromes display an additional thermal conversion route from the physiologically active Pfr to Pr. The same reaction pattern is found in prototypical biliverdin-binding bacteriophytochromes in contrast to the reverse thermal transformation in bathy bacteriophytochromes. However, the molecular origin of the different thermal stabilities of the Pfr states in prototypical and bathy bacteriophytochromes is not known. We analyzed the structures of the chromophore binding pockets in the Pfr states of various bathy and prototypical biliverdin-binding phytochromes using a combined spectroscopic-theoretical approach. For the Pfr state of the bathy phytochrome from Pseudomonas aeruginosa, the very good agreement between calculated and experimental Raman spectra of the biliverdin cofactor is in line with important conclusions of previous crystallographic analyses, particularly the ZZEssa configuration of the chromophore and its mode of covalent attachment to the protein. The highly homogeneous chromophore conformation seems to be a unique property of the Pfr states of bathy phytochromes. This is in sharp contrast to the Pfr states of prototypical phytochromes that display conformational equilibria between two sub-states exhibiting small structural differences at the terminal methine bridges A-B and C-D. These differences may mainly root in the interactions of the cofactor with the highly conserved Asp-194 that occur via its carboxylate function in bathy phytochromes. The weaker interactions via the carbonyl function in prototypical phytochromes may lead to a higher structural flexibility of the chromophore pocket opening a reaction channel for the thermal (ZZEZZZ) Pfr to Pr back-conversion.  相似文献   

4.
The resonance Raman spectra of the Pr state of the N-terminal 65-kDa fragment of plant phytochrome phyA have been measured and analyzed in terms of the configuration and conformation of the tetrapyrroles methine bridges. Spectra were obtained from phyA adducts reconstituted with the natural chromophore phytochromobilin as well as phycocyanobilin and its isotopomers labeled at the terminal methine bridges through (13)C/(12)C and D/H substitution. Upon comparing the resonance Raman spectra of the various phyA adducts, it was possible to identify the bands that originate from normal modes dominated by the stretching coordinates of the terminal methine bridges A-B and C-D. Quantum chemical calculations of the isolated tetrapyrroles reveal that these modes are sensitive indicators for the methine bridge configuration and conformation. For all phyA adducts, the experimental spectra of Pr including this marker band region are well reproduced by the calculated spectra obtained for the ZZZasa configuration. In contrast, there are substantial discrepancies between the experimental spectra and the spectra calculated for the ZZZssa configuration, which has been previously shown to be the chromophore geometry in the Pr state of the bacterial, biliverdin-binding phytochrome from Deinococcus radiodurans (Wagner, J. R., J. S. Brunzelle, K. T. Forest, R. D. Vierstra. 2005. Nature. 438:325-331). The results of this work, therefore, suggest that plant and bacterial (biliverdin-binding) phytochromes exhibit different structures in the parent state although the mechanism of the photoinduced reaction cycle may be quite similar.  相似文献   

5.
The molecular changes of phytochrome during red --> far-red and reverse photoreactions have been monitored by static infrared difference spectroscopy using the recombinant 65 kDa N-terminal fragment assembled with a chromophore chemically modified at ring D or with a chromophore isotopically labeled with (18)O at the carbonyl group of ring A. This allows the identification of the C=O stretching vibrations of rings D and A. We exclude the formation of an iminoether in Pfr. The positions of both these modes show that the chromophore always remains protonated. The upshift of the C=O stretch of ring D in the first photoproducts is explained by a twisted methine bridge connecting rings C and D. The changes in the vibrational pattern during the red --> far-red conversion show that the backreaction is not just the reversal of the forward reaction. The infrared difference spectra of the fragment deviate very little from those of the full-length protein. The differences which are related to the lack of the C-terminal half of the protein constituting the signaling domain are possibly important for the understanding of the signaling mechanism.  相似文献   

6.
The Pr --> Pfr phototransformation of the bacteriophytochrome Agp1 from Agrobacterium tumefaciens and the structures of the biliverdin chromophore in the parent states and the cryogenically trapped intermediate Meta-R(C) were investigated with resonance Raman spectroscopy and flash photolysis. Strong similarities with the resonance Raman spectra of plant phytochrome A indicate that in Agp1 the methine bridge isomerization state of the chromophore is ZZZasa in Pr and ZZEssa in Pfr, with all pyrrole nitrogens being protonated. Photoexcitation of Pr is followed by (at least) three thermal relaxation components in the formation of Pfr with time constants of 230 micros and 3.1 and 260 ms. H2O/D2O exchange reveals kinetic isotope effects of 1.9, 2.6, and 1.3 for the respective transitions that are accompanied by changes of the amplitudes. The second and the third relaxation correspond to the formation and decay of Meta-R(C), respectively. Resonance Raman measurements of Meta-R(C) indicate that the chromophore adopts a deprotonated ZZE configuration. Measurements with a pH indicator dye show that formation and decay of Meta-R(C) are associated with proton release and uptake, respectively. The stoichiometry of the proton release corresponds to one proton per photoconverted molecule. The coupling of transient chromophore deprotonation and proton release, which is likely to be an essential element in the Pr --> Pfr photocon-version mechanism of phytochromes in general, may play a crucial role for the structural changes in the final step of the Pfr formation that switch between the active and the inactive state of the photoreceptor.  相似文献   

7.
A quantum mechanics (QM)/molecular mechanics (MM) hybrid method was applied to the Pr state of the cyanobacterial phytochrome Cph1 to calculate the Raman spectra of the bound PCB cofactor. Two QM/MM models were derived from the atomic coordinates of the crystal structure. The models differed in the protonation site of His260 in the chromophore-binding pocket such that either the δ-nitrogen (M-HSD) or the ɛ-nitrogen (M-HSE) carried a hydrogen. The optimized structures of the two models display small differences specifically in the orientation of His260 with respect to the PCB cofactor and the hydrogen bond network at the cofactor-binding site. For both models, the calculated Raman spectra of the cofactor reveal a good overall agreement with the experimental resonance Raman (RR) spectra obtained from Cph1 in the crystalline state and in solution, including Cph1 adducts with isotopically labeled PCB. However, a distinctly better reproduction of important details in the experimental spectra is provided by the M-HSD model, which therefore may represent an improved structure of the cofactor site. Thus, QM/MM calculations of chromoproteins may allow for refining crystal structure models in the chromophore-binding pocket guided by the comparison with experimental RR spectra. Analysis of the calculated and experimental spectra also allowed us to identify and assign the modes that sensitively respond to chromophore-protein interactions. The most pronounced effect was noted for the stretching mode of the methine bridge A-B adjacent to the covalent attachment site of PCB. Due a distinct narrowing of the A-B methine bridge bond angle, this mode undergoes a large frequency upshift as compared with the spectrum obtained by QM calculations for the chromophore in vacuo. This protein-induced distortion of the PCB geometry is the main origin of a previous erroneous interpretation of the RR spectra based on QM calculations of the isolated cofactor.Abbreviations: Agp1, phytochrome from Agrobacterium tumefaciens; α-CPC, α-subunit of C-phycocyanin; BV, biliverdin IXα; B3LYP, three-parameter exchange functional according to Becke, Lee, Yang, and Parr; DFT, density functional theory; DrBphP, phytochrome from Deinococcus radiodurans; GAF, domain found in cGMP-specific phosphodiesterases; MM, molecular mechanics; MD, molecular dynamics; N-H ip, N-H in-plane bending; PCB, phycocyanobilin; PED, potential energy distribution; phyA, plant phytochrome; Pr, Pfr, red- and far-red absorbing parent states of phytochrome; PΦB, phytochromobilin; QM, quantum mechanics; RMSD, root mean-square deviation; RR, resonance Raman  相似文献   

8.
The Pr and Pfr forms of phytochrome in H2O and D2O have been studied by Fourier transform resonance Raman spectroscopy with near-infrared excitation (1064 nm). It is demonstrated that this technique is a powerful method for analyzing the chromophore structures of photosensitive pigments. The high spectral quality allows discussion of vibrational assignments based on an empirical approach using previously published data obtained from model compounds. The reduction in intensity of a high-frequency band assigned to the ring-C/D methine bridge vibration is an indication for the non-coplanarity of the ring D in Pfr. The high intensity of a C-H out-of-plane vibration also supports this hypothesis. In Pr, a broad peak at approximately 1100 cm-1 is assigned to an out-of-plane vibration of a strongly hydrogen-bonded pyrrole C=NH+ group. It is missing in Pfr, suggesting deprotonation of the corresponding ring during the transformation from Pr to Pfr.  相似文献   

9.
Phytochrome is a key photoregulation pigment in plants which determines the strategy of their development throughout their life cycle. The major achievement in the recent investigations of the pigment is the discovery of its structural and functional heterogeneity: existence of a family of phytochromes (phyA-phyE) differing by the apoprotein was demonstrated. We approach this problem by investigating the chromophore component of the pigment with the use of the developed method of in vivo low-temperature fluorescence spectroscopy of phytochrome. In etiolated plants, phytochrome fluorescence was detected and attributed to its red-light absorbing form (Pr) and the first photoproduct (lumi-R), and a scheme of the photoreaction in phytochrome, a distinction of which is the activation barrier in the excited state, was put forward. It was found that the spectroscopic and photochemical characteristics of Pr depend on the plant species and phytochrome mutants and overexpressors used, on localization of the pigment in organs and tissues, plant age, effect of preillumination and other physiological factors. This variability of the parameters was interpreted as the existence of at least two phenomenological Pr populations, which differ by their spectroscopic characteristics and activation parameters of the Pr --> lumi-R photoreaction (in particular, by the extent of the Pr --> lumi-R photoconversion at low temperatures, gamma1): the longer-wavelength major and variable by its content in plant tissues Pr' with gamma1 = 0.5 and the shorter-wavelength minor relatively constant Pr" with gamma1 < or = 0.05. The analysis of the phytochrome mutants and overexpressors allows a conclusion that phytochrome A (phyA), which dominates in etiolated seedlings, is presented by two isoforms attributed to Pr' and Pr" (phyA' and phyA", respectively). Phytochrome B (phyB) accounts for less than 10% of the total phytochrome fluorescence and belongs to the Pr" type. It is also characterized by the relatively low extent of the Pr photoconversion into the far-red-light absorbing physiologically active phytochrome form, Pfr. Fluorescence of the minor phytochromes (phyC-phyE) is negligible. The recently discovered phytochrome of the cyanobacterium Synechocystis also belongs to the phenomenological Pr" type. PhyA' is a light-labile and soluble fraction, while phyA" is a relatively light-stable and, possibly, membrane (protein)-associated. Experiments with transgenic tobacco plants overexpressing full-length and C- and N-terminally truncated oat phytochrome A suggest that phyA' and phyA" might differ by the post-translational modification of the small N-terminal segment (amino acid residues 7-69) of the pigment. PhyA' is likely to be active in the de-etiolation processes while phyA" together with phyB, in green plants as revealed by the experiments on transgenic potato plants and phytochrome mutants of Arabidopsis and pea with altered levels of phytochromes A and B and modified phenotypes. And finally, within phyA', there are three subpopulations which are, possibly, different conformers of the chromophore. Thus, there is a hierarchical system of phytochromes which include: (i) different phytochromes; (ii) their post-translationally modified states and (iii) conformers within one molecular type. Its existence might be the rationale for the multiplicity of the photoregulation reactions in plants mediated by phytochrome.  相似文献   

10.
Phytochromes are widely distributed photoreceptors with a bilin chromophore that undergo a typical reversible photoconversion between the two spectrally different forms, Pr and Pfr. The phytochrome Agp2 from Agrobacterium tumefaciens belongs to the group of bathy phytochromes that have a Pfr ground state as a result of the Pr to Pfr dark conversion. Agp2 has untypical spectral properties in the Pr form reminiscent of a deprotonated chromophore as confirmed by resonance Raman spectroscopy. UV/visible absorption spectroscopy showed that the pKa is >11 in the Pfr form and ∼7.6 in the Pr form. Unlike other phytochromes, photoconversion thus results in a pKa shift of more than 3 units. The Pr/Pfr ratio after saturating irradiation with monochromatic light is strongly pH-dependent. This is partially due to a back-reaction of the deprotonated Pr chromophore at pH 9 after photoexcitation as found by flash photolysis. The chromophore protonation and dark conversion were affected by domain swapping and site-directed mutagenesis. A replacement of the PAS or GAF domain by the respective domain of the prototypical phytochrome Agp1 resulted in a protonated Pr chromophore; the GAF domain replacement afforded an inversion of the dark conversion. A reversion was also obtained with the triple mutant N12S/Q190L/H248Q, whereas each single point mutant is characterized by decelerated Pr to Pfr dark conversion.  相似文献   

11.
Structural studies of retinochrome, and its photoproduct, lumiretinochrome, were done by Fourier transform infrared difference spectroscopy. The absorption bands in the carbonyl stretching region which shift in D2O show the changes in the protein part during the photoreaction. Strong absorption bands in the finger-print region show that the all-trans-retinal chromophore in retinochrome isomerizes to the 11-cis-retinal chromophore in lumiretinochrome upon illumination with yellow-green light at 83K.  相似文献   

12.
Strauss HM  Hughes J  Schmieder P 《Biochemistry》2005,44(23):8244-8250
Precise structural information regarding the chromophore binding pocket is essential for an understanding of photochromicity and photoconversion in phytochrome photoreceptors. To this end, we are studying the 59 kDa N-terminal module of the cyanobacterial phytochrome Cph1 from Synechocystis sp. PCC 6803 in both thermally stable forms (Pr and Pfr) using solution-state NMR spectroscopy. The protein is deuterated, while the chromophore, phycocyanobilin (PCB), is isotopically labeled with (15)N or (13)C and (15)N. We have established a simple approach for preparing labeled PCB based on BG11 medium supplemented with an appropriate buffer and NaH(13)CO(3) and Na(15)NO(3) as sole carbon and nitrogen sources, respectively. We show that structural details of the chromophore binding pocket in both Pr and Pfr forms can be obtained using multidimensional heteronuclear solution-state NMR spectroscopy. Using one-dimensional (15)N NMR spectra, we show unequivocally that the chromophore is protonated in both Pr and Pfr states.  相似文献   

13.
Tetranitromethane bleaches Avena phytochrome. The phytochrome (far-red absorbing form; Pfr) chromophore of 124 kilodalton (kD) phytochrome is oxidized 8 times more rapidly than the red absorbing form (Pr). Proteolysis of the 124 kD molecule to the extensively studied mixture of 118 and 114 kD polypeptides increases the rate of oxidation of Pfr 5-fold without affecting the rate of Pr oxidation. As a result, the Pfr form of 118/114 kD preparations is oxidized at a rate 40 times greater than the Pr form. Further proteolytic degradation of the chromoprotein to 60 kD results in an additional increase in the oxidation rates of both Pr and Pfr. These differences in reactivity to tetranitromethane indicate that the chromophore of Pfr is either intrinsically more chemically reactive and/or physically more accessible than the Pr chromophore and that the reactivity/accessibility of both spectral forms is increased by proteolysis. The enhanced reactivity of the Pfr chromophore after proteolytic cleavage of the 6 to 10 kD polypeptide segment(s) from the 124 kD species is further evidence that these segment(s) affect the environment of the native photoreceptor.  相似文献   

14.
Phytochrome degradation   总被引:18,自引:3,他引:15  
Plants actively modulate the levels of the various phyto-chrome isoforms during their life cycle to optimize light absorption and perception. For phytochrome A (phyA), one of the most influential methods of control is selective turnover of the photoreceptor upon photoconversion from the red-absorbing form (Pr) to the far-red-absorbing form (Pfr). Whereas the Pr form has a half-life of approximately 1 week, the Pfr form is rapidly degraded with a half-life of 1–2 h. The ubiquitin/26S proteasome pathway has been implicated in phyA breakdown. In this proteolytic pathway, multiple ubiquitins are covalently attached to proteins committed for degradation; these ubiquitin-protein conjugates then serve as intermediates in the breakdown of the target protein by the 26S proteasome, a multi-subunit proteolytic complex. In several plant species, ubiquitin-phyA conjugates have been detected in vivo following Pfr formation that show accumulation and decay kinetics expected for Pfr degradation intermediates. Analyses of phyA mutants and phyA/phyB chimeras expressed in transgenic plants have been particularly useful in mapping domains within the chromoprotein that are necessary for Pfr degradation. Several domains have been identified within both the N- and C-terminal portions of the photoreceptor that presumably serve as recognition and/or acceptor sites for ubiquitination  相似文献   

15.
Bacteriophytochrome from Deinococcus radiodurans (DrBphP) is a plant phytochrome homolog. To investigate the interaction of chromophore and protein structure, we purified recombinant DrBphP and performed biochemical analyses. Differences of apo- and holo-protein in electrophoretic properties in native gels and their susceptibility to trypsin indicate changes in both the conformation and surface topography of this protein as a result of chromophore assembly. Furthermore, proteolysis to Pr and Pfr conformers displayed distinctive cleavage patterns with a noticeable Pr-specific tryptic fragment. Of interest, a prolonged tryptic digestion showed a more severe impact upon the Pfr form. Most importantly, when we assessed the extent of dark reversion to evaluate the role of the cleaved part, a rapidly accelerated reversion was observed upon cleavage at residues 329-505 corresponding to the PHY domain. Our data thus show that the PHY domain is necessary for the Pfr stabilization and spectral integrity of DrBphP.  相似文献   

16.
Smith WO  Cyr KL 《Plant physiology》1988,87(1):195-200
Phytochrome extracted from shoots of dark-grown rye (Secale cereale cv Rymin) and oat (Avena sativa cv Garry) as the far-red-form (Pfr) and/or under conditions conducive to oxidation exhibited a blue shift in the visible absorption maximum of its red-light-absorbing form (Pr) relative to that measured in vivo. This spectral alteration could not be reversed but could be prevented by inclusion of 10 millimolar diethyldithiocarbamate and 140 millimolar 2-mercaptoethanol in homogenization buffers. Similar blue shifts were induced in purified rye phytochrome by addition of the sulfhydryl-modifying reagent, 5,5′-dithiobis-(2-nitrobenzoic acid) (DTNB). In spectrally normal phytochrome (i.e., no detectable blue shift), Pfr had three to four more sulfhydryls available for rapid reaction with DTNB than did Pr. This difference was maintained over a 2.5-hour time course. Phytochrome purified under conditions resulting in a blue-shifted Pr absorption maximum exhibited a decreased short-term reactivity of Pfr to DTNB. Comparison of the binding and elution of altered and unaltered phytochrome from agarose-immobilized Cibacron blue 3GA confirmed that the Pfr form of spectrally normal phytochrome had a greater affinity for the dye than did the Pr form but that spectral alteration of phytochrome was accompanied by a loss of this difference as evidenced by an increased binding of Pr to the dye. It was concluded that phytochrome has highly reactive sulfhydryl residues located on the portion of the protein that undergoes conformational changes on interconversion of Pr and Pfr and that these residues require rigorous protection in order to extract the native form of the protein from plant tissue.  相似文献   

17.
The light-induced processes of the biological photoreceptor phytochrome (recombinant phyA of oat and recombinant CphA from the cyanobacterium Tolypothrix PCC7601) have been investigated in a time-resolved manner in the temperature range from 0 to 30°C. Both proteins were heterologously expressed and assembled in vitro with phycocyanobilin. The Pr state of plant phytochrome phyA is converted to the Pfr state after formation of four intermediates with an overall quantum yield of ∼18%. The reversal reaction (Pfr-to-Pr) shows several intermediates, all of which, even the first detectable one, exhibit already all spectral features of the Pr state. The canonical phytochrome CphA from Tolypothrix showed a similar intermediate sequence as its plant ortholog. Whereas the kinetics for the forward reaction (Pr-to-Pfr) was nearly identical for both proteins, the reverse process (Pr formation) in the cyanobacterial phytochrome was slower by a factor of three. As found for the Pfr-to-Pr intermediates in the plant protein, also in CphA all detectable intermediates showed the spectral features of the Pr form. For both phytochromes, activation parameters for both the forward and the backward reaction pathways were determined.  相似文献   

18.
The unique photochromic absorption behavior of phytochromes (Phys) depends on numerous reversible interactions between the bilin chromophore and the associated polypeptide. To help define these dynamic interactions, we determined by NMR spectroscopy the first solution structure of the chromophore-binding cGMP phosphodiesterase/adenylcyclase/FhlA (GAF) domain from a cyanobacterial Phy assembled with phycocyanobilin (PCB). The three-dimensional NMR structure of Synechococcus OS-B′ cyanobacterial Phy 1 in the red-light-absorbing state of Phy (Pr) revealed that PCB is bound to Cys138 of the GAF domain via the A-ring ethylidene side chain and is buried within the GAF domain in a ZZZsyn,syn,anti configuration. The D ring of the chromophore sits within a hydrophobic pocket and is tilted by approximately 80° relative to the B/C rings by contacts with Lys52 and His169. The solution structure revealed remarkable flexibility for PCB and several adjacent amino acids, indicating that the Pr chromophore has more freedom in the binding pocket than anticipated. The propionic acid side chains of rings B and C and Arg101 and Arg133 nearby are especially mobile and can assume several distinct and energetically favorable conformations. Mutagenic studies on these arginines, which are conserved within the Phy superfamily, revealed that they have opposing roles, with Arg101 and Arg133 helping stabilize and destabilize the far-red-light-absorbing state of Phy (Pfr), respectively. Given the fact that the Synechococcus OS-B′ GAF domain can, by itself, complete the Pr → Pfr photocycle, it should now be possible to determine the solution structure of the Pfr chromophore and surrounding pocket using this Pr structure as a framework.  相似文献   

19.
The mutants H250A and D197A of Agp1 phytochrome from Agrobacterium tumefaciens were prepared and investigated by different spectroscopic and biochemical methods. Asp-197 and His-250 are highly conserved amino acids and are part of the hydrogen-bonding network that involves the chromophore. Both substitutions cause a destabilization of the protonated chromophore in the Pr state as revealed by resonance Raman and UV-visible absorption spectroscopy. Titration experiments demonstrate a lowering of the pK(a) from 11.1 (wild type) to 8.8 in H250A and 7.2 in D197A. Photoconversion of the mutants does not lead to the Pfr state. H250A is arrested in a meta-Rc-like state in which the chromophore is deprotonated. For H250A and the wild-type protein, deprotonation of the chromophore in meta-Rc is coupled to the release of a proton to the external medium, whereas the subsequent proton re-uptake, linked to the formation of the Pfr state in the wild-type protein, is not observed for H250A. No transient proton exchange with the external medium occurs in D197A, suggesting that Asp-197 may be the proton release group. Both mutants do not undergo the photo-induced protein structural changes that in the wild-type protein are detectable by size exclusion chromatography. These conformational changes are, therefore, attributed to the meta-Rc --> Pfr transition and most likely coupled to the transient proton re-uptake. The present results demonstrate that Asp-197 and His-250 are essential for stabilizing the protonated chromophore structure in the parent Pr state, which is required for the primary photochemical process, and for the complete photo-induced conversion to the Pfr state.  相似文献   

20.
Fourier-transform infrared difference spectroscopy has been used to study the role of the three membrane-embedded proline residues, Pro-50, Pro-91, and Pro-186, in the structure and function of bacteriorhodopsin. All three prolines were replaced by alanine and glycine; in addition, Pro-186 was changed to valine. Difference spectra were recorded for the bR----K and bR----M photoreactions of each of these mutants and compared to those of wild-type bacteriorhodopsin. Only substitutions of Pro-186 caused significant perturbations in the frequency of the C = C and C - C stretching modes of the retinylidene chromophore. In addition, these substitutions reduced bands in the amide I and II region associated with secondary structural changes and altered signals assigned to the adjacent Tyr-185. Pro-186----Val caused the largest alterations, producing a second species similar to bR548 and nearly blocking chromophore isomerization at 78 K but not at 250 K. These results are consistent with a model of the retinal binding site in which Pro-186 and Tyr-185 are located in direct proximity to the chromophore and may be involved in linking chromophore isomerization to protein structural changes. Evidence is also found that Pro-50 may be structurally active during the bR----K transition and that substitution of this residue by glycine preserves the normal protein structural changes during the photocycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号