首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluoroacetate dehalogenase catalyzes the hydrolytic defluorination of fluoroacetate to produce glycolate. The enzyme is unique in that it catalyzes the cleavage of the highly stable carbon–fluorine bond in an aliphatic compound. The bacterial isolate FA1, which was identified as Burkholderia, grew on fluoroacetate as the sole carbon source to produce fluoroacetate dehalogenase (FAc-DEX FA1). The enzyme was purified to homogeneity and characterized. The molecular weights were estimated to be 79,000 and 34,000 by gel filtration and SDS-polyacrylamide gel electrophoresis (PAGE), respectively, suggesting that the enzyme is a dimer. The purified enzyme was specific to haloacetates, and fluoroacetate was the best substrate. The activities toward chloroacetate and bromoacetate were less than 5% of the activity toward fluoroacetate. The Km and Vmax values for the hydrolysis of fluoroacetate were 5.1 mM and 11 μmol per minute milligram, respectively. The gene coding for the enzyme was isolated, and the nucleotide sequence was determined. The open reading frame consisted of 912 nucleotides, corresponding to 304 amino acid residues. Although FAc-DEX FA1 showed high sequence similarity to fluoroacetate dehalogenase from Moraxella sp. B (FAc-DEX H1) (61% identity), the substrate specificity of FAc-DEX FA1 was significantly different from that of FAc-DEX H1: FAc-DEX FA1 was more specific to fluoroacetate than FAc-DEX H1.  相似文献   

2.
The production of protease enzyme was evaluated through the solid state fermentation (SSF) of soy fibre, a waste product that acted as a sole substrate for the fermentation, at a laboratory and bench scale using a 500-mL (batch size 115 g) and 10-L (batch size 2300 g) bioreactors. The objective was to assess the effect of the inoculation of the thermophilic bacteria Thermus sp. on the production of the enzyme when working at laboratory and bench scale under non-sterile conditions, since scaling-up and the need of sterilization are the main challenges of SSF, preventing its industrial development. Results revealed that the inoculation led to a substantial increase in the protease obtained on both scales when compared to non-inoculated fermentation. The maximum protease activities increased as a result of the inoculation from 500 to 800 and from 350 to 670 U/g dry matter of soy fibre in the lab and bench scale bioreactors, respectively. Finally, a very good correlation was found between the protease activities obtained and the fermentation most relevant parameters: oxygen uptake rate (R 2 = 0.81) and temperature (R 2 = 0.82). In this work, we have demonstrated that inoculation is effective even under non-sterile conditions at the kg scale and that this strain is able to compete with autochthonous microbiota and increase the protease production to levels higher than those previously reported in literature.  相似文献   

3.
For dynamic behaviors of continuous airlift bioreactors, a mathematical model based on a tanks-in-series model with backflow has been developed. The equations describing the dynamics of airlift bioreactors are material balances for micro-organism, substrate, dissolved oxygen and oxygen in gas-phase and heat balances. Non-ideal mixing of liquid and gas phases is taken into account using a tanks-in-series model with backflow. The batch operation, startup operation and the consequence of plant failure were simulated and the effects of design and operating parameters for an airlift bioreactor on its dynamic behaviors were discussed. The concentration profiles of micro-organism, substrate, dissolved oxygen and oxygen in gas-phase and the temperature profile in an airlift bioreactors and their dynamics were obtained. The computational results indicate that the transients of a chemostat in the case of bubble column bioreactor are slower compared with those in the case of airlift bioreactor. The proposed simulator is more precise as compared with models published previously in the literature and therefore provides more reliable and rational examination of continuous airlift bioreactor performance.  相似文献   

4.
For the purpose of obtaining L-asparaginase in quantities from Erwinia aroideae, cell growth and enzyme formation were investigated in both batch and continuous fermentation. Using yeast extract as a growth-limiting substrate, the relationship between specific growth rate and substrate concentration was found to fit the Monod equation. The optimum temperature for enzyme production was 24 C, although cell growth was higher at 28 C. The enzyme yield reached its maximum of 4 IU/ml during the negative acceleration growth phase which occurs just prior to stationary growth. Compared to batch fermentations, the continuous fermentation process gave a lower enzyme yield except when the fermentation was conducted at a dilution rate of 0.1 hr(-1). The graphical method frequently used for prediction of continuous fermentation does not apply to L-asparaginase production by E. aroideae. The optimum temperature for enzyme production in continuous process was 24 C, which was the same as in batch process. Increasing the temperature from 24 to 28 C resulted in a 20% loss of enzyme yield.  相似文献   

5.
The immobilization of urease on the reticulated polyurethane foam, and the kinetic phenomenon of urea hydrolysis by the resulting immobilized urease in both batch squeezer and circulated flow reactors were studied. Urease was immobilized with bovine serum albumin and glutaraldehyde on polyurethane foam support of 7 to 15 mum thickness. The residual apparent activity of urease after immobilization was about 50%. The good hydrodynamic property and flexibility of polyurethane foam were retained in solution after immobilization. A modified biofilm reactor model was used to describe the kinetic phenomenon of urea hydrolysis in both batch squeezer and circulated flow reactors. The characteristic parameters of the reactor model for both bioreactors were obtained by combining the Rosenbrock optimization method, the Rungs-Kutta method, and the Newton-Raphson method. The best-fit results were in good agreement with the experimental data. This study suggests another application of polyurethane foam in enzyme immobilization and immobilized enzyme reactors, which offers potential for practical applications in various bioreactors. (c) 1992 John Wiley & Sons, Inc.  相似文献   

6.
A novel mixed substrate solid-state fermentation (SSF) process has been developed for Aspergillus niger MTCC 2594 using wheat bran (WB) and gingelly oil cake (GOC) and the results showed that addition of GOC to WB (WB : GOC, 3 : 1, w/w) increased the lipase activity by 36.0% and the activity was 384.3+/-4.5 U/g dry substrate at 30 degrees C and 72 h. Scale up of lipase production to 100 g and 1 kg tray-level batch fermentation resulted in 95.0% and 84.0% of enzyme activities respectively at 72 h. A three-stage multiple contact counter-current extraction yielded 97% enzyme recovery with a contact time of 60 min. However, extraction by simple percolation and plug-flow methods resulted in decreased enzyme recoveries. The mixed substrate SSF process has resulted in a significant increase in specific activity (58.9%) when compared to a submerged fermentation (SmF) system. Furthermore, an efficient process of extraction has been standardized with this process. Use of GOC along with WB as potential raw materials for enzyme production could be of great commercial significance. This is the first report on the production and extraction of lipase from Aspergillus niger using mixed solid substrates, WB and GOC, which are potential raw materials for the production of enzymes and other value-added products.  相似文献   

7.
Different operational mode of bioreactors influence the biosynthesis of the enzyme and related products as well as the growth of industrial microorganisms. This communication deals with the effect of mode of operation of various bioreactors with different geometric configurations, viz., batch (includes commercially available batch stirred tank, and custom-designed cylindrical and tapered reactors), batch-fed, continuous flow stirred tank reactors on the biosynthesis of penicillin amidase in Escherichia coli. Experimental findings show that the biosynthesis of penicillin amidase in E. coli show a little variation among batch reactor modes and significant variation on the continuous mode of operation. Further analysis show that the different reactor modes also influence periplasmic localization of the enzyme in the cell.  相似文献   

8.
β-d-Galactosidase was immobilized in a hollow fibre ultrafiltration module. The hydrolysis of 2-nitrophenyl β-d-galactopyranoside (ONPG) was significantly affected by enzyme loading, flow rate and substrate concentration. Pretreatment of hollow fibres with a protein was necessary to minimize enzyme inactivation. Residence time distribution studies indicated that the product of the reaction (ONP) was significantly adsorbed by the fibres, which resulted in the reactor taking 10–30 h to achieve steady-state. An equation based on Michaelis-Menten kinetics and a plug-flow model adequately described the performance of the reactor with regard to operating variables, even though some diffusion effects were observed.  相似文献   

9.
-2-Haloacid dehalogenase catalyzes the hydrolytic dehalogenation of - and -2-haloalkanoic acids to produce the corresponding - and -2-hydroxyalkanoic acids, respectively. We have constructed an overproduction system for -2-haloacid dehalogenase from Pseudomonas putida PP3 ( -DEX 312) and purified the enzyme to analyze the reaction mechanism. When a single turnover reaction of -DEX 312 was carried out in H218O by use of a large excess of the enzyme with - or -2-chloropropionate as a substrate, the lactate produced was labeled with 18O. This indicates that the solvent water molecule directly attacked the substrate and that its oxygen atom was incorporated into the product. This reaction mechanism contrasts with that of -2-haloacid dehalogenase, which has an active-site carboxylate group that attacks the substrate to displace the halogen atom. -DEX 312 resembles -2-haloacid dehalogenase from Pseudomonas sp. 113 ( -DEX 113) in that the reaction proceeds with a direct attack of a water molecule on the substrate. However, -DEX 312 is markedly different from -DEX 113 in its substrate specificity. We found that -DEX 312 catalyzes the hydrolytic dehalogenation of 2-chloropropionamide and 2-bromopropionamide, which do not serve as substrates for -DEX 113. -DEX 312 is the first enzyme that catalyzes the dehalogenation of 2-haloacid amides.  相似文献   

10.
This paper describes the enzymatic hydrolysis of solid residue of olive mill (OMRS) in a batch reactor with the Trichoderma reesei enzyme. Before enzymatic saccharification, crude lignocellulosic material is submitted to alkaline pre-treatment with NaOH. Optimum conditions of the pre-treatment (temperature of T=100 degrees C and OMRS-NaOH concentration ratio of about R=20) were determined. The optimum enzymatic conditions determined were as follows: pH of about 5, temperature of T=50 degrees C and enzyme to mass substrate mass ratio E/S=0.1g enzyme (g OMRS)(-1). The maximum saccharification yield obtained at optimum experimental conditions was about 50%. The experimental results agree with Lineweaver Burk's formula for low substrate concentrations. At substrate concentrations greater than 40gdm(-3), inhibitory effects were encountered. The kinetic constants obtained for the batch reactor were K(m)=0.1gdm(-3)min(-1) and V(m)=800gdm(-3).  相似文献   

11.
Production and characterization of the agarase ofCytophaga flevensis   总被引:1,自引:1,他引:0  
Cytophaga flevensis produced an inducible agarase which was extracellular under most conditions tested. The effect of cultural conditions on the production of enzyme was studied in batch and continuous culture. In batch culture, production was optimal whenCytophaga flevensis was incubated at 20C in a mineral medium with agar as the sole carbon source and ammonium nitrate as the nitrogen source at an initial pH of 6.6–7.0. The enzyme appeared to be subject to catabolite repression, since its synthesis was repressed when glucose was added to the medium in batch culture. Furthermore, in continuous culture, enzyme production decreased with increasing growth rate. Extracellular agarase was partially purified and the enzyme preparation obtained was very stable. The enzyme has a molecular weight of 26000 daltons. It is a β-agarase which is highly specific for polysaccharides containing neoagarobiose units. The final products of hydrolysis of agarose by the endo-acting enzyme were neoagarotetraose and neoagarobiose. Optimal conditions for its activity were pH 6.3 and 30C. When agarose was used as a substrate, an apparent temperature optimum of 35C was found, due to gelling of the substrate during the assay procedure.  相似文献   

12.
Kinetic studies on the parameters influencing the potential industrial application of an immobilized two-enzyme system of β-amylase and pullulanase for conversion of starch to a product with high maltose content, have been performed. The apparent Michaelis constant, the apparent product inhibitor constant, and the activation energy have been determined for the immobilized preparation and compared to the values for the corresponding soluble enzyme system. The catalytic activity of the immobilized enzymes was studied in a plug-flow reactor and a continuous feed stirred tank reactor. Mathematical models for these reactors have been formulated and adapted to fit the experimental data. Comparisons of the reactor efficiencies were made and the conditions were found to be such as to favor the plug-flow reactor. Results on operational stability tests at different temperatures and substrate concentrations are given.  相似文献   

13.
Selective culturing of pseudomonads that could degrade quinoline led to enrichment cultures and pure cultures with expanded substrate utilization and transformation capabilities for substituted quinolines in immobilized and batch cultures. Immobilized cells of the pseudomonad cultures rapidly transformed quinolines to hydroxyquinolines in bioreactors and were able to tolerate higher substrate concentrations compared with batch cultures. After prolonged incubation on a mixture of quinoline and 6-methylquinoline, a quinoline-degrading culture of Pseudomonas putida developed the ability to biodegrade 6-methylquinoline, which initially was resistant to microbial attack, as a sole source of carbon and energy. 6-Methylquinoline was also degraded in a nonaqueous solution by this strain of P. putida when a solution of 6-methylquinoline in decane was flowed through an immobilized-cell fixed-bed bioreactor.  相似文献   

14.
Lactic acid production from α-cellulose by simultaneous saccharification and fermentation (SSF) was studied. The cellulose was converted in a batch SSF using cellulase enzyme Cytolase CL to produce glucose sugar andLactobacillus delbrueckii to ferment the glucose to lactic acid. The effects of temperature, pH, yeast extract loading, and lactic acid inhibition were studied to determine the optimum conditions for the batch processing. Cellulose was converted efficiently to lactic acid, and enzymatic hydrolysis was the rate controlling step in the SSF. The highest conversion rate was obtained at 46°C and pH 5.0. The observed yield of lactic acid from α-cellulose was 0.90 at 72 hours. The optimum pH of the SSF was coincident with that of enzymatic hydrolysis. The optimum temperature of the SSF was chosen as the highest temperature the microorganism could withstand. The optimum yeast extract loading was found to be 2.5 g/L. Lactic acid was observed to be inhibitory to the microorganisms’ activity.  相似文献   

15.
To try to improve hydrolysis yields at elevated solids loadings, a comparison was made between batch and fed-batch addition of fresh substrate at the initial and later phases of hydrolysis. Both ethanol (EPCS) and steam-pretreated corn stover (SPCS) substrates were tested at low (5 FPU) and high (60 FPU) loadings of cellulase per gram of cellulose. The fed-batch addition of fresh substrate resulted in a slight decrease in hydrolysis yields when compared with the corresponding batch reactions. A 72-h hydrolysis of the SPCS substrate resulted in a hydrolysis yield of 66% compared with 51% for the EPCS substrate. When the enzyme adsorption and substrate characteristics were assessed during batch and fed-batch hydrolysis, it appeared that the irreversible binding of cellulases to the more recalcitrant original substrate limited their access to the freshly added substrate. After 72-h hydrolysis of the SPCS substrate at low enzyme loadings, ~40-50% of the added cellulases were desorbed into solution, whereas only 20% of the added enzyme was released from the EPCS substrate. Both simultaneous and sequential treatments with xylanases and cellulases resulted in an up to a 20% increase in hydrolysis yields for both substrates at low enzyme loading. Simons' stain measurements indicated that xylanase treatment increased cellulose access, thus facilitating cellulose hydrolysis.  相似文献   

16.
Summary Corynebacterium nitrilophilus amidase was studied with a view to it's use in ammonium acrylate production. Treatment of whole cells with l M acrylamide and 2 M ammonium acrylate solutions significantly reduced amidase activity. Immobilized C. nitrilophilus cells were used in batch and continuous bioreactors. Operation of the continuous reactor was found to be the most convenient way of producing steady state conditions for the study of enzyme stability.  相似文献   

17.
Aerobic batch cultivations of Candida utilis were carried out in two micro bioreactors with a working volume of 100 μL operated in parallel. The dimensions of the micro bioreactors were similar as the wells in a 96‐well microtiter plate, to preserve compatibility with the current high‐throughput cultivation systems. Each micro bioreactor was equipped with an electrochemical sensor array for the online measurement of temperature, pH, dissolved oxygen, and viable biomass concentration. Furthermore, the CO2 production rate was obtained from the online measurement of cumulative CO2 production during the cultivation. The online data obtained by the sensor array and the CO2 production measurements appeared to be very reproducible for all batch cultivations performed and were highly comparable to measurement results obtained during a similar aerobic batch cultivation carried out in a conventional 4L bench‐scale bioreactor. Although the sensor chip certainly needs further improvement on some points, this work clearly shows the applicability of electrochemical sensor arrays for the monitoring of parallel micro‐scale fermentations, e.g. using the 96‐well microtiterplate format. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

18.
Understanding the bioreactor   总被引:1,自引:0,他引:1  
Analysis of bioreactors is central for successful design and operation of biotechnical processes. The bioreactor should provide optimum conditions, with respect to temperature, pH and substrate condition, for example, besides its basic function of containment. The ability to control the substrate concentration is an important function of the bioreactor. The substrate concentration can be subject to spatial variation – advertently or inadvertently – and may also change with time in batch or fed-batch operation. The cellular metabolism will depend on local concentrations in the reactor, as well as on the physiological status of the cell. In order to understand the bioreactor operation, cellular metabolism must be considered together with the flow profile and the mass transfer characteristics of the bioreactor. Some fundamental aspects of bioreactor operation for yeast and bacterial cultivations are discussed in this short review.  相似文献   

19.
The enzymatic oxidation of Cephalosporin C (CEPHC) was catalyzed by D-aminoacid oxidase, from the red yeast Trigonopsis variabilis, immobilized on Duolite A365. The study was performed in two different three phase bioreactors, gas-liquid-solid (immobilized enzyme): the fluidized-bed batch reactor, fed continuously with oxygen and discontinuously with CEPHC, and the UF-membrane reactor continuously fed with both substrates. Only the first reactor allowed significant product yield (>70%) while the second was a very useful tool for laboratory investigation of both bioconversion kinetics and enzyme stability.

Optimum reaction temperature was 15d`C for the control of CEPHC spontaneous degradation (roughly 15% in 30 h), and enzyme deactivation (half-life greater than 30 h). Immobilization improved (one order of magnitude longer half-life) enzyme resistance to mechanical stresses induced by liquid stirring and gas bubbling. Roughly 0.04g of CEPHC was adsorbed per gram of enzyme carrier. The limiting step in oxygen transfer was the gas to liquid transport. In order to attain kinetic control of the bioconversion the mildest conditions were atmospheric gas pressure and oxygen flow rate equal to 2 × 10 2NmL/s per mL of liquid phase.  相似文献   

20.
Catalytic membranes, obtained by immobilizing thermophilic beta-glycosidase onto nylon supports, were used in a nonisothermal bioreactor to study the effect of temperature gradients on the rate of enzyme reaction. Two experimental approaches were carried out to explain the molecular mechanisms by which the temperature gradients affect enzyme activity. The results showed that the thermophilic enzyme behaved as the mesophilic beta-galactosidase, exhibiting an activity increase which was linearly proportional to the transmembrane temperature difference. The efficiency of the system proposed was determined by calculating two constants, alpha and beta, which represent respectively the percentage increase of enzyme activity when a temperature difference of 1 degrees C or a temperature gradient of 1 degrees C cm-1 were applied across the catalytic membrane. The increase of enzyme activity in nonisothermal bioreactors entailed a proportional reduction of production times. The advantages in using thermophilic enzymes immobilized in nonisothermal bioreactors are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号