首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Red algae are widely known to produce floridean starch but it remains unclear whether the molecular structure of this algal polyglucan is distinct from that of the starch synthesized by vascular plants and green algae. The present study shows that the unicellular species Porphyridium purpureum R-1 (order Porphyridiales, class Bangiophyceae) produces both amylopectin-type and amylose-type alpha-polyglucans. In contrast, Cyanidium caldarium (order Porphyridiales, class Bangiophyceae) synthesizes glycogen-type polyglucan, but not amylose. Detailed analysis of alpha-1,4-chain length distribution of P. purpureum polyglucan suggests that the branched polyglucan has a less ordered structure, referred to as semi-amylopectin, as compared with amylopectin of rice endosperm having a tandem-cluster structure. The P. purpureum linear amylose-type polyglucan, which has a lambda(max) of 630 nm typical of amylose-iodine complex and is resistant to Pseudomonas isoamylase digestion, accounts for less than 10% of the total polyglucans. We produced and isolated a cDNA encoding a granule-bound starch synthase (GBSS)-type protein of P. purpureum, which is probably the approximately 60-kDa protein bound tightly to the starch granules, resembling the amylose-synthesizing GBSS protein of green plants. The present investigation indicates that the class Bangiophyceae includes species producing both semi-amylopectin and amylose, and species producing glycogen alone.  相似文献   

2.
This work was done to characterize the structure of a photosynthetic polysaccharide and its metabolizing enzymes in cyanobacteria, which represent a link between bacteria and green plants in evolutionary terms. Filamentous cyanobacteria, occurring in an alkaline hot spring (45–50oC, pH 8.5–9.0) in Kagoshima Prefecture, were morphologically classified in the genera Lyngbya-Phormidium-Plectonema (LPP). We found a thermostable neutral (α-glucosidase with optimum pH 6.5 in the LPP. A polysaccharide isolated from the TCA-soluble fraction of the LPP was characterized as glycogen that resembled animal glycogen in structure. We also recognized the presence of the TCA-insoluble glycogen at 32–38% of the total amount of glycogen, most of which was bound non-covalently to protein and had a similar iodine absorption spectrum to that of the TCA-soluble glycogen.  相似文献   

3.
This is the first report on regulation of the isoamylase1 gene to modify the structure of amylopectin and properties of starch by using antisense technology in plants. The reduction of isoamylase1 protein by about 94% in rice endosperm changed amylopectin into a water-insoluble modified amylopectin and a water-soluble polyglucan (WSP). As compared with wild-type amylopectin, the modified amylopectin had more short chains with a degree of polymerization of 5-12, while their molecular sizes were similar. The WSP, which structurally resembled the phytoglycogen in isoamylase-deficient sugary-1 mutants, accounted for about 16% of the total alpha-polyglucans in antisense endosperm, and it was distributed throughout the whole endosperm unlike in sugary-1 mutant. The reduction of isoamylase activity markedly lowered the gelatinization temperature from 54 to 43 degrees C and the viscosity, and modified X-ray diffraction pattern and the granule morphology of the starch. The activity of pullulanase, the other type of starch debranching enzyme, in the antisense endosperm was similar to that in wild-type, whereas it is deficient in sugary-1 mutants. These results indicate that the isoamylase1 is essential for amylopectin biosynthesis in rice endosperm, and that alteration of the isoamylase activity is an effective means to modify the physicochemical properties and granular structure of starch.  相似文献   

4.
Neurospora crassa branching enzyme [EC 2.4.1.18] acted on potato amylopectin or amylose to convert them to highly branched glycogen-type molecules which consisted of unit chains of six glucose units. The enzyme also acted on the amylopectin beta-limit dextrin, indicating that the enzyme acted on internal glucose chains as well as outer chains. By the combined action of N. crassa glycogen synthase [EC 2.4.1.11] and the branching enzyme, a glycogen-type molecule was formed from UDP-glucose. In the presence of primer glycogen, the glucose transfer reaction was accelerated by the addition of branching enzyme. On the other hand, the glucose transfer reaction by glycogen synthase did not occur without primers. When the branching enzyme was added, the glucose transfer occurred after a short time lag. This recovery of the glucose transfer reaction did not occur upon addition of the inactivated branching enzyme. The structure of the product formed by the combined action of the two enzymes was different from that of the intact N. crassa glycogen with respect to the distribution patterns of the unit chains.  相似文献   

5.
Marine sponges frequently contain a complex mixture of bacteria, fungi, unicellular algae and cyanobacteria. Epifluorescent microscopy showed that Mycale (Carmia) hentscheli contained coccoid cyanobacteria. The 16S rRNA gene was amplified, fragments cloned and analysed using amplified rRNA gene restriction analysis. The nearly complete 16S rRNA gene of distinct clones was sequenced and aligned using ARB. The phylogenetic analysis indicated the presence of four closely related clones which have a high (8%) sequence divergence from known cyanobacteria, Cyanobacterium stanieri being the closest, followed by Prochloron sp. and Synechocystis sp. All belong to the order Chroococcales. The lack of non-molecular evidence prevents us from proposing a new genus.  相似文献   

6.
Clusters of chains consisting of tightly branched units of building blocks were isolated from 10 amylopectin samples possessing the 4 types of amylopectin with different internal unit chain profiles previously described. It was shown that clusters in types 1 and 2 amylopectins are larger than in types 3 and 4, but the average cluster size did not correspond to the ratio of short to long chains of the amylopectins. The size-distribution of the building blocks, having one or several branches, possessed generally only small differences between samples. However, the length of the interblock segments followed the type of amylopectin structure, so that type 1 amylopectins had shortest and type 4 the longest segments. The chains in the clusters were divided into characteristic groups probably being involved in the interconnection of two, three, and four - or more - building blocks. Long chains were typically found in high amounts in clusters from type 4 amylopectins, however, all cluster samples contained long chains. The results are discussed in terms of the building block structure of amylopectin, in which the blocks together with the interblock segments participate in a branched backbone building up the amorphous lamellae inside growth rings of the starch granules. In such a model, amylopectins with proportionally less long chains (types 1 and 2) possess a more extensively branched backbone compared to those with more long chains (types 3 and 4).  相似文献   

7.
The branched structure of potato amylopectin (degree of polymerization ~200,000) was modeled in a computer matrix. The chain-length distribution and the length and width of a cluster of the amylopectin molecule were used as input variables in the model. Independent literature values related to the structure of amylopectin (percentage #-hydrolysis and ratio of A- to B-chains) were used for evaluation of the branching characteristics (length of branch area and chance of branching) of the modeled amylopectin. The structural parameters predicted by the model agreed very well with data from the literature. The chain-length distribution and values for the percentage of #-hydrolysis were the two most important parameters required to model the structure of amylopectin. This computer-generated model of potato amylopectin in solution can be used to simulate various enzymatic (i.e., !-amylase, #-amylase, glucoamylase, pullunanase) or chemical reactions (i.e., acid hydrolysis, hypochlorite oxidation). The modeling approach described in this paper is also suitable for starches from other botanical sources (i.e., corn, wheat, tapioca).  相似文献   

8.
Enzymatic depolymerization of polysaccharides with alpha-amylase has been studied in mixed aqueous dimethylsulfoxide (DMSO)/water solvents. Polysaccharide substrate chemical compositions, configurational structures, and bonding pattersn are known to affect observed enzymatic reaction kinetics. The branching structures of polysaccharides and their effects on the kinetic mechanisms of depolymerization reactions via endo-acting hydrolyzing enzyme was studied via size exclusion chromatography coupled to low angle laser light scattering (SEC/LALLS). The glycogen branching structure is a heterogeneously distributed "cluster" structure rather than a homogeneously distributed "treelike" structure. The action pattern of alpha-amylase on glycogen, which is composed of highly branched clusters, as end-products, has a "pseudo-exo-attack" in contrast to an expected "endoattack" as seen in the hydrolysis of amylose or amylopectin substrates. These effects of branched substrates for mixed amylose/glycogen alpha-amylolysis have been predicted and demonstrated by both experimental and theoretical analysis using the kinetic model presented in this report. The "lumped" kinetic model employed, assumes that the enzyme simultaneously attacks both linear and branched substrates. In general, excellent agreement between the model predictions and the experimental observations, both qualitatively and quantitatively, was obtained. (c) 1995 John Wiley & Sons, Inc.  相似文献   

9.
Five branched heterocystous cyanobacteria (Scytonematopsis sp.,Scytonema sp.,Tolypothrix ceylonica, Mastigocladus sp. andFischerella sp.) were examined for their pattern of induction of nitrogenase activity andnif gene organization. All the forms showed the onset of nitrogenase activity after 12 h which could be correlated with the appearance of proheterocysts. The highest activity was exhibited byT. ceylonica. Hybridization studies revealed the presence of thenifD gene but the absence of thexisA gene inMastigocladus sp. andScytonematopsis sp. Interestingly,Tolypothrix sp. andScytonema sp. DNA samples hybridized withxisA. Hence no uniformity seems to exist regarding the presence ofxisA and the relatednif gene organization in branched heterocystous cyanobacteria. This investigation throws light on the primitive character and phylogenetic relatedness of branched forms to the coccoid/colonial forms. It also provides evidence for the proposition that stigonematacean cyanobacteria may not represent the most advanced cyanobacterial forms; rather they may link the coccoid and filamentous forms.  相似文献   

10.
11.
Taxonomic affiliations and molecular diversity of 41 heterocystous cyanobacteria representing 12 genera have been assessed on an evolutionary landscape using rbcl gene sequence data-based phylogenomics and evogenomics approaches. Phylogenetic affiliations have clearly demonstrated the polyphyly of the true branching cyanobacteria, along with a frequent intermixing amongst the heterocystous cyanobacteria. The monophyletic origin of the heterocystous cyanobacteria was also quite evident from maximum parsimony and neighbor joining analyses. Incongruency with the traditional scheme of cyanobacterial taxonomy was frequently observed, thus advocating towards some re-amendments in the cyanobacterial classificatory schemes. Evogenomics analyses of gene sequence data gave a clear indication about the greater evolutionary pace of the unbranched cyanobacteria as compared to the branched forms. It was evident that the order Nostocales would be controlling the future pace of evolution of heterocystous cyanobacteria. The cyanobacteria Nostoc was found to have the greatest genetic heterogeneity amongst the studied genera, along with some evidence towards events of lateral gene transfer amongst the heterocystous cyanobacteria in case of the rbcl gene. Thus, heterocystous cyanobacteria were found to be a fast evolving group, with estimates of gene conversion tracts pointing towards the unbranched heterocystous cyanobacteria being at the base of evolutionary diversifications of the complete heterocystous lineage.  相似文献   

12.
The evolutionary route from anoxygenic photosynthetic bacteria to oxygenic cyanobacteria is discontinuous in terms of photochemical/photophysical reaction systems. It is difficult to describe this transition process simply because there are no recognized intermediary organisms between the two bacterial groups. Gloeobacter violaceus PCC 7421 might be a model organism that is suitable for analysis because it still possesses primordial characteristics such as the absence of thylakoid membranes. Whole genome analysis and biochemical and biophysical surveys of G. violaceus have favored the hypothesis that it is an intermediary organism. On the other hand, species differentiation is an evolutionary process that could be driven by changes in a small number of genes, and this process might give fair information more in details by monitoring of those genes. Comparative studies of genes, including those in Acaryochloris marina MBIC 11017, have provided information relevant to species differentiation; in particular, the acquisition of a new pigment, chlorophyll d, and changes in amino acid sequences have been informative. Here, based on experimental evidence from these two species, we discuss some of the evolutionary pathways for the appearance and differentiation of cyanobacteria.  相似文献   

13.
Carotenoid compositions were analyzed for ten strains of Nephroselmis (Prasinophyceae) containing four described and three undescribed species. Based on the distribution pattern of the siphonaxanthin series, five carotenoid types were recognized in the examined strains/species: type I (N. astigmatica Inouye et Pienaar, N. pyriformis (N. Carter) Ettl, and Nephroselmis sp1. MBIC 11158) had siphonaxanthin C12:1 and C14:1 esters as well as 6′‐OH siphonaxanthin C12:1 and C14:1 esters, type II (Nephroselmis sp2. MBIC 11149) had siphonaxanthin C8:1 ester, type III (Nephroselmis sp3. NIES 486, NIES‐PS 535, and MBIC 10871) had 19‐methoxy siphonaxanthin and siphonaxanthin C12:1 and C14:1 esters, type IV (N. spinosa Suda) had only a small amount of siphonaxanthin C12:1 ester, and type V (N. olivacea Stein) had lutein as a major carotenoid but completely lacked the siphonaxanthin series. 19‐Methoxy siphonaxanthin was a novel and very unique carotenoid, that is, it contains a methoxy group and was found for the first time in photosynthetic eukaryotes. Additionally, carotenoids containing a primary methoxy group had previously never been found in any group of organisms. Siphonaxanthin C8:1 ester, which was only known as a trace carotenoid in Chlamydomonas parkeae Ettl, was first discovered as a major carotenoid in Nephroselmis sp2. (MBIC 11149). Based on these results and comparison of the phylogenetic relationships of the Nephroselmis species used, we discuss the taxonomic significance of the carotenoid types and evolutionary process of the photosynthetic antenna systems in green plants.  相似文献   

14.
Growth patterns on and utilization of various alpha-glucans were investigated in Pseudomonas amyloderamosa and P. saccharophila. Maltose, maltodextrins (average chain length 7 glycosyl units) and glycogen supported excellent growth of both organisms and were extensively metabolized, although glycogen utilization in P. saccharophila was preceded by a prolonged lag phase. P. amyloderamosa produced limited growth on amylopectin and the carbohydrate was only partly degraded. It seemed likely that many of the unit chains liberated from amylopectin had a length exceeding the substrate range accepted by the maltodextrin permease (transport) system. A correlation was established between the pH of the medium and the utilization of glycogen and amylopectin for growth in P. amyloderamosa. The carbohydrates were at least partly utilizable at pH 6.0, whereas they could not support any growth at pH 6.5. Most likely, the lack of growth at the higher pH reflected the low activity of isolamylase at this pH. The enzyme patterns of maltodextrin catabolism in the two bacteria were established. Intracellularly, maltodextrin phosphorylase and 4-alpha-glucanotransferase occurred in both. Degradation of extracellular alpha-glucans was mediated by a mainly intracellular isoamylase in P. amyloderamosa, whereas P. saccharophila possessed an extracellular alpha-amylase and a firmly cell-bound pullulanase.  相似文献   

15.
The fine structure of the glycogen from the blue-green alga Anacystis nidulans has been examined. After selective hydrolysis of all (1→6)-α-D linkages by a bacterial isoamylase, the resulting mixture of linear chains was subjected to gel-permeation chromatography. For purposes of comparison, the glycogens from Escherichia coli and Arthrobacter sp., amylopectin, phytoglycogen from sweet corn, and shell-fish glycogen were treated similarly. The profiles of the unit chains of A. nidulans glycogen and phytoglycogen were closely similar. There was no close resemblance in the size distribution of unit chains for A. nidulans glycogen, other bacterial glycogens, and amylopectin.  相似文献   

16.
The obligate intracellular protozoan Toxoplasma gondii belongs to the phylum Apicomplexa, which is composed of numerous parasites causing major diseases such as malaria, toxoplasmosis and coccidiosis. The life cycle of T. gondii involves developmental processes from one stage to another with both asexual and sexual parasitic forms. Throughout their life cycle, some apicomplexan parasites accumulate a crystalline storage polysaccharide analogous to amylopectin within the cytoplasm. In T. gondii, both the slowly dividing encysted bradyzoites and the sporozoites of the sexual stage contain a high number of amylopectin granules (AG), while the rapidly replicating tachyzoites are devoid of amylopectin. It is thought that this storage polysaccharide may represent an energy reserve that could fuel the transition from one developmental stage to another one. At present, by comparison to glycogen and plant starch, little is known about the biosynthesis, structure and biological functions of amylopectin in T. gondii. Here, we describe an in vitro system allowing the production and purification of a large amount of amylopectin, which has been subjected to detailed biochemical and structural analyses. Our data indicate that T. gondii synthesizes a genuine amylopectin following changes in the environmental conditions and that this storage polysaccharide differs from glycogen and starch in terms of glucan chain length.  相似文献   

17.
1. A pullulanase has been separated from cell extracts of Streptococcus mitis. The enzyme was freed from transglucosylase by fractionation with ammonium sulphate. 2. Pullulanase was produced in the absence of inducers, and addition of glucose or maltose to the broth did not increase the yield of enzyme. 3. The pullulanase acted rapidly on alpha-(1-->6)-bonds in substrates having the structure alpha-maltodextrinyl-(1-->6)-maltodextrin, but had no action on isomaltose, 6-alpha-glucosylmaltodextrins or 6-alpha-maltodextrinylglucoses. 4. 6-alpha-Maltotriosylmaltodextrins were hydrolysed over 10 times faster than 6-alpha-maltosylmaltodextrins. 5. The branch linkages of amylopectin phosphorylase limit dextrin, glycogen phosphorylase limit dextrin and glycogen beta-amylase limit dextrin were hydrolysed. The action of pullulanase on amylopectin and glycogen was accompanied by a rise in the iodine stain of 50% and 30% respectively. 6. A reversal of pullulanase action occurred on incubation with high concentrations of maltotriose. Condensation of maltosyl units to form a branched tetrasaccharide occurred less readily. 7. S. mitis pullulanase was rapidly inactivated at temperatures higher than 40 degrees , and the enzyme did not recover activity on storage at room temperature.  相似文献   

18.
Amylose precipitating factor, a lipoprotein, functions as a regulator of in vitro activity of glycogen/starch phosphorylase and of A/UDPglucose glucosyltransferase. The results suggest that this lipoprotein could act to stimulate the in vivo production by phosphorylase of long, linear glucans (amylose) from the short chain precursors. The lipoprotein also appears to switch A/UDPglucose glucosyltransferase from the elongation of branched glucan molecules (amylopectin and glycogen) to the elongation of linear glucans (amylose).  相似文献   

19.
Floridean Starch   总被引:1,自引:0,他引:1  
A survey was made of about 30 species of red algae from thePacific Coast to find the best starting-material for the isolation,in pure and native form, of the controversial substance, florideanstarch. Constantinea subulifera Setchell turned out to be theideal alga for this purpose. The isolated starches were subjectedto a number of physical, chemical, and enzymatic tests in orderto bring out possible differences from other starch-family substances,such as amylopectin and glycogen, isolated from higher plants.According to all criteria applied there is no real differencebetween the various compounds, except for the fact that florideanstarch gelatinizes only after very long boiling in water. End-groupdeterminations with the aid of periodate show that the florideanstarch molecule is a strongly branched structure somewhat comparableto glycogen.  相似文献   

20.
Growth patterns on and utilization of various α-glucans were investigated in Pseudomonas amyloderamosa and P. saccharophila. Maltose, maltodextrins (average chain length 7 glucosyl units) and glycogen supported excellent growth of both organisms and were extensively metabolized, although glycogen utilization in P. saccharophila was preceded by a prolonged lag phase. P. amyloderamosa produced limited growth on amylopectin and the carbohydrate was only partly degraded. It seemed likely that many of the unit chains liberated from amylopectin had a length exceeding the substrate range accepted by the maltodextrin permease (transport) system. A correlation was established between the pH of the medium and the utilization of glycogen and amylopectin for growth in P. amyloderamosa. The carbohydrates were at least partly utilizable at pH 6.0, whereas they could not support any growth at pH 6.5. Most likely, the lack of growth at the higher pH reflected the low activity of isoamylase at this pH. The enzyme patterns of maltodextrin catabolism in the two bacteria were established. Intracellularly, maltodextrin phosphorylase and 4-α-glucanotransferase occurred in both. Degradation of extracellular α-glucans was mediated by a mainly intracellular isoamylase in P. amyloderamosa, whereas P. saccharophila possessed an extracellular α-amylase and a firmly cell-bound pullulanase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号