首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
We report a knock-in mouse expressing Cre recombinase from the translational initiation site (ATG) of the endogenous L7/Pcp-2 gene. The resulting Cre expression matches the pattern of L7/Pcp-2 expression that is restricted to cerebellar Purkinje cells and retinal cells. Moreover, the Cre mouse showed no significant behavioral abnormality. Thus, our novel Cre mouse can be used for generation of Purkinje cells and retinal cell-specific gene expression and/or knockout in mouse using the Cre/loxP system.  相似文献   

2.
The cerebellar cortex and its sole output, the Purkinje cell, have been implicated in motor coordination, learning and cognitive functions. Therefore, the ability to generate Purkinje cell-specific mutations in physiologically relevant genes is of particular neurobiological interest. A suitable approach is the Cre/loxP strategy that allows temporally and spatially controlled gene inactivation. Here, we present the characterization of transgenic mouse strains expressing Cre recombinase controlled by the L7/pcp-2 gene. Endogenous L7/pcp-2 protein is expressed exclusively in Purkinje cells and retinal bipolar neurones. Recombination was detected by beta-galactosidase histochemistry in tissues from crosses of the L7/pcp-2:Cre transgenic lines with two different indicator strains, GtROSA26 and ACZL. Purkinje cells in all folia of the cerebellum displayed intense beta-galactosidase staining, whereas only few blue cells were observed in the retina and other parts of the CNS. Thus, these transgenic lines are potentially of great importance for genetic manipulations in cerebellar Purkinje cells.  相似文献   

3.
G protein-coupled receptors are involved in the modulation of complex neuronal networks in the brain. To investigate the impact of a cell-specific G(i/o) protein-mediated signaling pathway on brain function, we created a new optogenetic mouse model in which the G(i/o) protein-coupled receptor vertebrate rhodopsin can be cell-specifically expressed with the aid of Cre recombinase. Here we use this mouse model to study the functional impact of G(i/o) modulation in cerebellar Purkinje cells (PCs). We show that in vivo light activation of vertebrate rhodopsin specifically expressed in PCs reduces simple spike firing that is comparable with the reduction in firing observed for the activation of cerebellar G(i/o)-coupled GABA(B) receptors. Notably, the light exposure of the cerebellar vermis in freely moving mice changes the motor behavior. Thus, our studies directly demonstrate that spike modulation via G(i/o)-mediated signaling in cerebellar PCs affects motor coordination and show a new promising approach for studying the physiological function of G protein-coupled receptor-mediated signaling in a cell type-specific manner.  相似文献   

4.
Conditional gene targeting using the Cre/loxP system enables specific deletion of a gene in a tissue of interest. For application of Cre-mediated recombination in pigment cells, Cre expression has to be targeted to pigment cells in transgenic mice. So far, no pigment cell-specific Cre transgenic line has been reported and we present and discuss our first results on use of Cre recombinase in pigment cells. A construct was generated where Cre recombinase is controlled by the promoter of the mouse dopachrome tautomerase (Dct) gene. The construct was functionally tested in vitro and introduced into mice. Following breeding to two reporter mouse strains, we detected Cre recombinase activity in telencephalon, melanoblasts, and retinal pigment epithelium (RPE). Our data demonstrate the feasibility of pigment cell-specific Cre/loxP-mediated recombination.  相似文献   

5.
Abstract: The α6 subunit of γ-aminobutyric type A receptors is a marker for cerebellar granule cells and is an attractive candidate to study cell-specific gene expression in the brain. The mouse α6 subunit gene has nine exons and spans ~14 kb. The largest intron (intron 8) is ~7 kb. For a minority of mRNAs, a missplice of the first exon was identified that disrupts the signal peptide and most likely results in the production of nonfunctional protein. The gene is transcribed from a TATA-less promoter that uses multiple start sites. Using transgenic mice, it was found that the proximal 0.5 kb of the rat α6 gene upstream region confers expression on a β-galactosidase reporter gene. One founder gave rise to a line with cerebellar granule cell-specific expression, although expression varied with lobule region. Other founders had ectopic but neuron-specific expression, with β-galactosidase found in cerebellar Purkinje cells, neocortex, thalamus, hippocampus, caudate-putamen, and inferior colliculi. Thus, we have defined a region containing the basal promoter of the α6 subunit gene and that confers neuron-specific expression.  相似文献   

6.
Site specific recombinases have provided the experimental strategy necessary to modulate the expression of gene products in the mouse embryo. In this study we have exploited Cre recombinase to develop a widely applicable cell marking system which functions efficiently even at early post-implantation embryonic stages. Importantly, the techniques and reagents derived in this study are generally applicable to any recombinase driven approach, including strategies to temporally and spatially modulate endogenous or ectopic gene expression in the embryo. The cell marking scheme has two essential components which were derived as separate mouse lines. The first line carries a universal conditional lacZ reporter (UCR) locus which was prepared by using gene targeting in a novel approach to modify a ubiquitously expressed retroviral lacZ promoter trap insertion. The UCR locus is silent until it undergoes a Cre mediated DNA rearrangement to restore lacZ expression. To generate the Cre expressing allele, we outline a flexible strategy which requires the introduction of a novel IRES-Cre cassette into exon sequence of an endogenous locus by gene targeting. We successfully demonstrate this approach by generating a Cre expressing allele of the EphA2 gene, an Eph receptor protein tyrosine kinase expressed early in development. Analysis of double heterozygote embryos clearly demonstrates that Cre recombinase is expressed in vivo from the EphA2 IRES-Cre allele, and that the conditional reporter locus is efficiently restored in EphA2-expressing cells as early as 7.5 dpc. This cell marking experiment establishes the feasibility of expressing Cre recombinase from a single copy allele in the embryo and demonstrates the utility of the conditional reporter mouse which can be used in the analysis of any Cre expressing allele.  相似文献   

7.
8.
Systems capable of targeting genetic manipulations to keratin-positive airway basal cells are more poorly developed than systems targeting other airway epithelial cell populations and this has likely hindered development of animal models of diseases such as lung squamous cell carcinoma. Although keratin promoter driven-Cre recombinase constructs are potentially useful for targeting these cells, these constructs have substantially higher activity in the skin and oral epithelium than in the airways. We developed a method for delivering RU486, the conditional activator of Cre recombinase progesterone receptor (CrePR) fusion proteins to the lung and then examined the activity of three keratin-driven CrePR constructs in the conducting airways. We also developed a technique for survival bronchioalveolar lavage on non-ventilated animals to examine the effects of the acetone/oil vehicle required to deliver RU486 to the lung. K5CrePR1 and K14CrePR1 constructs differ only in the keratin promoter used to target CrePR1 expression while K5Cre*PR contains a truncated progesterone receptor designed to reduce RU486-independent Cre activity. While all three constructs demonstrate RU486-inducible Cre activity in the conducting airways, both construct activity and tightness of regulation vary considerably. K5Cre*PR is the most tightly regulated Cre driver making it ideal for targeting somatic mutations to the airway epithelia while K5CrePR1 and K14CrePR1 may be better suited to studying diseases of the conducting airways where gene targeting of keratin expressing cells and their derivatives is desired.  相似文献   

9.
Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.  相似文献   

10.
11.
Transgenic mouse lines expressing Cre recombinase in a cell-specific and tissue-specific manner are essential tools for studying gene function and for developing suitable models for human diseases. Here, we used an expression cassette containing the full 5' untranslated region of the porcine insulin gene to generate a mouse line expressing Cre recombinase specifically in pancreatic β-cells by pronuclear DNA microinjection. We obtained a founder animal that transmitted the construct to its descendants in a Mendelian fashion and whose descendants showed a clear activation of β-galactosidase expression in pancreatic β-cells after crossing into the ROSA26 lacZ reporter mouse line. Cre expression in other organs was negative except for the kidney, intestine, and the cerebral pons where β-galactosidase activity was detected in a small percentage of the cells. This new mouse line is a valuable tool for recombination of floxed alleles in pancreatic β-cells in vivo.  相似文献   

12.
SV40 T antigen (Tag) expression directed to cerebellar Purkinje cells resulted in the generation of three transgenic mouse lines that displayed ataxia, a neurological phenotype characteristic of cerebellar dysfunction. Onset of symptoms and cerebellar pathology, characterized by specific Purkinje cell degeneration, appeared to be directly dependent upon transgene copy number. The SV5 line (containing > 30 transgene copies), exhibited embryonic transgene expression that caused selective death of immature Purkinje cells and a subsequent block in cerebellar development and ataxia at 2 weeks. The developmental effect of the disruption of Purkinje cells in SV5 mice suggests that a normal complement of these cells is required for early development of the cerebellar cortex, especially granule cell proliferation and migration from external to internal layers. Transgene expression in a second line, SV4 (10 copies), was detectable during the second postnatal week. Death of mature Purkinje cells in the SV4 line resulted in onset of ataxia at 9 weeks. Ataxia in a third line, SV6 (2 copies), was detected after 15 weeks. The distinct cerebellar phenotypes of the SV4-6 lines correlate with specific Tag-induced Purkinje cell ablation as opposed to tumorigenesis.  相似文献   

13.
Cochlear hair cells of the inner ear are mechanosensory transducers critical for sound reception in mammals. A mouse with a specific expression of Cre recombinase activity in hair cells is essential for hair cell-specific gene targeting. Here we report a transgenic mouse in which Cre activity is detected in inner hair cells, not in supporting cells, in the cochlea. The Cre activity was visualized with both X-gal staining and beta-galactosidase immunostaining in progeny of a cross between our Cre line and the reporter ROSA26R line. In inner hair cells, the Cre activity started at postnatal day 14 and was maintained throughout adulthood. Starting at postnatal day 50, a few outer hair cells in the outermost row of cochlear apical and middle turns displayed the Cre activity. In vestibular hair cells and spiral ganglia, the Cre activity was also detected. Cre activity was present in cells widely distributed throughout brain, testis, and retina, but was absent in many other tissues such as kidney, heart, liver, and intestine. This Cre mouse line can thus be used for conditional gene targeting in mature inner hair cells of the cochlea. genesis 39:173-177, 2004. Copyright 2004 Wiley-Liss, Inc.  相似文献   

14.
By serving as the sole output of the cerebellar cortex, integrating a myriad of afferent stimuli, Purkinje cells (PCs) constitute the principal neuron in cerebellar circuits. Several neurodegenerative cerebellar ataxias feature a selective cell-autonomous loss of PCs, warranting the development of regenerative strategies. To date, very little is known as to the regulatory cascades controlling PC development. During central nervous system development, the proneural gene neurogenin 2 (Neurog2) contributes to many distinct neuronal types by specifying their fate and/or dictating development of their morphological features. By analyzing a mouse knock-in line expressing Cre recombinase under the control of Neurog2 cis-acting sequences we show that, in the cerebellar primordium, Neurog2 is expressed by cycling progenitors cell-autonomously fated to become PCs, even when transplanted heterochronically. During cerebellar development, Neurog2 is expressed in G1 phase by progenitors poised to exit the cell cycle. We demonstrate that, in the absence of Neurog2, both cell-cycle progression and neuronal output are significantly affected, leading to an overall reduction of the mature cerebellar volume. Although PC fate identity is correctly specified, the maturation of their dendritic arbor is severely affected in the absence of Neurog2, as null PCs develop stunted and poorly branched dendrites, a defect evident from the early stages of dendritogenesis. Thus, Neurog2 represents a key regulator of PC development and maturation.  相似文献   

15.
The metabotropic glutamate 1 (mGlu(1)) receptor in cerebellar Purkinje cells plays a key role in motor learning and motor coordination. Here we show that the G protein-coupled receptor kinases (GRK) 2 and 4, which are expressed in these cells, regulate the mGlu(1) receptor by at least in part different mechanisms. Using kinase-dead mutants in HEK293 cells, we found that GRK4, but not GRK2, needs the intact kinase activity to desensitize the mGlu(1) receptor, whereas GRK2, but not GRK4, can interact with and regulate directly the activated Galpha(q). In cells transfected with GRK4 and exposed to agonist, beta-arrestin was first recruited to plasma membranes, where it was co-localized with the mGlu(1) receptor, and then internalized in vesicles. The receptor was also internalized but in different vesicles. The expression of beta-arrestin V53D dominant negative mutant, which did not affect the mGlu(1) receptor internalization, reduced by 70-80% the stimulation of mitogen-activated protein (MAP) kinase activation by the mGlu(1) receptor. The agonist-stimulated differential sorting of the mGlu(1) receptor and beta-arrestin as well as the activation of MAP kinases by mGlu(1) agonist was confirmed in cultured cerebellar Purkinje cells. A major involvement of GRK4 and of beta-arrestin in agonist-dependent receptor internalization and MAP kinase activation, respectively, was documented in cerebellar Purkinje cells using an antisense treatment to knock down GRK4 and expressing beta-arrestin V53D dominant negative mutant by an adenovirus vector. We conclude that GRK2 and GRK4 regulate the mGlu(1) receptor by different mechanisms and that beta-arrestin is directly involved in glutamate-stimulated MAP kinase activation by acting as a signaling molecule.  相似文献   

16.
To direct Cre-mediated recombination to differentiated medium-size spiny neurons (MSNs) of the striatum, we generated transgenic mice that express Cre recombinase under the regulation of DARPP-32 genomic fragments. In this reported line, recombination of an R26R reporter allele occurred postnatally in the majority of medium-size spiny neurons of the dorsal and ventral striatum (caudate nucleus and nucleus accumbens/olfactory tubercle), as well as in the piriform cortex and choroid plexus. Although regulatory fragments were selected to target MSNs, low levels of Cre-recombinase expression, as detected by beta-galactosidase activity from the R26R reporter gene, were also apparent in widely dispersed areas or cells of the forebrain and hindbrain. These included the primary and secondary motor cortex, and association cortex, as well as in the olfactory bulb and cerebellar Purkinje cells. Notably, expression in these regions was well below that of endogenous DARPP-32. Analysis of colocalization of beta-galactosidase, as detected either by histochemistry or immunocytochemistry, and DARPP-32 revealed double-labeling in almost all DARPP-32-expressing MSNs in the postnatal striatum, but not in extrastriatal regions. The DARPP-32Cre transgenic mouse line thus provides a useful tool to specifically express and/or inactivate genes in mature MSNs of the striatum.  相似文献   

17.
Mouse strains expressing the site-specific Cre recombinase facilitate conditional ablation or activation of genomic sequences when one or several exons of a gene of interest are flanked by loxP sites. Recently, several strains targeting Cre expression to adipocytes have been developed using promoter sequences from the aP2 (Fatty Acid Binding Protein 4, FABP4) gene for adipose tissue-specific gene expression studies. aP2/FABP4 is predominantly expressed in adipose tissue, and while this promoter provides adipocyte-restricted expression postnatally, its expression throughout embryonic development had not been previously characterized. In this report, we demonstrate that the aP2-Cre transgene is expressed and consistently localized within the embryo from mid-gestation stage 9.5 dpc. By 15.5 dpc, β-gal activity was detected primarily in the brown adipose tissue, trigeminal ganglia, dorsal root ganglia, cartilage primordia and vertebrae. Immunofluorescence staining for Cre recombinase and FABP4 protein showed a corresponding staining pattern similar to that of β-gal, confirming that Cre recombinase was produced in the transgenic line at late stages of development, and overlapped with endogenous aP2/FABP4 production. Further, fat-specific oil red O staining of tissue sections validated the presence of lipids in the stained tissues indicating that adipocytes and/or adipocyte-like cells were indeed present in these tissues. This is the first report to our knowledge to describe and confirm aP2/FABP4 promoter expression in this transgenic line during development in the mouse embryo and indicates that aP2/FABP4 expression occurs not only in mature adipocytes, but has a wider embryonic expression pattern than previously appreciated.Lucy Liaw and Deena Small contributed equally to this work  相似文献   

18.
We have identified a novel epidermal growth factor (EGF)-like repeat-containing single-pass transmembrane protein that is specifically expressed in the developing and mature central nervous system. Sequence analysis revealed that the 10 EGF-like repeats in the extracellular domain are closely related to those of the developmentally important receptor Notch and its ligand Delta. We thus named the molecule Delta/Notch-like EGF-related receptor (DNER). DNER protein is strongly expressed in several types of post-mitotic neurons, including cortical and hippocampal pyramidal neurons, cerebellar granule cells, and Purkinje cells. DNER protein is localized to the dendritic plasma membrane and endosomes and is excluded from the axons, even when overexpressed. The tyrosine-based sorting motif in the cytoplasmic domain is required for dendritic targeting of DNER. Direct in vivo binding of DNER to the coat-associated protein complex AP-1 strongly suggests that DNER undergoes AP-1-dependent sorting to the somatodendritic compartments from the trans-Golgi network and subsequent passage through the endosomal system.  相似文献   

19.
In eukaryotes, mRNA is actively exported to the cytoplasm by a family of nuclear RNA export factors (NXF). Four Nxf genes have been identified in the mouse: Nxf1, Nxf2, Nxf3, and Nxf7. Inactivation of Nxf2, a germ cell-specific gene, causes defects in spermatogenesis. Here we report that Nxf3 is expressed exclusively in Sertoli cells of the postnatal testis, in a developmentally regulated manner. Expression of Nxf3 coincides with the cessation of Sertoli cell proliferation and the beginning of their differentiation. Continued expression of Nxf3 in mature Sertoli cells of the adult is spermatogenesis stage-independent. Nxf3 is not essential for spermatogenesis, however, suggesting functional redundancy among Nxf family members. With its unique expression pattern in the testis, the promoter of Nxf3 can be used to drive postnatal Sertoli cell-specific expression of other proteins such as Cre recombinase.  相似文献   

20.
Identification of a novel male germ cell-specific gene TESF-1 in mice   总被引:7,自引:0,他引:7  
Mammalian spermatogenesis is precisely regulated by many germ cell-specific factors. In search for such a germ cell-specific factor, we have identified a novel mouse gene testis-specific factor 1 (TESF-1). Messenger RNA of TESF-1 was found only in the testis and its expression appeared to be regulated in a developmental manner. Further analysis demonstrated that the expression of TESF-1 was specifically in male germ cells, supported by the observation that we were not able to detect the TESF-1 mRNA from at/at homozygous mutant testes, which lack germ cells. The deduced amino acid sequence of TESF-1 contains a leucine-zipper motif, a potential nuclear localization signal, and two cAMP- and cGMP-dependent protein kinase phosphorylation sites. The green fluorescent protein (GFP)-tagged TESF-1 fusion protein was expressed in COS-7 cells and localized primarily in the nucleus. Taken together, these results indicate that TESF-1 is a novel male germ cell-specific gene, and its protein product may function as a nuclear factor involved in the regulation of spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号