首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The autosomal dominant cerebellar ataxias (ADCA) type I are a group of neurological disorders that are clinically and genetically heterogeneous. Two genes implicated in the disease, SCA1 (spinal cerebellar ataxia 1) and SCA2, are already localized. We have mapped a third locus to chromosome 14q24.3-qter, by linkage analysis in a non-SCA1/non-SCA2 family and have confirmed its existence in a second such family. We suggest designating this new locus “SCA3.” Combined analysis of the two families restricted the SCA3 locus to a 15-cM interval between markers D14S67 and D14S81. The gene for Machado-Joseph disease (MJD), a clinically different form of ADCA type I, has been recently assigned to chromosome 14q24.3-q32. Although the SCA3 locus is within the MJD region, linkage analyses cannot yet demonstrate whether they result from mutations of the same gene. Linkage to all three loci (SCA1, SCA2, and SCA3) was excluded in another family, which indicates the existence of a fourth ADCA type I locus.  相似文献   

2.
Mitral valve prolapse (MVP) is a common cardiovascular abnormality in the United States, occurring in approximately 2.4% of the general population. Clinically, patients with MVP exhibit fibromyxomatous changes in one or both of the mitral leaflets that result in superior displacement of the leaflets into the left atrium. Although often clinically benign, MVP can be associated with important accompanying sequelae, including mitral regurgitation, bacterial endocarditis, congestive heart failure, atrial fibrillation, and even sudden death. MVP is genetically heterogeneous and is inherited as an autosomal dominant trait that exhibits both sex- and age-dependent penetrance. In this report, we describe the results of a genome scan and show that a locus for MVP maps to chromosome 11p15.4. Multipoint parametric analysis performed by use of GENEHUNTER gave a maximum LOD score of 3.12 for the chromosomal region immediately surrounding the four-marker haplotype D11S4124-D11S2349-D11S1338-D11S1323, and multipoint nonparametric analysis (NPL) confirms this finding (NPL=38.59; P=.000397). Haplotype analysis across this region defines a 4.3-cM region between the markers D11S1923 and D11S1331 as the location of a new MVP locus, MMVP2, and confirms the genetic heterogeneity of this disorder. The discovery of genes involved in the pathogenesis of this common disease is crucial to understanding the marked variability in disease expression and mortality seen in MVP.  相似文献   

3.
Our group previously described and mapped to chromosomal region 12p13 a form of dominantly inherited hereditary spastic ataxia (HSA) in three large Newfoundland (Canada) families. This report identifies vesicle-associated membrane protein 1 (VAMP1), which encodes a critical protein for synaptic exocytosis, as the responsible gene. In total, 50 affected individuals from these families and three independent probands from Ontario (Canada) share the disease phenotype together with a disruptive VAMP1 mutation that affects a critical donor site for the splicing of VAMP1 isoforms. This mutation leads to the loss of the only VAMP1 isoform (VAMP1A) expressed in the nervous system, thus highlighting an association between the well-studied VAMP1 and a neurological disorder. Given the variable phenotype seen in the affected individuals examined here, we believe that VAMP1 should be tested for mutations in patients with either ataxia or spastic paraplegia.  相似文献   

4.
Myxomatous mitral-valve prolapse (MMVP), also called Barlow disease, is a common cardiac abnormality and affects up to 5% of the population. It is characterized by an excess of tissue that leads to billowing of the mitral leaflets, sometimes complicated by prolapse. Typical histological findings include myxomatous degeneration and degradation of collagen and elastin. Previous reports have proposed an autosomal dominant inheritance of the trait, with age- and sex-dependent expression. By systematic echocardiographic screening of the first-degree relatives of 17 patients who underwent mitral-valve repair, we have identified four pedigrees showing such an inheritance. Genomewide linkage analysis of the most informative pedigree (24 individuals, three generations) showed a significant linkage for markers mapping to chromosome 16p, with a two-point maximum LOD score for D16S3068 (Zmax=3.30 at straight theta=0). Linkage to D16S3068 was confirmed in a second family (Zmax=2.02 at straight theta=0) but was excluded for the two remaining families, thus demonstrating the genetic heterogeneity of the disease. Multipoint linkage analysis performed, with nine additional markers, on the two families with linkage gave maximum multipoint LOD scores of 5.45 and 5.68 for D16S3133, according to a conservative and a stringent model, respectively. Haplotype analysis defined a 5-cM minimal MMVP-1 locus between D16S3068 (16p11.2) and D16S420 (16p12. 1) and a 34-cM maximal interval between D16S404 and D16S3068 when recombination events were taken into account only in affected individuals. The identification of this locus represents a first step toward a new molecular classification of mitral-valve prolapse.  相似文献   

5.
Congenital nystagmus is an idiopathic disorder characterized by bilateral ocular oscillations usually manifest during infancy. Vision is typically decreased due to slippage of images across the fovea. As such, visual acuity correlates with nystagmus intensity, which is the amplitude and frequency of eye movements at a given position of gaze. X-linked, autosomal dominant, and autosomal recessive pedigrees have been described, but no mapping studies have been published. We recently described a large pedigree with autosomal dominant congenital nystagmus. A genome-wide search resulted in six markers on 6p linked by two-point analysis at θ = 0 (D6S459, D6S452, D6S465, FTHP1, D6S257, D6S430). Haplotype analysis localizes the gene for autosomal dominant congenital motor nystagmus to an 18-cM region between D6S271 and D6S455.  相似文献   

6.
The increasing number of diagnosed cases of inherited thrombocytopenias, owing to the routine practice of including platelet counts in blood tests, suggests that this condition is not so rare as expected. In the majority of cases, the molecular basis of the disease is unknown, although the defect is likely to affect thrombocytopoiesis and regulation of the normal platelet count. Here we report a genomewide search in a large Italian family affected by autosomal dominant thrombocytopenia. Patients showed a moderate thrombocytopenia with minimal symptoms characterized by normocellular bone marrow, normal medium platelet volume, and positive aggregation tests. Microsatellite analysis demonstrated that the disease locus (THC2) is linked to chromosome 10p11.1-12, within a candidate region of 6 cM between markers D10S586 and D19S1639. A maximum LOD score of 8.12 at recombination fraction.00 was obtained with the microsatellite D10S588. These data localized the first locus of an autosomal dominant thrombocytopenia, and the subsequent identification of the gene will provide new insight into the basic mechanism of megakaryocytopoiesis disorders.  相似文献   

7.
8.
Although the role of genetic factors in the origin of Parkinson disease has long been disputed, several genes involved in autosomal dominant and recessive forms of the disease have been localized. Mutations associated with early-onset autosomal recessive parkinsonism have been identified in the Parkin gene, and recently a second gene, PARK6, involved in early-onset recessive parkinsonism was localized on chromosome 1p35-36. We identified a family segregating early-onset parkinsonism with multiple consanguinity loops in a genetically isolated population. Homozygosity mapping resulted in significant evidence for linkage on chromosome 1p36. Multipoint linkage analysis using MAPMAKER-HOMOZ generated a maximum LOD-score of 4.3, with nine markers spanning a disease haplotype of 16 cM. On the basis of several recombination events, the region defining the disease haplotype can be clearly separated, by > or =25 cM, from the more centromeric PARK6 locus on chromosome 1p35-36. Therefore, we conclude that we have identified on chromosome 1 a second locus, PARK7, involved in autosomal recessive, early-onset parkinsonism.  相似文献   

9.
Inherited cataract is a clinically and genetically heterogeneous disease that most often presents as a congenital autosomal dominant trait. Here we report the linkage of a new locus for dominant “zonular pulverulent” cataract (CZP) to chromosome 13. To map the CZPlocus we performed molecular-genetic linkage analysis using microsatellite markers in a five-generation English pedigree. After exclusion of eight known loci and several candidate genes for autosomal dominant cataract, we obtained significantly positive LOD scores (Z) for markers D13S175 (maximum Z [Zmax] å 4.06; maximum recombination frequency [umax] å 0) and D13S1236 (Zmax å 5.75, umax å 0). Multipoint analysis gave Zmaxå 6.62 (umax å 0) at marker D13S175. Haplotype data indicated that CZP probably lies in the centromeric region of chromosome 13, provocatively close to the gene for lens connexin46.  相似文献   

10.
Hereditary gingival fibromatosis (HGF, MIM 135300; approved gene symbol GINGF) is an oral disease characterized by enlargement of gingiva. Recently, a locus for autosomal dominant HGF has been mapped to an 11-cM region on chromosome 2p21. In the current investigation, we genotyped four Chinese HGF families using polymorphic microsatellite markers on 2p21. The HOMOG test provided evidence for genetic homogeneity, with evidence for linkage in four families (heterogeneity versus homogeneity test HOMOG, χ2 = 0.00). A cumulative maximum two-point lod score of 5.04 was produced with marker D2S390 at a recombination frequency of θ = 0 in the four linked families. Haplotype analysis localized the hereditary gingival fibromatosis locus within the region defined by D2S352 and D2S2163. This region overlaps by 3.8 cM with the previously reported HGF region. Single-strand conformation polymorphism and sequence analysis of the coding region of cytochrome P450 1B1 (CYP1B1) excluded it as a likely candidate gene.  相似文献   

11.
Autosomal recessive polycystic kidney disease (ARPKD) is a one of the most common hereditary renal cystic diseases in children. Its clinical spectrum is widely variable with most cases presenting in infancy. Most affected neonates die within the first few hours of life. At present, prenatal diagnosis relies on fetal sonography, which is often imprecise in detecting even the severe form of the disease. Recently, in a cohort of families with mostly milder ARPKD phenotypes, an ARPKD locus was mapped to a 13-cM region of chromosome 6p21-cen. To determine whether severe perinatal ARPKD also maps to chromosome 6p, we have analyzed the segregation of seven microsatellite markers from the ARPKD interval in 22 families with the severe phenotype. In the majority of the affected infants, ARPKD was documented by histopathology. Our data confirm linkage and refine the ARPKD region to a 3.8-cM interval, delimited by the markers D6S465/D6S427/D6S436/D6S272 and D6S466. Taken together, these results suggest that, despite the wide variability in clinical phenotypes, there is a single ARPKD gene. These linkage data and the absence of genetic heterogeneity in all families tested to date have important implications for DNA-based prenatal diagnoses as well as for the isolation of the ARPKD gene.  相似文献   

12.
Ectodermal dysplasias (EDs) are a large heterogeneous group of inherited disorders exhibiting abnormalities in ectodermally derived appendages such as hair, nails, teeth and sweat glands. EDs associated with reticulated pigmentation phenotype are rare entities for which the genetic basis and pathophysiology are not well characterized. The present study describes a five generation consanguineous Pakistani family segregating an autosomal recessive form of a novel type of ectodermal dysplasia. The affected members present with sparse and woolly hair, severe nail dystrophy and reticulate skin pigmentation. After exclusion of known gene loci related with other skin disorders, genome-wide linkage analysis was performed using Illumina HumanOmniExpress beadchip SNP arrays. We linked this form of ED to human chromosome 18p11.32-p11.31 flanked by the SNPs rs9284390 (0.113Mb) and rs4797100 (3.14 Mb). A maximum two-point LOD score of 3.3 was obtained with several markers along the disease interval. The linkage interval of 3.03 Mb encompassed seventeen functional genes. However, sequence analysis of all these genes did not discover any potentially disease causing-variants. The identification of this novel locus provides additional information regarding the mapping of a rare form of ED. Further research, such as the use of whole-genome sequencing, would be expected to reveal any pathogenic mutation within the disease locus.  相似文献   

13.
We have studied a four-generation family with features of Weyers acrofacial dysostosis, in which the proband has a more severe phenotype, resembling Ellis-van Creveld syndrome. Weyers acrofacial dysostosis is an autosomal dominant condition with dental anomalies, nail dystrophy, postaxial polydactyly, and mild short stature. Ellis-van Creveld syndrome is a similar condition, with autosomal recessive inheritance and the additional features of disproportionate dwarfism, thoracic dysplasia, and congenital heart disease. Linkage and haplotype analysis determined that the disease locus in this pedigree resides on chromosome 4p16, distal to the genetic marker D4S3007 and within a 17-cM region flanking the genetic locus D4S2366. This region includes the Ellis-van Creveld syndrome locus, which previously was reported to map within a 3-cM region between genetic markers D4S2957 and D4S827. Either the genes for the condition in our family and for Ellis-van Creveld syndrome are near one another or these two conditions are allelic with mutations in the same gene. These data also raise the possibility that Weyers acrofacial dysostosis is the heterozygous expression of a mutation that, in homozygous form, causes the autosomal recessive disorder Ellis-van Creveld syndrome.  相似文献   

14.
Human Fas Associated Factor 1, hFAF1, Gene Maps to Chromosome Band 1p32   总被引:1,自引:0,他引:1  
Human Fas associated factor 1 protein (hFAF1) is involved in the positive regulation of Fas signaling even though it can not initiate the signal for itself. By chromosomal assignment using somatic cell hybrids (CASH), the hFAF1 gene was located on human chromosome 1 between markers D1S443 and D1S197. The hFAF1 gene was mapped to human chromosome band 1p32 by FISH utilizing a genomic PAC clone containing the gene. In genomic Southern analysis using hFAF1 cDNA as a probe, several bands appeared in three different restriction enzyme digestions. The single band appearance in FISH analysis compared to several bands in Southern blots implies that the hFAF1 gene would be rather big or that an additional hFAF1 gene isotype(s) might be present in close vicinity.  相似文献   

15.
Split hand/split foot (SHFD) is a human developmental defect characterized by missing digits, fusion of remaining digits, and a deep median cleft in the hands and feet. Cytogenetic studies of deletions and translocations associated with this disorder have indicated that an autosomal dominant split hand/split foot locus (gene SHFD1) maps to 7q21-q22. To characterize the SHFD1 locus, somatic cell hybrid lines were constructed from cytogenetically abnormal individuals with SHFD. Molecular analysis resulted in the localization of 93 DNA markers to one of 10 intervals surrounding the SHFD1 locus. The translocation breakpoints in four SHFD patients were encompassed by the smallest region of overlap among the SHFD-associated deletions. The order of DNA markers in the SHFD1 critical region has been defined as PON–D7S812–SHFD1–D7S811–ASNS. One DNA marker, D7S811, detected altered restriction enzyme fragments in three patients with translocations when examined by pulsed-field gel electro-phoresis (PFGE). These data map SHFD1, a gene that is crucial for human limb differentiation, to a small interval in the q21.3-q22.1 region of human chromosome 7.  相似文献   

16.
17.
Three human cDNAs encoding new RAS-related cDNAs, designated RAP1A, RAP1B, and RAP2, have been isolated previously. The encoded proteins are highly related to RAS in the effector region and share an overall identity with RAS of approximately 50%. Using the complete cDNAs or parts thereof as probes, each RAP gene has been localized on human chromosomes by in situ hybridization. The three genes RAP1A, RAP1B, and RAP2 have been assigned to chromosome bands 1p12----p13, 12q14, and 13q34, respectively.  相似文献   

18.
We performed a genomewide search for linkage in an extended Dutch family with hereditary vascular retinopathy associated with migraine and Raynaud phenomenon. Patients with vascular retinopathy are characterized by microangiopathy of the retina, accompanied by microaneurysms and telangiectatic capillaries. The genome search, using a high throughput capillary sequencer, revealed significant evidence of linkage to chromosome 3p21.1-p21.3 (maximum pairwise LOD score 5.25, with D3S1578). Testing of two additional families that had a similar phenotype, cerebroretinal vasculopathy, and hereditary endotheliopathy with retinopathy, nephropathy, and stroke, revealed linkage to the same chromosomal region (combined maximum LOD score 6.30, with D3S1588). Haplotype analysis of all three families defined a 3-cM candidate region between D3S1578 and D3S3564. Our study shows that three autosomal dominant vasculopathy syndromes with prominent cerebroretinal manifestations map to the same 3-cM interval on 3p21, suggesting a common locus.  相似文献   

19.
20.
We report a clinical and genetic study of a family with a phenotype resembling generalized epilepsy with febrile seizures plus (GEFS+), described by Berkovic and colleagues. Patients express a very variable phenotype combining febrile seizures, generalized seizures often precipitated by fever at age >6 years, and partial seizures, with a variable degree of severity. Linkage analysis has excluded both the beta 1 subunit gene (SCN1B) of a voltage-gated sodium (Na+) channel responsible for GEFS+ and the two loci, FEB1 and FEB2, previously implicated in febrile seizures. A genomewide search, under the assumption of incomplete penetrance at 85% and a phenocopy rate of 5%, permitted identification of a new locus on chromosome 2q21-q33. The maximum pairwise LOD score was 3.00 at recombination fraction 0 for marker D2S2330. Haplotype reconstruction defined a large (22-cM) candidate interval flanked by markers D2S156 and D2S2314. Four genes coding for different isoforms of the alpha-subunit voltage-gated sodium channels (SCN1A, SCN2A1, SCN2A2, and SCN3A) located in this region are strong candidates for the disease gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号